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Abstract: This study considers the use of deep learning to diagnose osteoporosis from hip radiographs,
and whether adding clinical data improves diagnostic performance over the image mode alone.
For objective labeling, we collected a dataset containing 1131 images from patients who underwent
both skeletal bone mineral density measurement and hip radiography at a single general hospital
between 2014 and 2019. Osteoporosis was assessed from the hip radiographs using five convolutional
neural network (CNN) models. We also investigated ensemble models with clinical covariates added
to each CNN. The accuracy, precision, recall, specificity, negative predictive value (npv), F1 score,
and area under the curve (AUC) score were calculated for each network. In the evaluation of the
five CNN models using only hip radiographs, GoogleNet and EfficientNet b3 exhibited the best
accuracy, precision, and specificity. Among the five ensemble models, EfficientNet b3 exhibited the
best accuracy, recall, npv, F1 score, and AUC score when patient variables were included. The CNN
models diagnosed osteoporosis from hip radiographs with high accuracy, and their performance
improved further with the addition of clinical covariates from patient records.

Keywords: osteoporosis; deep learning; hip radiograph; ensemble model

1. Introduction

Approximately 50% of women and 20% of men will experience osteoporotic fractures in their
lifetime [1]. The standard test for diagnosing osteoporosis is the estimation of bone mineral density
(BMD) in the proximal femur and lumbar spine with dual-energy X-ray absorptiometry (DXA).
The US Preventive Services Task Force has recommended screening for osteoporosis with BMD to
prevent osteoporotic fractures in women 65 years and older [2]. The early diagnosis of osteoporosis is
important for the prevention of osteoporotic fractures because therapeutic drug treatments fractures,
because treatments are more effective in the early stages of the condition, before fractures have
appeared [3]. One disadvantage of using DXA is the occurrence of relevant measurement errors that
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caused by the surrounding soft tissues [4,5]. Other disadvantages include radiation exposure and
high device costs [6,7]. Easy access to bone densitometry examinations is important, particularly in
developing countries.

Osteoporosis is an insidious skeletal disease in which the density (and calcium content) of the
bones decreases; X-rays can aid in its detection [8]. The Singh index is a typical classification system for
the bone density of the femoral neck based on the qualitative visibility of trabecular types [9]. On the
other hand, quantitative assessment using hip X-ray imagery, such as estimating the ratio of the cortical
width to the total width, has been performed since approximately 1970 [10]. The cortical-thickness
index has been found to be significantly correlated with the BMD at the femoral neck and with
predictions of the fracture-risk assessment tool [11,12]. Moreover, the canal bone ratio exhibits a strong
correlation with the T-score and has the best overall performance in diagnosing osteoporosis with
receiver operating characteristic (ROC) curve analysis [13]. In this manner, clinicians have diagnosed
osteoporosis using the bone morphology of hip radiographs.

Artificial intelligence (AI) has been used as an adjunct technology for imaging interpretation,
and as an initial screening tool [14]. A 2019 review article reported that recent developments in AI
have led to successful applications aiding osteoporosis diagnosis [15]. The following modalities have
been used: dental radiographs [16,17], spine radiographs [14,18], hand and wrist radiographs [19–22],
DXA imaging [23,24], and spine computed tomography [25,26]. However, two reports are available on
osteoporosis diagnosis from hip radiographs using machine learning [27,28]. To our knowledge, no
study has yet reported on osteoporosis diagnosis based on hip radiographs using deep learning (DL).

Image-only models can be used to augment human interpretations. Although DL studies on
various image-based osteoporosis-prediction methods have been published, these did not consider
patient covariates, which clinicians use when estimating the pre-test probability during the decision
process. Patient and healthcare process variables impress patterns into observational healthcare data,
and these patterns can be learned by statistical learning algorithms [29]. Hip fracture diagnosis was
predicted moderately well from images alone (area under the curve (AUC) = 0.78), and the prediction
was improved by combining image features with patient data (AUC = 0.86) [29]. The direct extension
of DL image models with known covariates can improve the model performance, which would be
extremely useful in a clinical setting.

