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Establishment of Neurospora crassa as a model
organism for fungal virology
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The filamentous fungus Neurospora crassa is used as a model organism for genetics, devel-

opmental biology and molecular biology. Remarkably, it is not known to host or to be sus-

ceptible to infection with any viruses. Here, we identify diverse RNA viruses in N. crassa and

other Neurospora species, and show that N. crassa supports the replication of these viruses as

well as some viruses from other fungi. Several encapsidated double-stranded RNA viruses

and capsid-less positive-sense single-stranded RNA viruses can be experimentally introduced

into N. crassa protoplasts or spheroplasts. This allowed us to examine viral replication and

RNAi-mediated antiviral responses in this organism. We show that viral infection upregulates

the transcription of RNAi components, and that Dicer proteins (DCL-1, DCL-2) and an

Argonaute (QDE-2) participate in suppression of viral replication. Our study thus establishes

N. crassa as a model system for the study of host-virus interactions.
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Fungal viruses or mycoviruses are omnipresent in all major
groups of fungi, and the majority of them show asympto-
matic and frequently mixed infections1–3. Like viruses of

other host kingdoms, fungal viruses have different types of gen-
omes, although they largely are double-stranded (ds) and single-
stranded (ss) positive-sense (+) RNA viruses1. Mycoviruses are
increasingly discovered in fungi by the conventional detection of
dsRNAs, a sign of RNA virus infection4, via high-throughput
sequencing of transcripts and/or dsRNA5–7, and in silico mining
of publicly available transcriptomic data8,9. Fungal viruses com-
monly have no extracellular route for entry with the exception of
an encapsidated ssDNA virus10, and are generally difficult to
experimentally introduce into their host fungi extracellularly,
which often impedes the progress of this kind of study. Only for
some mycoviruses have protocols been developed for the
experimental introduction or inoculation. Virion transfection is
frequently used for encapsidated dsRNA viruses such as reo-
viruses11, totiviruses12, megabirnaviruses13, and partitiviruses14.
For several capsidless (+)ssRNA viruses, transfection with in
vitro-synthesized full-length genomic RNA15,16 or transformation
with full-length cDNA17,18 are available. Protoplast fusion-based
virus horizontal transmission was shown to be useful between
virus-infected donors and many recipients for any viruses, i.e.,
encapsidated and capsidless viruses19,20.

Neurospora crassa (family Sordariaceae) is a filamentous
ascomycete used as a research material for the one-gene–one-
enzyme hypothesis by Beadle and Tatum in 194121. This fungus
has served as a model eukaryotic multicellular organism for
genetics, developmental biology, and molecular biology. In par-
ticular, circadian rhythm-based physiological regulation22, RNA
interference (RNAi) post-transcriptional gene silencing23,24, and
DNA methylation-mediated epigenetic control25 have been pio-
neered by researchers using N. crassa. The advantages of this
fungus over other organisms, especially over other filamentous
fungi, include the public availability of a number of biological and
molecular tools, biological tractability26, i.e., rapid vegetative
growth and ease of sexual mating, shared techniques, a well-
annotated genome sequence27, and single-gene knockout (KO)
collection28 available from the Fungal Genetics Stock Center
(FGSC) (http://www.fgsc.net)29. Surprisingly, despite these mer-
its, this fungus is not utilized in virological studies.

RNAi, also known as RNA silencing, occurs in a wide variety of
eukaryotic organisms, including animals and plants. The basic
process of RNAi involves dsRNA that is recognized and diced by
Dicer into small RNAs. These small RNAs then are incorporated
into the effector Argonaute complex for repression of the target
gene expression at transcriptional and post-transcriptional
levels30,31. RNAi pathways in fungi were deciphered for the
first time in N. crassa23,24,32. The known pathways in N. crassa
operate at the the post-transcriptional level, and are largely
divided into two groups: meiotic and mitotic RNAi depending on
which stage RNAi occurs in. The second group is further cate-
gorized into two: quelling and qiRNA (QDE-2-interacting small
RNA)-mediated silencing depending on how dsRNA is
generated33,34. N. crassa has three RNA-dependent RNA poly-
merase (RDR), two Dicer (Dicer-like DCL), and two Argonaute
(Argonaute-like AGL) proteins. Two vegetative RNAi pathways
share players, while aberrant RNA is generated from repetitive
chromosomal regions and the UV-damaged nuclear genome,
respectively. Although RNAi in some fungi has been shown to act
as an antiviral defense-system response as in the case of animals
and plants, its role in antiviral response has not been demon-
strated in N. crassa. Choudhary et al. demonstrated the tran-
scriptional induction of RNAi pathway and other putative
antiviral genes by transgenic expression of dsRNA, suggesting
that the RNAi pathway may act as part of the viral defense

mechanism in this fungus35. In this sense, a phytopathogenic
ascomycete, Cryphonectria parasitica (chestnut blight fungus,
family Cryphonectriaceae), has been used to dissect antiviral
RNAi in the past decade. Of four RDRs, two Dicer, and four
Argonaute genes, one Dicer (dcl2) and one Argonaute (agl2) gene
play major roles in antiviral RNAi36,37. Of note is that the key
genes are transcriptionally upregulated upon virus infection, for
which a general transcriptional activator SAGA (Spt–Ada–Gcn5
acetyltransferase) complex and DCL2 (positive-feedback player)
are essential38,39.

Here, we demonstrate the detection of diverse RNA viruses
from N. crassa and two other Neurospora species N. intermedia
and N. discreta, and experimental introduction into the N. crassa
standard strain of several viruses originally isolated from other
fungi using three different methods. Utilizing the biological
resources and molecular tools of N. crassa led to interesting
insights into how virus/host interactions, particularly antiviral
RNAi/viral counter-RNAi, are regulated. Collectively, this study
establishes a foundation for the study of virology in the model
organism N. crassa.

Results
Diverse RNA viruses in Neurospora spp. To elucidate virus
infection in wild Neurospora species, we first chose six wild N.
intermedia isolates from Bogor, Indonesia (FGSC strains #2558,
#2559, #5098, #5099, #5643, and #5644) and performed a small-
scale screen by a conventional method. The presence of dsRNA of
~8 kbp and 5 kbp was observed in the FGSC #2559 and FGSC
#5099, respectively (Fig. 1a). The complete sequence of a dsRNA
segment from FGSC #2559 determined by next-generation and
Sanger sequencing was shown to represent the replicative dsRNA
form of a capsidless (+)ssRNA virus, termed Neurospora inter-
media fusarivirus 1 (NiFV1, a putative member of the proposed
family “Fusariviridae”) (DDBJ/EMBL/GenBank accession #:
LC530174). The dsRNA of ~5.0 kbp in FGSC #5099 has yet to be
characterized.

