Abstract

Little is known about the role of a strong ions in humans with respiratory abnormalities. In this study, we investigated the associations between partial carbon dioxide pressure (pCO₂) and each of sodium ion (Na⁺) concentrations, chloride ion (Cl⁻) concentrations and their difference (SID_{Na-Cl}). Blood gas data were obtained from patients in a teaching hospital intensive care unit between August 2013 and January 2017. The association between pCO₂ and SID_{Na-Cl} was defined as the primary outcome. The associations between pCO_2 and $[Cl^-]$, $[Na^+]$ and other strong ions were secondary outcomes. pCO_2 was stratified into 10 mmHg-wide bands and treated as a categorical variable for comparison. As a result, we reviewed 115,936 blood gas data points from 3,840 different ICU stays. There were significant differences in SID_{Na-Cl}, [Cl⁻], and [Na⁺] among all categorized pCO₂ bands. The respective pCO₂ SID_{Na-Cl}, [Cl⁻], and [Na⁺] correlation coefficients were 0.48, -0.31, and 0.08. SID_{Na-Cl} increased and [Cl⁻] decreased with pCO₂, with little relationship between pCO₂ and $[Na^+]$ across subsets. In conclusion, we found relatively strong correlations between pCO₂ and SID_{Na-Cl} in the multiple blood gas datasets examined. Correlations between pCO_2 and chloride concentrations, but not

sodium concentrations, were further found to be moderate in these ICU data.

Keywords: acid-base phenomena, Stewart approach, strong ion difference, chlorine ion,

partial carbon dioxide pressure