We hypothesized that combining image features with patient data would improve the accuracy of
osteoporosis diagnosis. The purpose of this study was to diagnose osteoporosis with hip radiographs
using DL, and to investigate whether adding clinical data would improve the diagnostic performance
compared to the image mode alone.

2. Materials and Methods

2.1. Study Design

The purpose of this study is to classify the presence or absence of osteoporosis from hip radiographs
of the hip joint. We used a segmented dataset to mimic the diagnostic range of osteoporosis in the
DXA method. In addition, clinical covariates extracted from clinical records were added to the dataset.
Several different convolutional neural networks (CNNs) were used to diagnose osteoporosis from
hip radiographs. We investigated the accuracy of the predictive diagnosis of osteoporosis from the
combination of clinical covariates with the various CNN models.

2.2. Data Acquisition

We retrospectively used clinical and image data from March 2014 to December 2019. This study
was approved by the Institutional Review Board of the Kagawa Prefectural Central Hospital (Approval
No. 894). This study involved 1223 consecutive patients 60 years of age or older who had hip
radiographs and who underwent DXA at our hospital six months before and after the date that the hip
radiograph was performed.
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In this study, the term “hip fracture” refers to a femoral neck or trochanteric fracture.
We excluded the following images: 50 images of osteoarthritis with femoral head deformity,

32 unclear or poor images, 7 images showing artificial objects made of materials such as metal, 2
showing femoral bone deformity following prior fractures, and 1 showing pathological fracture. Thus,
1131 hips (708 fractured and 423 non-fractured) remained for further analysis.

2.3. Data Preprocessing

Simple hip radiographs of each patient were used to acquire the images. All images were output
in TIFF format (size: 2836 × 2373 pixels) from the Kagawa Prefectural Central Hospital PACS system
(HOPE Dr ABLE-GX, FUJITSU Co., Tokyo, Japan). For the images, we performed segmentation of the
hip joint area. Six orthopedic surgeons manually placed and cropped areas of interest on the X-ray
images using Photoshop Elements (Adobe Systems, Inc., San Jose, CA, USA) under the supervision of
an orthopedic specialist (N.Y., an author of this paper).

The side of the hip measured using DXA was selected as the cropped side in the pre-analysis
image-cropping method. The lines of the femoral head and the inferior margin of the lesser trochanter
were selected and cropped to include the lines of the femoral head and the inferior margin of the lesser
trochanter, as illustrated in Figure 1, as the range cropped with the DXA measurement. The cropped
area imitated the osteoporosis diagnosis range obtained using the DXA method. The cropped images
were saved in PNG format. None of the orthopedic surgeons who performed the cropping were
informed of the patient’s BMD status.

Figure 1. Hip radiograph before analysis, showing region of interest that was cropped.

2.4. Diagnosis of Osteoporosis

BMD measurements (g/cm2) were performed at the hip through DXA (HOLOGIC Horizon-A,
Apex software version 13.6.0.4, Bedford, MA, USA) by trained personnel using equal measurement
routines. The standard position was used and the scanned image adhered to the following criteria [30]:
the hip joint was located in the center of the image, with 15◦ to 25◦ internal rotation, with the femur
neck, head, and greater trochanter completely in the image. The measurement was normally performed
at the left hip. When the left hip had a metal implant or a high degree of deformity, the right hip was
selected. The investigated parameters included the BMD (g/cm2) and T-score, which were generated
automatically. Osteoporosis was diagnosed if the T-score of the bone density obtained by DXA was
less than −2.5, following World Health Organization diagnostic criteria [31].
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2.5. Clinical Covariates

Osteoporotic fractures are common fracture types, and age, gender, and body mass index (BMI)
are clinically important risk factors [32]. Four clinical covariates types, namely age, sex, BMI, and
history of hip fracture, were accordingly selected from the clinical factors of patients with osteoporosis
in the study. The BMI is the weight in kilograms divided by the square of the height in meters
(kg/m2). The height and weight were recorded at the time of the BMD measurement. A history of hip
fracture was also selected as a patient factor because hip fractures affect the secondary fracture among
osteoporotic fractures [33].