Mining of virus sequences from transcriptomic data has been a
trend for hunting and discoveries of viruses9,40. There are
publicly available wealthy transcriptomic data of N. crassa41,42,
prompting us to mine for virus sequences infecting this fungus. In
total, six different types of RNA viruses, specifically four (+)
ssRNA viruses (e.g., fusarivirus, deltaflexivirus, alpha-like virus,
and ourmia-like virus), one dsRNA virus (partitivirus), and one
uncategorized RNA virus, were detectable in each data set for 15
out of 134 different N. crassa field-collected strains (Table 1 and
Supplementary Table 1). To confirm the virus-like sequences
in vivo, we detected dsRNAs from 12 out of 15 strains (Fig. 1b).
We also obtained 16 well-assembled fragments of fusariviruses
divided into three subgroups (namely A, B, and C in clade I) from
12 fungal strains of different geographical origins and found that
7 fungal strains were infected by a single fusarivirus and 5 other
strains were infected by two fusariviruses (Table 1). These suggest
a widespread nature of fusariviruses (see below) in members of
the genus Neurospora of different geographical origins (Table 1,
Fig. 2, and Supplementary Fig. 1). Among them, a single
fusarivirus (subgroup A) harbored in the Louisiana isolate
JW60, closest to the standard N. crassa strain 74-OR23-1VA,
was fully determined by Sanger sequencing as the standard N.
crassa fusarivirus (DDBJ/EMBL/GenBank accession #:
LC530175), termed Neurospora crassa fusarivirus 1 (NcFV1)
(Fig. 2a). NcFV1-JW60 was used in the subsequent investigation
into virus/host interactions, because the standard N. crassa strain
singly infected by this virus could readily be obtained. Similarly,
we completely sequenced the genomic segments, dsRNA1 and
dsRNA2, of a partitivirus termed Neurospora crassa partitivirus 1
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(NcPV1) from the wild Floridan isolate JW35 (DDBJ/EMBL/
GenBank accession #: LC530176 and LC530177) (Fig. 3a).

Neurospora discreta strain FGSC #8579 (Belen, New Mexico,
USA), which is mostly used as a standard strain, has recently been
suggested to carry a fusarivirus, Neurospora discreta fusarivirus 1
(NdFV1) using the publicly available transcriptomic data
SRR15397739. Similarly, we took an in silico approach and
detected not only NdFV1 but also many other virus-like
sequences: another fusarivirus and four partitiviruses, termed
Neurospora discreta fusarivirus 2 (NdFV2), Neurospora discreta
partitivirus 1–4 (NdPV1–4), and two mitoviruses (capsidless (+)
ssRNA viruses) and an endornavirus [a capsidless (+)ssRNA

virus] (Table 1). Indeed, dsRNA gel electrophoresis revealed
multiple bands in the strain (Fig. 1c).

Sequence and phylogenetic analyses of the characterized
fusariviruses of Neurospora spp. showed that (1) viral RdRP
was more conserved than the P2 protein (RdRP: 29.94–99.33%,
P2: 14.96–99.48%), (2) NcFV1, NiFV1, and NdFV2 belong to the
same clade (I) and share larger genome size, while NdFV1
contains a coiled-coil domain in P2 and belongs to another clade
(II), and (3) N. crassa fusariviruses appeared to be separated into
three subgroups, NcFV1A, B, and C in clade I, based on the
phylogenetic relationship and amino acid sequence identity of
RdRP and P2 (Fig. 2). All five Neurospora partitiviruses, NcPV1
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Fig. 1 Virus detection in Neurospora spp. and experimental introduction of heterologous viruses into the Neurospora crassa strain. Agarose gel
electrophoresis of dsRNA fractions obtained from N. intermedia (a), N. crassa (b), and N. discreta (c). After electrophoresis, dsRNA extracted from isolates
of Neurospora spp. shown on the top of each gel was stained with GelGreen (Biotium, Inc.). Fully sequenced viruses are Neurospora intermedia fusarivurs 1
(NiFV1), Neurospora crassa fusarivurs 1 (NcFV1), and Neurospora crassa partitivirus 1 (NcPV1). Multiple dsRNA bands were detected in N. discreta isolate
FGSC #8549 that is expected to represent the genomes of several RNA viruses (Table 1). The 15 field-collected N. crassa strains were subjected to dsRNA
analyses together with a potential virus-free standard strain FGSC #2489 (Supplementary Table 1). The discrete dsRNAs of ~2–3 kbp detectable in N. crassa
JW45, JW70, and D23 may be defective RNAs. d Experimental introduction of encapsidated dsRNA viruses into N. crassa via virion transfection. Virions of
Rosellinia necatrix partitivirus 2 (RnPV2) and mycoreovirus 1 (MyRV1) were purified from their original host fungi and transfected into protoplasts of the
standard strain of N. crassa. DsRNA was isolated from the representative transfectant by RnPV2 and MyRV1 as well as the virus-free standard strain (VF)
and electrophoresed in agarose gel. Lane M indicates 1-kb DNA ladder (Thermo Fisher Scientific). e Experimental introduction of a putative capsidless (+)
ssRNA virus into N. crassa. Protoplasts of N. intermedia (FGSC #2559) infected by a fusarivirus NiFV1 and the standard N. crassa strain were fused. Each of
the experiments shown in panels a–e was independently repeated at least twice.
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and NdPV1–4, share molecular attributes with other known
partitiviruses; dsRNA1 encodes RdRP and dsRNA2 encodes CP
(Fig. 3a, b). They have all been shown to belong to the genus
Betapartitivirus unlike the alphapartitivirus RnPV2 (genus
Alphapartitivirus) able to replicate in N. crassa43 (Fig. 3c). Of
note is that NdPV1 shares over 97% CP and RdRP amino acid
sequence identity with N. crassa partitivirus NcPV1. This fact
suggests that these two viruses belong to the same viral species in
the Betapartitivirus, and that interspecies virus transmission may
have occurred between N. crassa and N. descreta.

Experimental introduction of heterologous viruses into N.
crassa. To elucidate whether N. crassa is able to support the
replication of heterologous viruses originated from other fungal
families, we chose two relatively well-characterized dsRNA viru-
ses: Rosellinia necatrix partitivirus 2 (RnPV2, genus Alphaparti-
tivirus, family Partitiviridae)44,45 isolated from the white root rot
fungus (Rosellinia necatrix, family Xylariaceae) and mycoreovirus
1 (MyRV1, genus Mycoreovirus, family Reoviridae)11 isolated
from the chestnut blight fungus (C. parasitica). Using purified
preparation, the two viruses were transfected into spheroplasts of
the standard strain of N. crassa. Figure 1d shows the dsRNA
profiles of representative colonies infected by the respective virus.
Specific genomic dsRNA bands were observed: dsRNA1 and
dsRNA2 for RnPV2, and S1–S11 for MyRV1.

An interesting difference was noted; the ratio of dsRNA1:
dsRNA2 was smaller in the natural R. necatrix host than in the
newly expanded N. crassa host. This is not so surprising for
multisegmented, multiparticulate viruses such as partitiviruses in
which each genomic segment is packaged separately44,46. This is
different from reoviruses that are multisegmented, monoparticu-
late viruses in which a set of the multiple genomic segments are
packaged in a single particle. Indeed, similar phenomena were
observed earlier in natural and experimental host fungi after
virion transfection44,47. In contrast, the MyRV1 pattern was
indistinguishable from the original infection of C. parasitica48. It
should be noted that, unlike RnPV2, MyRV1 showed unstable
infection during the subculture of transfected colonies.

For capsidless viruses, we previously established protoplast
fusion techniques for virus introduction20, because virion
transfection was not applicable. This method was tested for the
putative capsidless RNA virus NiFV1 (a fusarivirus) originally
hosted by N. intermedia (Fig. 1a). Protoplasts were prepared from
the donor strain FGSC #2559 of N. intermedia and the recipient
strain of N. crassa (the standard strain 74-OR23-1VA) that
harbored a nourseothricin (NTC)-resistance gene. After proto-
plast fusion, recipient colonies were selected on potato-dextrose
agar (PDA) supplemented with NTC (PDA–NTC). Several of
them tested positive for NiFV1 and repeatedly anastomosed with
the virus-free, NAT-resistant strain of N. crassa. The genetic
background of NiFV1-infected recipients was shown to be N.

Table 1 List of Neurospora viruses and their host fungal strains.

FGSC # Strain name Geographic origin Mating type SRA file Virus (virus abbreviation: accession no.,
subgroup type)

Neurospora crassa
2489 74-OR23-1VA Marrero, Louisiana, U.S.A. A SRR797950 Virus free (a standard, wild-type strain)
3975 JW35 Florida, U.S.A. a SRR08983 Partitivirus (NcPV1:LC530176, LC530177)
4713 JW45 Merger, Haiti A SRR089840 Fusarivirus (NcFV1:LC586023, B type), alpha-like

virus/P3437
10651 JW204 Bayou Chicot, LA, U.S.A. A SRR798021 Fusariviruses (NcFV1, A and B types)
10658 JW222 Coon, LA, U.S.A. a SRR798029 Fusarivirus (NcFV1:LC586028, C type)
10659 JW224 Coon, LA, U.S.A. a SRR798030 Fusarivirus (NcFV1, C type)
10899 JW164 Marrero, LA, U.S.A. a SRR797998 Fusariviruses (NcFV1:LC586025, A and B types), alpha-

like virus
10913 JW190 Elizabeth, LA, U.S.A. A SRR798014 Fusariviruses (NcFV1:LC586026, A and B types)
10948 JW27 Bayou Chicot, LA, U.S.A. A SRR798051 Fusarivirus (NcFV1:LC586022, C type)
10949 JW59 Coon, LA, U.S.A. a SRR798053 Fusariviruses (NcFV1:LC586024, A and C types)
10950 JW60 Coon, LA, U.S.A. a SRR798054 Fusarivirus (NcFV1: LC530175, A type)
10951 JW70 Coon, LA U.S.A. A SRR798057 Fusariviruses (NcFV1, A and B types)
10983 JW193 Elizabeth, LA, U.S.A. a SRR798015 Fusarivirus (NcFV1:LC586027, B type)
10912 JW188 Elizabeth, LA, U.S.A. A SRR798013 Fusarivirus (NcFV1), ourmia-like virus
4716 JW49 Puilboreau Mt., Haiti A SRR089843 Ourmia-like virus
8783 D23 Florida, U.S.A. A SRR089764 Deltaflexivirus, alpha-like viruses
Neurospora
intermedia
2558 H2121 Bogor Pasar, Indonesia A n.a. Not detected
2559 HC2125-1 Bogor Pasar, Indonesia a DRR248874 Fusarivirus (NiFV1:LC530174)
5098 H2156 Pasar Balubur, Indonesia A n.a. Not detected
5099 H2158 Pasar Balubur, Indonesia a n.a. Unknown virus-like agent (~5.0 kbp)
5643 P0151 Bogor, Indonesia A n.a. Not detected
5644 P0153 Bogor-4, Indonesia A n.a. Not detected
Neurospora
discreta
8579 W683 Belen, New Mexico, U.S.

A.
A SRR1539773 Fusariviruses (NdFV1, 2), partitiviruses (NdPV1–4),

mitoviruses, and endornavirus
8578 W682 Belen, New Mexico, U.S.

A.
a n.a. Partitiviruses

NcFV1 Neurospora crassa fusarivirus 1, NiFV1 Neurospora intermedia fusarivirus 1, NdFV1, 2 Neurospora discreta fusarivirus 1, 2 (LC586029, LC586030), NcPV1 Neurospora crassa partitivirus 1, NdPV1–4
Neurospora discreta partitivirus 1–4 (LC586031-LC586038), n.a. not available.
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crassa by the observation that the recipient could anastomose
with the original isogenic recipient strain. Interestingly, NiFV1
dsRNA-replicative form accumulated much less in N. crassa than
in the original host, N. intermedia when normalized to starting
mycelia (Fig. 1e). NiFV1 appears not to be adjusted well to N.
crassa. Similar phenomena were observed when virus contents
were compared between their original and experimental host
fungi13,44,49.

In summary, Neurospora spp. was shown to host a variety of
viruses that belong to at least six RNA virus families and an
unclassified RNA virus group: Fusarivirdae, Partitivirdae, Endor-
naviridae, Reoviridae, Deltaflexiviridae, Narnaviridae, and an
unclassified RNA virus group (alpha-like viruses). Among these,
fusariviruses appeared to prevail in Neurospora spp. (Table 1 and
Supplementary Fig. 1).