The clinical and demographic characteristics of patients in the hip radiographic image dataset in
this study are presented in Table 1.

Table 1. Clinical and demographic characteristics of the hip radiographic dataset in this study.

Osteoporosis Non-Osteoporosis
p Value

(T-Score ≤ −2.5) (T-Score > −2.5)

Number of patients 598 535

Sex <0.0001
Female (%) 506 (84.6) 371 (69.3)
Male (%) 92 (15.4) 164 (30.7)

Mean age (SD, min-max) 82.7 (8.3, 60, 100) 77.7 (9.0, 60–98) <0.0001
BMI (SD, min-max) 20.1 (3.1, 13.3–29.0) 23.3 (9.0, 14.1–39.2) <0.0001

History of hip fracture (%) 250 (41.8) 157 (29.3) <0.0001

2.6. CNN Model Architecture

The performance of the following CNN models was evaluated: (1) ResNet18 [34], (2) ResNet34 [34],
(3) GoogleNet [35], (4) EfficientNet b3 [36], and (5) EfficientNet b4 [36]. We selected ResNet and
GoogleNet, the former winners of the ImageNet Large Scale Visual Recognition Challenge, a competition
of computer-based image recognition models, as the CNNs. We also used EfficientNet, a state-of-the-art
CNN model that is relatively smaller and faster than the other CNN models.

All CNNs were used for transfer learning with fine-tuning because a pretrained model reduces
the training time and the number of images required to create a suitable classifier [37]. The DL process
was performed with the Python package PyTorch.

After creating the branches of the image data with the CNN, a two-layered perceptron was created
for the clinical covariates branches. Finally, the image data processed by the CNN were combined with
the clinical covariates and output as a fully connected layer.

The dataset was randomly divided into training, validation, and testing sets in a ratio of 8:1:1.
This study was performed using a Tesla P100 graphical processing unit. Various data augmentation
techniques were used to prevent overfitting owing to the small dataset size. The training images
were randomly rotated from −25 to 25, with a 50% chance to flip vertically and 50% chance to flip
horizontally. Moreover, the darkness was randomly changed by −5% to 5% and the contrast by −5%
to 5%. During learning, data augmentation was applied only to the training image data when the
images were taken out in batches. Each training image was processed with a 50% chance of data
augmentation. The optimizer, weight decay, and momentum were common to all the CNNs. In this
study, the optimizer used stochastic gradient descent, and the weight decay and momentum were 0
and 0.9, respectively. A learning rate of 0.01 was used for EfficienctNet b3 and b4; 0.001 was used for
the other CNNs. All the models analyzed a maximum of 100 epochs. We used the early stop method
to terminate data augmentation if the validation error did not update 20 times in a row.

2.7. Architecture of the Ensemble Model

The ensemble model combines the above CNN mentioned model with structural data and tries to
classify the diagnosis of osteoporosis. As a preparation, we preprocessed the structural data. Age and
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BMI translate mean normalization, and sex and history of fractures translated into a One-hot vector
representation. As a result, 1 × 6 dimensional vectors were created. Extracted from the convolutional
layers in the CNN of the image, the one-dimensional reshaped result and the 1 × 6 dimensional data
created from the structural data were combined.

Finally, these results were put into the fully connected layer, and the prediction of the final training
model was output (Figure 2).

Figure 2. A neural-network model architecture that ensembles image data and clinical covariates.