Two Dicers and one Argonaut play a major role in antiviral
defense during the vegetative phase in N. crassa. Among Neu-
rospora viruses, fully sequenced NcFV1 and NcPV1 were hor-
izontally transferred between vegetatively compatible and
incompatible strains of N. crassa. The two viruses were first
moved to the N. crassa helper-5 strain (FGSC #8747; Δmat his-3
tk+ hph cyh-1, Bml pan-2) from the original host strains, NcFV1-
infected FGSC #10950 (JW60), and NcPV1-infected FGSC #3975
(JW35), by coculture. The helper-5 strain has been used for for-
cing and resolving heterokaryons (Supplementary Fig. 2). The
heterologous virus RnPV2 but not MyRV1 was stably transferred
into the helper-5 strain from the transfected Neurospora strains.
After confirmed to be virus-infected, the recipient helper-5 strains
were used as donors to transmit NcFV1, NcPV1, and RnPV2 to
the standard N. crassa strain (74-OR23-1VA) and its derivatives.
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Fig. 2 Sequence and phylogenetic analyses of fusariviruses detected from the strains of Neurospora species. a Genome structure of Neurospora crassa
fusarivirus 1 (NcFV1), Neurospora intermedia fusarivirus 1 (NiFV1), and Neurospora discreta fusarivirus 1 and 2 (NdFV1 and 2). The open boxes indicate
open-reading frames (ORFs) with their lengths shown below. The lengths of the 5′- and 3′-untranslated regions, and intergenic regions, are indicated in
nucleotides. b Percent identity matrix (PMI) among Neurospora fusariviruses generated by Clustal-Omega <https://www.ebi.ac.uk/Tools/msa/clustalo/>.
The top half is the PMI of the viral RNA-dependent RNA polymerase (RdRP) and the bottom half is the PMI of ORF2 protein (P2, unknown function). c The
maximum-likelihood (ML) phylogenetic trees were constructed based on alignment of the entire region of RdRP and P2 using RAxML-NG with 1000
bootstrap replications (left and middle panels). A LG+I+G4+F model was selected as a best-fit model for the alignment using ModelTest-NG. The trees
are visualized by FigTree with the midpoint-rooting method. The two subclades of Neurospora fusariviruses (I and II) and three subgroups of N. crassa
fusarivirus NcFV1 (A, B, and C) are indicated. The selected members of the family Hypoviridae are included as outgroups. The numbers on the left of
branches indicate the percent bootstrap values. Putative secondary structures and functional domains of the RdRP and P2 proteins are shown on the right.
Predictions of conserved domains and inside or outside of the membrane are predicted by SMART and TMHMM, respectively. Hel and TM indicate
predicted helicase and transmembrane domains, respectively. Virus abbreviations are summarized in Supplementary Table 4.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19355-y ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5627 | https://doi.org/10.1038/s41467-020-19355-y | www.nature.com/naturecommunications 5

https://www.ebi.ac.uk/Tools/msa/clustalo/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Hereafter, these three viruses were largely utilized in subsequent
deeper analyses of virus/host interactions.

We tested for enhancement of NcFV1, NcPV1, and RnPV2
accumulation a total of 14 single- and two double- and one-triple
deletion mutant of the standard N. crassa strain with deletions of
genes related to two RNAi pathways, mitotic silencing (quelling:
qde-1, qde-2, qde-3, dcl-1, dcl-2, qip, and rpa-3) in the vegetative
stage and meiotic silencing by unpaired DNA (MSUD: Sad-1,
Sad-2, sad-3, Sad-4, and sad-5, dcl-1, qip, and sms-2)34, or other
function (Supplementary Table 2). To this end, we quantitatively
compared viral dsRNA and ssRNA by agarose gel electrophoresis
of dsRNA and RT-qPCR of total RNA fractions, respectively, and
found that they exhibited similar accumulation profiles in the N.
crassa mutant strains (Fig. 4a and Supplementary Fig. 3). Of the
single-deletion mutants tested, only Δqde-2 showed ~10-fold and
~25-fold elevation in accumulation of NcFV1 dsRNA-replicative
form and viral ssRNA, relative to the wild-type strain, respectively
(Fig. 4a). The two dicer genes were anticipated to work
redundantly in antiviral defense as in the case for transgene
silencing (quelling)50. To test this hypothesis, a double dcl mutant
(Δdcl-1/2) was prepared and infected by NcFV1. Consequently,
the double mutant (Δdcl-1/2) showed much greater susceptibility
to NcFV1 than the single dcl mutants or wild type, indicating the
redundant function of the two Dicers against this virus (Fig. 4a).
To examine similar redundancy in Argonaute and RDR, we
created their double- (Δqde-2/Δsms-2) and triple (Δqde-1/ΔSad-1/
Δrrp-3) deletion mutants, respectively. No or slightly elevated
(~1.9-fold) accumulation of NcFV1 dsRNA and ssRNA was
observed in the double Argonaute mutant (Fig. 4a, Δqde-2 and
ΔSms-2) compared to the qde-2 single mutant (Δqde-2) showing

that QDE-2, but not SMS-2, predominantly functions in the
antivirus RNAi against this virus. Similarly, NcFV1 accumulated
in a triple rdr mutant (Δqde-1/ΔSad-1/Δrrp-3) at a level similar to
that in their single-deletion mutants, suggesting no involvement
of these rdr genes in the antiviral RNAi.

By contrast, Δrrp-3, Δdcl-2, and Δqde-2 showed only ~1.4-fold
or <3.7-fold increased accumulation levels of NcPV1 genomic
dsRNA or its transcripts compared with any other single-deletion
mutants (Fig. 4b and Supplementary Fig. 3b). No significant
additional increase in NcPV1 accumulation, relative to Δrrp-3,
Δdcl-2, and Δqde-2, was observed in the Dicer double and RDR
triple mutants. The Argonaute double mutant Δqde-2/ΔSms-2,
manifested two-to-threefold increased transcript levels relative to
the single mutants (Fig. 4b). Similarly, no over twofold change in
RnPV2 genomic dsRNA accumulation in the tested mutants from
that in the wild-type strain was observed (Fig. 4c and
Supplementary Fig. 3c). When compared with the wild-type
strain, no >1.7-fold increased accumulation of RnPV2 transcripts
was detected, whereas a two-to-threefold decrease in RnPV2
transcript level was observed in Δqde-2, Δdcl-1/2, and Δqde-2/
ΔSms-2 (Fig. 4c), a phenomenon warranting further investigation.

Collectively, we demonstrated that two Dicers DCL-1 and
DCL-2 and one Argonaut QDE-2 play a major role in antiviral
RNAi against at least a fusarivirus in the vegetative phase of N.
crassa.

Transcriptional and post-transcriptional regulation of host
genes upon virus infection. Many genes including those of the
RNAi pathway and putative antiviral response were previously
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Fig. 3 Sequence and phylogenetic analyses of partitiviruses detected from the strains of Neurospora species. a Genome structure of Neurospora crassa
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reported to be induced at the transcription level by transgenic
dsRNA expression in N. crassa35. In another filamentous asco-
mycetous fungus, C. parasitica, infection by some RNA viruses
was shown to induce similar homologous genes37,51. Thus, it was
of interest to investigate whether virus infection triggers tran-
scriptional induction of the N. crassa genes known to be induced
by dsRNA. As shown in Fig. 5a, transcription of dcl-2 and rrp-3
was strikingly upregulated in the standard N. crassa strain fol-
lowing infection by NcFV1, NcPV1, or RnPV2, while moderate
transcriptional upregulation of qde-2 was confirmed following
infection by NcFV1, NcPV1, or RnPV2 (Fig. 5b). No or a few
transcriptional changes were observed in qde-1 and dcl-1 upon
virus infection. Furthermore, a similar result was obtained by
differential gene expression (DGE) analysis using the available N.
crassa RNA-seq data (Supplementary Fig. 4), which were used for

the aforementioned virus hunting (see Supplementary Table 1).
Some of the other N. crassa genes identified as dsRNA-inducible
genes by Choudhary et al35. were also upregulated upon virus
infection, which included NCU04490 (6–16 family), NCU07036
(3′–5′ exonuclease), NCU04472 (RNA helicase), NCU09495 (set-
6), and NCU00947 (unknown function) (Supplementary Fig. 5).

To elucidate the transcriptional activation of RNAi-related
genes upon virus infection, we performed chromatin immuno-
precipitation (ChIP) followed by RT-qPCR. Dimethylation of
histone H3 Lys 4 (H3K4me2) and Ser 5 phosphorylation of the
RNA polymerase II C-terminal domain (Pol II S5P-CTD) are
well-characterized as transcriptionally activated markers. As
expected, significant and moderate accumulation of H3K4me2
and Pol II S5P-CTD was observed at the dcl-2 and qde-2 loci
upon NcFV1, NcPV1, or RnPV2 infection, respectively (Fig. 5c).
However, the rrp-3 gene locus and the noninducible genes dcl-1
and qde-1 loci did not appear to be enriched by H3K4me2 and
Pol II S5P-CTD, when NcFV1 or NcPV1 was present (Fig. 5c).
RnPV2 led to modest accumulation of Pol II S5P-CTD, but not
H3K4me2, in the rrp-3 gene locus and the noninducible gene dcl-
1 locus (Fig. 5c). Alternative transcriptional activation or post-
transcriptional RNA processing might be involved in the increase
of the rrp-3 mRNA.

The results prompted us to examine their protein accumulation
levels upon virus infection. We created strains expressing FLAG-
octapeptide-tagged DCL-2, QDE-2, or RRP-3 from their
endogenous loci and infected them by NcFV1, NcPV1, and
RnPV2. Western blotting revealed that DCL-2 and RRP-3 were
strikingly elevated upon virus infection (Fig. 5d). Surprisingly,
QDE-2 was shown to accumulate much less in the strain infected
by NcFV1, but not in that by NcPV1 or RnPV2, than in the virus-
free standard strain (Fig. 5d), suggesting NcFV1-specific post-
transcriptional downregulation of qde-2. This downregulation
may result from a counterdefense response targeting QDE-2
directly or indirectly by NcFV1.

Taken together, these combined results clearly show transcrip-
tional and post-transcriptional regulation of key genes of the
antiviral RNAi in N. crassa upon virus infection.
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Fig. 4 Quantitative comparison of virus accumulation in different
mutants of Neurospora crassa. Accumulation of Neurospora crassa
fusarivirus 1 (NcFV1) (a), Neurospora crassa partitivirus 1 (NcPV1) (b), and
Rosellinia necatrix partitivirus 2 (RnPV2) (c) was compared among N.
crassa mutants with deletion of RNAi-related genes shown on the top of
each gel. The mutants have the same genetic background as the standard
N. crassa strain, 74-OR23-1VA. Total RNA fractions were extracted from
different mutants as well as the wild-type 74-OR23-1VA strain. After
normalization against ribosomal RNA (rRNA) as shown on the middle
panels, the obtained dsRNA fractions were electrophoresed and stained
with GelGreen (Biotium, Inc.) as for Fig. 1. Viral dsRNA or dsRNA-
replicative form (RF) accumulation values (means) were obtained from two
biological replicates by ImageJ, and are shown below each dsRNA gel,
where virus accumulation in the wild-type strain was expressed as 1.
Accumulation of positive-sense (+) single-stranded (ss) RNA of the three
viruses was also compared among the aforementioned N. crassamutants by
real-time RT-qPCR. Total RNA fractions were obtained from different
mutants as well as the wild-type standard strain. Beta-tubulin mRNA
(NCU04054) was used as an internal control. Histone H4 (hH4) mRNA
was also monitored. RT-qPCR was performed as described in “Methods”
using the primers shown in Supplementary Table 3. Bars denote mean
values calculated from a total of four replicates (two biological and two
technical replicates), while open circles indicate obtained relative
accumulation values for single replicates.
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Discussion
This study represents the establishment of N. crassa as a virus
model host for studying virus/host interactions or virology in this
well-studied model organism, based on three achievements. First,
we report the discovery of diverse RNA viruses from different
isolates of N. crassa and other Neurospora spp. (Table 1). N.
crassa was also shown to naturally and experimentally host
diverse viruses with different genome types (Table 1). Second, we
developed methods for inoculation, which is often difficult for
fungal viruses, of several capsidless and encapsidated RNA viruses
in N. crassa. The natural horizontal transfer between fungal
strains is generally hampered by a self-/non-self-recognition
system operating at the intraspecies level52–54. We tested a few
methods for virus introduction into N. crassa with the standard
genetic background27: hyphal fusion (supplementary Fig. 2),
protoplast fusion (Fig. 1e), and virion transfection (Fig. 1d)
11,14,19,20. Third, utilizing available biological tools and molecular
techniques, some in N. crassa genes restricting virus replication
were identified and shown to be transcriptionally and post-
transcriptionally regulated.

Fusariviruses, a group of potential capsidless (+)ssRNA viruses
that are distantly related to hypoviruses (family Hypoviridae) and
proposed as the family “Fusariviridae”, were detected in different
Neurospora spp. of different geographical origins such as the
United States (Louisiana), Haiti, and Indonesia, suggesting its
widespread nature in members of the genus Neurospora (Fig. 2).
Only a few fusariviruses that have been molecularly and biolo-
gically investigated, among which are Fusarium graminearum
virus 1 (FgV1) strain DK2155–57 and Rosellinia necatrix fusar-
ivirus 1 strain NW10 (RnFV1)58. These two fusariviruses appear
to differ in genome organization and gene expression strategy.
FgV1 has four open-reading frames (ORFs) and the three
downstream ORFs are expressed via subgenomic RNAs, while
RnFV1 has only two ORFs and the downstream ORF is not likely
to be expressed via subgenomic RNAs but via an unknown
mechanism. All fusariviruses identified from Neurospora spp.
resemble RnFV1 in terms of the 2-ORF genome organization.
Another difference from FgV1 was detected in host factor
requirement. A Fusarium graminearum (family Nectriaceae) gene
product, hexagonal peroxisome (Hex1) protein, was identified as
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Fig. 5 Transcriptional and post-transcriptional regulation of RNAi-related genes in Neurospora crassa. a Northern blotting of rrp-3 and dcl-2 in NcFV1-,
NcPV1-, or RnPV2-infected standard N. crassa strains, 74-OR23-1VA strains. b Real-time RT-qPCR analyses of several RNAi-related genes. Transcript levels
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immunoprecipitation (ChIP) assay of the standard N. crassa strain uninfected (VF) or infected by NcFV1, NcPV1, or RnPV2. DNA was isolated from immune
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necessary for efficient FgV1 replication and normal symptom
induction. Hex1 is a major component of the Woronin body, a
peroxisome-derived organelle that fills the septal pore under
hyphal wounding stress and prevents the extension of wound-
induced damage to neighboring cells59,60. In this study, we
examined the possible effects of deletion of the orthologous hex-1
gene of N. crassa on NcFV1 replication. However, no discernable
effect was observed (Supplementary Fig. 3), suggesting that the
involvement of HEX1 in the fusarivirus replication is specific to
the pathosystem: F. graminearum/FgV1.