2.8. Performance Metrics

The CNN models used in the modality-specific transfer learning with fine-tuning and ensemble
learning were evaluated in terms of the following performance metrics: (1) accuracy, (2) precision
(positive predictive value; ppv), (3) recall (sensitivity), (4) specificity, (5) negative predictive value
(npv), (6) F1 score, and (7) AUC score.

accuracy =
TP + TN

TP + FP + TN + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

specificity =
TN

TN + FP
(4)

negative predictive value =
TN

TN + FN
(5)

F1 score = 2×
precision × recall
precision + recall

(6)

TP and TN indicate the number of true positive and true negative results, respectively, whereas
FP and FN indicate the number of false positives and negatives. We also calculated the ROC curve and
measured the AUC.
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2.9. Visualization of Computer-Assisted Diagnostic System

Guided Grad-CAM provides a direct visualization of the values in a map, and is a combination of
the Grad-CAM [38] and back-propagation visualization [39] techniques. It shows information that
is significant for classification: the high gradient of the input to the last convolutional layer. In this
study, the heat map visualizations were displayed relative to the range of values in the image. All the
visualizations were performed using iridescent map projections. Within the region of interest, high
attenuation was shown in green and low attenuation in red.

3. Results

3.1. Prediction Performance

3.1.1. Hip Radiographic Image

The performance evaluation of the five CNN models using only hip radiographs is presented
in Table 2. EfficientNet b3 and GoogleNet were unsurpassed in accuracy (0.8407), precision (0.8929),
and specificity (0.8824). ResNet34 was unsurpassed in accuracy (0.8407), F1 score (0.8500), and AUC score
(0.9203). EfficientNet b4 was the best CNN model in recall (0.8548) and negative predictive value (0.8085).

Table 2. Prediction performance on hip radiographic-image data only.

Accuracy Precision Recall Specificity npv F1 Score AUC Score

ResNet18 0.7876 0.8654 0.7258 0.8627 0.7213 0.7895 0.9089
ResNet34 0.8407 0.8793 0.8226 0.8627 0.8000 0.8500 0.9203

GoogleNet 0.8407 0.8929 0.8065 0.8824 0.7895 0.8475 0.9064
EfficientNet b3 0.8407 0.8929 0.8065 0.8824 0.7895 0.8475 0.9089
EfficientNet b4 0.8053 0.8030 0.8548 0.7451 0.8085 0.8281 0.8786

(npv: negative predictive value).

3.1.2. Hip Radiographic Image-Connected Clinical Covariates

Table 3 presents the performance evaluation for hip radiographs combined with clinical covariates
analysis. EfficientNet b3 was unsurpassed in accuracy (0.8850), recall (0.8871), negative predictive
value (0.8654), F1 score (0.8943), and AUC score (0.9374). ResNet34 exhibited the best precision (0.9273)
and specificity (0.9216). Very interestingly, the addition of clinical covariates resulted in an increase
in almost all performance metrics in all CNN networks over the analysis of hip radiographs alone
(Table 4). Figure 3 shows the ROC curves for both cases.

Table 3. Prediction performance on hip radiographic images with clinical covariates.

Accuracy Precision Recall Specificity npv F1 Score AUC Score

ResNet18 0.8407 0.8667 0.8387 0.8431 0.8113 0.8525 0.9190
ResNet34 0.8673 0.9273 0.8226 0.9216 0.8103 0.8718 0.9219

GoogleNet 0.8584 0.8966 0.8387 0.8824 0.8182 0.8667 0.9330
EfficientNet b3 0.8850 0.9016 0.8871 0.8824 0.8654 0.8943 0.9374
EfficientNet b4 0.8584 0.8594 0.8871 0.8235 0.8571 0.8730 0.9282

(npv; negative predictive value).

Table 4. Rate of change in predicted performance of ensemble model and image only by clinical
variables {Ensemble model/hip radiographs alone (%)}.