N. crassa is the first organism to be used for genetic dissection of
the RNAi pathway in fungi23,24. There are two types of RNAi:
quelling and MSUD (meiotic silencing by unpaired DNA). Quel-
ling corresponds to cytoplasmic mitotic transgene RNAi in other
eukaryotes61,62. N. crassa has two Dicer (dcl-1 and dcl-2), three
RDR (qde-1, Sad-1, and rrp-3) and two Argonaute genes (qde-2,
sms-2)34,63. Transgene-induced RNAi in N. crassa requires two
Dicers (dcl-1, dcl-2), one RDR (qde-1), one Argonaute (qde-2, the
homolog of C. parasitica agl2 and Caenorhabditis elegans rde1), and
RecQ DNA helicase (qde-3)23,24,34,50. However, what genes are
required for antiviral RNAi in N. crassa was unknown. We have
shown an essential role of qde-2-encoded Argonaute (QDE-2) in
defense against NcFV1. This study clearly indicated the redundant
functional role of DCL-1 and DCL-2 in antiviral RNAi as reported
for quelling50, that is, enhanced virus replication was only observed
in the double-deletion mutant of dcl-1 and dcl-2, but not in the
respective single-deletion mutants (Fig. 4). These observations
highlight differences from quelling in N. crassa and from antiviral
RNAi in a model host filamentous fungus, C. parasitica64,65 and
similarities to two other ascomycetes, Sclerotinia sclerotiorum
(family Sclerotiniaceae)66 and F. graminearum57 (Fig. 6). We
demonstrated that all three RDRs (QDE-1, RRP-3, and SAD-1)
were dispensable for antiviral RNAi in N. crassa, even though
QDE-1 and SAD-1 play important roles in quelling and in MSUD.
The dispensability of RDRs is reminiscent of antiviral RNAi in C.
parasitica in which only dcl2 and agl2 are the two key genes36,37.
While in S. sclerotiorum, dcl-1, dcl-2, and agl-2 function in antiviral
RNAi66,67, in another ascomycete F. graminearum, two Dicers
(FgDICER1 and FgDICER2) and two Argonautes (FgAGO1 and
FgAGO2) function redundantly in antiviral RNAi57,68. Note that
FgAGO1 is homologous to N. crassa qde-2 and C. parasitica agl2.

In N. crassa, dsRNA induces transcriptional elevation of RNAi-
related genes such as dcl-2, qde-2, and rrp-335. Taking three
approaches, we confirmed that these genes are also induced upon
virus infection (Fig. 5a, b), as hypothesized by Choudhary et al.35.
Similarly, Nuss and colleagues showed transcriptional induction
of two key RNAi genes, dcl2 and agl2, by dsRNA expression and
virus infection in C. parasitica37,51. This transcriptional regula-
tion requires DCL2 and SAGA (a universal transcriptional
coactivator)38,39. Comparison of RNAi regulation between the
two fungi reveals interesting conservation and differences. It is
likely that dsRNA, regardless of viral or host origin, can trigger
transcriptional induction, but not its small RNAs, suggesting that
the dicing activity of Dicers is not required for the induction39. In
contrast, an interesting difference was observed in the degree of
induction: dcl2 of C. parasitica was induced more highly than that
in N. crassa, i.e., ~40-fold vs. ~8-fold, whereas the induction of
rrp-3 and its ortholog rdr4 are comparably induced in the two
fungi, i.e., 20–30-fold. However, C. parasitica RDR4 seems to be
not fully functional due to a nonsense mutation in any of the
three alternatively splicing variants of transcripts69. Thus, the
biological significance of high transcriptional induction of rdr4 in
C. parasitica or rrp-3 in N. crassa remains elusive. In C. parasitica,
no redundancy was found in Dicer in antiviral RNAi, and dcl2
and agl2 transcript levels were increased 10- to 40-fold upon virus
infection37,70. By contrast, two Dicer genes, dcl-1 and dcl-2, in N.

crassa played redundant roles (Fig. 4a), and their transcript levels
were augmented by less than 7-fold (Fig. 5b and Supplementary
Fig. 4). The high transcriptional upregulation of dcl-2 might have
been compromised by the redundancy of Dicer during the course
of evolution of filamentous fungi.

Different patterns between the accumulation of the partiti-
viruses (NcPV1 and RnPV2) and NcFV1 in an array of mutant N.
crassa strains were observed. In the double dcl mutant or qde-2
mutants, NcFV1 dsRNA-replicative form accumulated approxi-
mately 10-fold relative to the wild-type strain, and this increase
was more pronounced when NcFV1 ssRNA was compared
(Fig. 4, Supplementary Fig. 3). Such an elevation in the two
mutants was not observed for NcPV1 or RnPV2 dsRNA accu-
mulation (Fig. 4, Supplementary Fig. 3). It was previously shown
that certain partitiviruses are tolerant to antiviral RNAi, despite
their ability to induce RNAi, and accumulate at a similar level in
RNAi-competent and -deficient C. parasitica strains47. A similar
phenomenon was also observed for a capsidless (+)ssRNA
hypovirus71. Thus, the failure of NcPV1 and RnPV2 to accu-
mulate more in dcl-1/2 and qde-2 mutants than in the wild-type
strain is not surprising and suggests their evolution of ways to
evade antiviral RNAi.

Collectively, this study has opened up an avenue in modern
virology, and shall accelerate its advance with available molecular
tools and biological resources. This has great impact on studies
with viruses of other fungi, particularly plant pathogenic asco-
mycetous fungi that share many homologous genes with N.
crassa72,73. Some plant fungal diseases such as chestnut blight are
targets of biological control using viruses infecting the pathogenic
fungi so-called “virocontrol”3,74,75. Filamentous fungi have mul-
tilayered antiviral defense impairing virocontrol: RNAi working
at the cellular level and vegetative incompatibility functioning at
the population level53,65. Better understanding of antiviral defense
vs. viral counterdefense and fine-tuning of expression of asso-
ciated genes are prerequisite for their successful virocontrol. In
this regard, further studies using the N. crassa/viruses, e.g., aiming
at exploring antivegetative incompatibility responses evoked by
viruses76, should contribute to virocontrol of
phytopathogenic fungi.

We discovered post-transcriptional downregulation of an
Argonaute QDE-2 specifically upon infection by a (+)ssRNA
virus (NcFV1) in N. crassa (Fig. 6). A plant (+)ssRNA virus is
known to encode an RNAi suppressor that induces an autophagy
pathway targeting an Argonaute (AGO1)77. It will be of interest
to explore the mechanism of NcFV1-mediated post-transcrip-
tional downregulation of qde-2 (Fig. 5d). It is anticipated that
NcFV1 encodes an RNAi suppressor whose mode of action is
different from those of the suppressors from the prototype
hypovirus (Cryphonectria hypovirus 1 p29) and a fusarivirus
(FgV1 ORF2 protein) that transcriptionally downregulate RNAi
key genes37,68,70. Other interesting future challenges include to
investigate whether meiotic silencing serves as antiviral defense,
how the virus or dsRNA is sensed and triggers antiviral RNAi,
how the virus impedes host fungal vegetative incompatibility, and
what host factors are associated with viral replication and
symptom induction.

Methods
Fungal and viral materials. The fungal strains tested in this study are summarized
in Table 1 and Supplementary Table 2. Many N. crassa strains were purchased
from the Fungal Genetics Stock Center (FGSC) (http://www.fgsc.net) and Neuro-
spora protocols available in the website were used unless otherwise mentioned. Full
names and accession numbers of mycoviruses detected in this and previous studies
are provided in Table 1. R. necatrix strains W57 (infected by RnPV2) and C.
parasitica strain 9B21 (infected by MyRV1) were described earlier11,44,78. These
fungal strains were grown on DifcoTM PDA plates for maintenance unless other-
wise mentioned.
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Neurospora knock-in (KI) and KO strains (Supplementary Table 2) were
prepared by the standard method as described earlier28,79 with specific primers
summarized in Supplementary Table 3.

Experimental virus introduction into N. crassa. Virion transfection was per-
formed as described by Hillman et al.11. First, virus particles of RnPV2 and MyRV1
were prepared as described by Chiba et al.44 and Hillman et al.11. Protoplasts of the
N. crassa standard strain (74-OR23-1VA, FGSC #2489) were prepared by the
method of Eusebio-Cope et al.48 as it is generally applicable to protoplast pre-
paration of ascomycetous fungi. Briefly, liquid cultures of N. crassa were harvested
and incubated in a cell-wall digestion solution containing β-glucronidase and lysing
enzyme (Sigma-Aldrich). Protoplasts (0.5 × 107 cells in 200 μl) were mixed with
purified virus particles in the presence of polyethylene glycol (PEG) and Ca2+ ion.

Protoplast fusion was pursued between N. intermedia (FGSC #2559) and N.
crassa as described by Shahi et al.20. For this purpose, the N. crassa standard strain
(74-OR23-1VA) was transformed by the NTC (nourseothricin)-resistance gene and
used for subsequent screening. An equal number of protoplasts (~2 × 105) from the
two fungal strains were fused with the aid of PEG/CaCl2. The protoplast fusants
were grown regenerated on the regeneration media for 1 day and subsequently on
overlaid top agar containing 30 µg/ml NTC for 2–3 days for screening the N. crassa
recipient. Protoplast regenerants resistant to NTC were transferred into PDA plates
containing 30 µg/ml NTC and incubated for 1 day before detecting NiFV1. After
confirming the presence of NiFV1 by the one-step colony PCR method71,80,
NiFV1-positive colonies were anastomosed with the original nontransformed
recipient N. crassa strain. A mycelial plug taken from the recipient side was again
anastomosed with the original recipient. This hyphal fusion step was repeated
three times.

The virus-infected N. crassa helper-5 strain (FGSC #8747; Δmat his-3 tk+ hph
cyh-1, Bml pan-2) was created as a donor strain for virus horizontal transfer to a
series of recipient strains. Specifically, the virus-free helper-5 strain and the virus-
infected N. crassa wild strain (FGSC #10950, NcFV1; FGSC #3975, NcPV1) were
cocultured into a slant of Vogel’s sucrose medium containing 10 μg/ml pantothenic
acid and 25 μg/ml histidine. Subsequently, the virus-infected heterokaryon was

forced by a passage into a slant of minimal medium containing 1.5 μg/ml benomyl
and then the virus-infected helper-5 strain was purified through microconidia
preparation on SC medium containing 1 mM iodoacetate. Similarly, the standard
wild-type strain (74-OR23-1VA) and the derived KO and KI strains were infected
by forcing heterokaryon with the virus-infected helper-5 strain and then were
extracted by spreading onto a plate of Vogel’s FGS medium containing 5 μM FUDR
(5-fluorodeoxyuridine) and 1 mM uracil after microconidia preparation. A
schematic diagram for the manipulation was described in Supplementary Fig. 2.

RNA analyses. The total RNA and dsRNA fractions were modified by the method
of Eusebio-Cope and Suzuki48. Specifically, Neurospora strains were grown with
shaking in Vogel’s minimal medium N at 32 °C for 2 days and were harvested by
filtration. Tissues were transferred into 22-ml screw-capped tubes (Sarstedt,
72.694) containing 0.40.6-mm zirconia beads, 450 µl of 2× STE, 50 µl of 10% SDS,
and 300 µl of phenol/chloroform, and were extracted by using the Minilys
homogenizer (Bertin Instruments) for 30 s at maximum speed. After centrifugation
at 15,000 rpm for 5 min at 4 °C, 500 µl of the upper phase was transferred into a
1.5-ml microtube and 50 µl of 3 M sodium acetate and 400 µl of isopropanol were
added. The concentrations of total RNA were measured by using the Qubit RNA
Assay Kit (Thermo Fisher), and the qualities were confirmed by agarose gel elec-
trophoresis. For dsRNA purification, equal amounts of total RNA were dissolved in
420 µl of 1× STE after isopropanol precipitation, then incubated in a 65 °C water
bath for 15 min, and quickly chilled on ice. Then, 80 µl of ethanol were added as
described by Okada et al.81 to purify dsRNA. Complementary DNA (cDNA) was
prepared by ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo),
and quantitative PCR was performed three times using THUNDERBIRD Probe
qPCR Mix (Toyobo) and a LightCycler 96 system (Roche Diagnostics) with specific
primers summarized in Supplementary Table 2. Measurements were performed
twice and averaged. Relative amounts of the respective transcripts were shown with
the value for the virus-free standard strain as 1.