Accuracy Precision Recall Specificity npv F1 Score AUC Score

ResNet18 106.7 100.2 115.6 97.7 112.5 108.0 101.1
ResNet34 103.2 105.5 100.0 106.8 101.3 102.6 100.2

GoogleNet 102.1 100.4 104.0 100.0 103.6 102.3 102.9
EfficientNet b3 105.3 101.0 110.0 100.0 109.6 105.5 103.1
EfficientNet b4 106.6 107.0 103.8 110.5 106.0 105.4 105.6

(npv; negative predictive value).
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Figure 3. ROC curves for each of the CNN models with hip radiographs alone and the CNN analysis
with hip radiographs combined with clinical covariates analysis.

3.2. Visualization of Model Classification

Figure 4 depicts the focused visualization area obtained by Guided Grad-CAM. We selected
the ensemble analysis (clinical covariates added to the hip radiographs data) using EfficientNet b3
and EfficientNet b4 with the good performance metrics. In the radiographs of both osteoporosis and
normal patients, the relatively distinct areas of shading around the lesser trochanter were identified as
deep-learned feature areas.
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Figure 4. Visualization of characteristic regions of radiographs of osteoporosis a non-osteoporosis
patient images on Efficientnet b3 and b4.

4. Discussion

This study demonstrated that CNNs can diagnose osteoporosis from hip radiographs with
relatively high accuracy. Moreover, including patient variables involved in routine clinical setting
improved the accuracy of predictions compared to those using the image model alone. The EfficientNet
b3 network exhibited the highest performance (accuracy: 88.5%; recall: 88.7%; F1 score: 0.8943; and
AUC score: 0.9374) in diagnosing osteoporosis from proximal femoral cropped images from entire hip
radiographs among the five networks.

The advantages of our study over previous studies that diagnosed osteoporosis using DL [27]
are that it was based on a larger number of cases, and included more clinically suspicious cases and
patients considered at risk of developing osteoporosis in the future for osteoporosis. The addition
of patient variables offered important information, which improved the sensitivity and AUC score
in particular. Our classification model combines image features and patient factors with the help
of a neural network. We conclude that the diagnostic accuracy improved because we could make
inferences while simultaneously considering vital information related to clinical covariates that cannot
be extracted from images alone. To the best of our knowledge, this was the first study to compare the
relative osteoporosis diagnostic efficiencies of DL systems that use images alone and those that also
use patient variables. The results with relative high sensitivity suggest that the model of the image
with patient variables offers a superior tool for screening osteoporosis in a clinical setting.

The EfficientNet b3 network was the highest accuracy of all the CNNs used in this study.
The diagnostic accuracy varied significantly depending on the difference among the CNNs. We
speculated that factors such as the image quality and quantity would directly affect the analytical



Biomolecules 2020, 10, 1534 9 of 13

findings. The worst classification performance was that of the several basic CNNs with relatively few
convolutional layers. It can be inferred that CNN models with few convolutional layers have limited
machine-learning capability for binary classification (in our case, osteoporosis or not) [40].

In this study, the performance of the CNNs was comparable to the diagnostic accuracy in a
similar previous studies using hip radiographs with AUC 0.50–0.86 [27,28]. The area identified by
Grad-CAM also has some test images that are somewhat consistent with the area around the lesser
trochanter, which may allow the diagnosis of osteoporosis. The output of the Grad-CAM is purely for
reference and does not directly imply the prediction itself [17]. Because our model has been trained
for classification but not for localization, it might focus on outside femoral bone as shown by the
Grad-CAM. Nonetheless, it is important to note that the prediction is correct. In the future, it will be
necessary to study a higher number of cases and examine images of various sizes as well as images of
soft-tissue contrast.

Although plain hip radiographs are the preferred approach for diagnosing hip fractures, they not
the gold-standard imaging modality for osteoporosis detection. However, the accuracy for osteoporosis
diagnosis of hip radiographs with DL in this study was comparable to that of fracture detection
reports based on hip radiographs with DL [41–43]. These studies reported that the range of precision
is 90.6–95.5%. Therefore, when hip fractures are diagnosed with hip radiographs, it is possible to
diagnose osteoporosis simultaneously. The strategy of fix and treat, with surgical fixing of the fracture
site and drug treatment for osteoporosis, should become routine in trauma management [44]. With the
DL technique, this can be realized using only hip radiographs and a few patient variables.