Dioxigenin-labeled DNA probes for N. crassa genes were prepared by genomic
PCR and used in northern blotting according to the manufacturer’s instructions.
See Supplementary Table 3 for the primer sequences.
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Fig. 6 Model of antiviral RNAi and overall effects of virus infection on Neurospora crassa. Proposed model of the antiviral RNAi pathway in parallel to the
established transgene vegetative mitotic (quelling and qiRNA) and meiotic silencing by unpaired DNA (MSUD) pathways for genomic surveillance. The
meiotic and mitotic RNAi pathway was modified from Chang et al.34. The major players in RNAi, RNA-dependent RNA polymerase (RdRP), or RDR (QDE-1,
SAD-1), Dicer (DCL-1, DCL-2), and Argonaute (SMS-2, QDE-2), are shown in the pathways. Key players, DCL-1, DCL-2, and QDE-2 are shared by the
antiviral and meiotic/mitotic pathways. As a counterdefense, viruses such as NcFV1 appear to deploy RNAi suppressors that post-transcriptionally
downregulate RNAi key genes (see Fig. 5d). It remains unknown whether antiviral RNAi genes of N. crassa are transcriptionally repressed by viruses or
whether the SAGA (Spt–Ada–Gcn5 acetyltransferase) complex and Dicer transcriptionally upregulate many N. crassa genes, as in the case for other
filamentous ascomycetes, such as Cryphonectria parasitica.
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In silico detection of viral sequences. RNA-seq data were obtained from NCBI.
After quality trimming by trimommatic82, the reads were mapped to genomic
DNA, rDNA, mtDNA, and tRNA of the standard N. crassa strain 74-OR23-1VA
with Bowtie283 to obtain unmapped reads. Unmapped reads were then assembled
de novo with Trans-ABySS (https://www.bcgsc.ca/resources/software/trans-abyss)
into contigs. To create local fungal virus database, potential fungus was extracted
from current virus database (NCBI: txid10239). The candidates of fungal viral
sequences were selected from the contigs by a BlastX search (E value < 1 × 10−3)
using the local fungal virus database.

High-throughput sequence analysis of a N. intermediate strain. The dsRNA-
enriched fractions were obtained from petri dish-grown mycelia of a strain of N.
intermediate (FGSC # 2559, H2125-1) as described by Chiba et al.44 The dsRNA
preparation (17.8 ng/µl) was subjected for cDNA library construction using the
TruSeq Stranded Total RNA LT Sample Prep (Illumina, San Diego, CA, USA) and
then next-generation sequencing in Illumina technology (HiSeq 2000, 100-bp
paired-end reads). Raw data for this project were deposited in NCBI Sequence Read
Archive (SRA) under accession No. DRR248874. The cDNA library construction
and deep-sequencing analysis were performed by Macrogen Japan, Ltd. A total of
56,528,326 paired-end reads (5,709-Mb read sequences) were assembled into 8415
contigs (∼7760 nt in length, average 983 nt) using de novo assembler of CLC
Genomics Workbench (version 11, CLC Bio-Qiagen). These contigs were subse-
quently used as queries for a local BLAST search against the RefSeq annotated
viral‐genome database.

Chromatin immunoprecipitation (ChIP) assay and western blotting. We fol-
lowed the procedures of the ChIP assay and Western blotting as described pre-
viously84. The following antibodies were used: anti-H3K4me2 antibody (active
motif, 39141), anti-RNA polymerase II CTD repeat YSPTSPS (phospho S5) anti-
body (Abcam, ab5131), anti-alpha-tubulin antibody (Sigma-Aldrich, T6199), and
anti-FLAG antibody (MBL, M185-3). RT-qPCR experiments were performed two
times using FAST SYBR Green master kit (KAPA) with the listed primers (Sup-
plementary Table 3) and analyzed using a LightCycler® 96 System (Roche Diag-
nostics). The standard N. crassa strain (74-OR23-1VA) was engineered such that
rrp-3-Flag, dcl-2-Flag, or qde-2-Flag was knocked in. Alpha-tubulin detected by
Western blotting with anti-alpha-tubulin antibody was used as a loading control.

Differential gene expression (DEG) analysis. DEG analysis was performed by
the standard HISAT-StringTie-Ballgown pipeline85. Based on the results of in silico
detection of virus-candidate sequences, we choose ten virus-infected strains
(SRR089835, SRR089840, SRR797998, SRR798015, SRR798021, SRR798029,
SRR798030, SRR798051, SRR798054, and SRR798057) and ten highly likely virus-
free strains (SRR797950, SRR797951, SRR797954, SRR797955, SRR797956,
SRR797961, SRR797962, SRR797964, SRR797965, and SRR797967) and compared
their levels of gene expression.

Phylogenetic analyses. The sequences of mycovirus used in this study were
obtained from the NCBI website and are summarized in Supplementary Table 4.
The RdRP or CP sequences were aligned using the online tool MAFFT (http://
mafft.cbrc.jp/alignment/server/index.html) with default parameters86. Maximum-
likelihood phylogenetic tree analyses were generated using RAxML-NG87 with
1000 bootstrap replicates and the specific model selected by ModelTest-NG88, and
were visualized using the graphical viewer FigTree (http://tree.bio.ed.ac.uk/
software/figtree/). SNPs were identified using the variant calling and core genome
alignment program Snippy (https://github.com/tseemann/snippy) with the N.
crassa wild strain RNA-seq reads and the standard 74-OR23-1VA strain (anno-
tation NC12_fixed) genome assembly. The core SNP alignment was used for
phylogenetic analysis as mentioned above.

Availability of materials and fungal strains. Commercially unavailable fungal
strains and reagents are available from the authors upon reasonable request,
through a material transfer agreement with Okayama University or Fukui
University.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information files, or are available on request.
The RNA-seq data generated in this study were deposited in NCBI Sequence Read
Archive (SRA) under accession number DRR248874. The complete viral genomic
sequences are deposited in DDBJ/EMBL/GenBank under accession numbers LC530174
for NiFV1, LC530175 for NcFV1-JW60, and LC530176 and LC530177 for bisegmented
NcPV1-JW35, respectively. The near-complete genomic sequences of other viruses are
deposited in DDBJ/EMBL/GenBank under accession numbers LC586022-LC586028 for

seven different strains of the species Neurospora carassa fusarivirus 1 (Supplementary
Table 1). Source data are provided with this paper.
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