The proposed computer-assisted diagnostic system is advantageous owing to its low cost, widely
available radiographic modality, and simple protocol. Furthermore, it reduces measurement errors in
the conventional objective assessment of Singh’s index [9], and those resulting from mal-rotation of the
hip when interpreting BMD values [45]. A previous study on the effect of leg rotation emphasized
the need for proper positioning of the hip during DXA scanning [46]. This is one of the unsolvable
problems of DXA that may be avoided using the DL technique.

In our study, using structured patient covariable data with the images was more efficient for
diagnosing osteoporosis than using the images alone. The patient clinical covariates were found to
be the key features for osteoporosis diagnosis. The results were consistent with those of previous
studies [32,47]. A few studies have been conducted on osteoporosis diagnosis with image and clinical
covariates using DL. An artificial neural network model using clinical symptoms and image features
extracted from lumbar radiographs exhibited an accuracy of 95.8% and an AUC score of 0.95 [48].
The review reported that the range of precision is 76.7–97.9% [49]. In our study, DL using hip
radiographs and patient variables yielded results that were comparable in diagnostic accuracy to
osteoporosis diagnosis by DL using only patient variables [49]. We speculated that adding clinical
covariates to the image models would improve their performance in terms of the information amount
and quality. More complex CNN models may assign greater importance to clinical covariates than to
image information.

Several recommendations can be made for further research. In this study, the images were cropped
to include the femoral head as a preprocessor to diagnose osteoporosis. In the future, it would be
desirable to create a network that can automatically detect osteoporosis by detecting the site of the hip
joint from uncropped hip radiographs. The next challenge will be to apply the technique to diagnosing
osteoporosis by simultaneously detecting the target hip joint from hip radiographs using various
networks, such as region-based CNNs, you only look once, and the single shot multibox detector.

This study has certain limitations. Owing to the narrow selection of CNN models, there may be
differences in the availability of clinical covariates as a result of variations in the CNN structure. New
DL algorithms with deep and wide layers or modified stratification methods are being developed
continually [50]. We need to select an appropriate model for high-quality images that can also
handle clinical covariates. It will thus be necessary to study various other CNN models in the future.
Furthermore, it was difficult to collect a sufficient amount of image data from a single general hospital.
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CNNs with less data can lead to overfitting. In general, deep CNN models trained from pretrained deep
neural networks on large image datasets are effective for general image classification. The accuracy of
CNN classification diagnosis would be improved by increasing the number of images in a multicenter
study. Finally, only four patient variables were considered in this study. Many confounding factors
exist for osteoporosis diagnosis in patients [49]. In a previous comprehensive study, the somatic
factors selected by the support vector machine were age, height, weight, BMI, duration of menopause,
duration of breastfeeding, estrogen therapy, hyperlipidemia, hypertension, osteoarthritis, and diabetes
mellitus [51]. Also, the bone remodeling rate can be assessed by the measurement of bone turnover
markers [52]. Blood sampling is thus a candidate patient variable. Furthermore, BMD and hip geometry
vary according to race and gender. For example, compared to other races, Asians have thicker cortical
bones and lower buckling ratios [53,54]. Big data and additional patient variables will enable greater
accuracy and aid further research.

5. Conclusions

We demonstrated that particular deep CNNs could diagnose osteoporosis from hip radiographs
with high accuracy. In particular, the pretrained EfficientNet b3 exhibited the most accurate performance
among the CNNs we considered. Moreover, adding patient variables as clinical covariates improved
the sensitivity and AUC score for osteoporosis diagnosis. These results may play an important role in
osteoporosis diagnosis in a clinical setting.
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