
Improvement and Evaluation of a Function for
Tracing the Diffusion of Classified Information
on KVM

Hideaki Moriyama, Toshihiro Yamauchi, Masaya Sato, and Hideo Taniguchi

Abstract The increasing amount of classified information currently being managed
by personal computers has resulted in the leakage of such information to external
computers, which is a major problem. To prevent such leakage, we previously pro-
posed a function for tracing the diffusion of classified information in a guest oper-
ating system (OS) using a virtual machine monitor (VMM). The tracing function
hooks a system call in the guest OS from the VMM, and acquiring the informa-
tion. By analyzing the information on the VMM side, the tracing function makes it
possible to notify the user of the diffusion of classified information. However, this
function has a problem in that the administrator of the computer platform cannot
grasp the transition of the diffusion of classified processes or file information. In
this paper, we present the solution to this problem and report its evaluation.

1 Introduction

Personal computers are currently managing increasingly large amounts of classified
information, and leakage of this information to external computers has become a
major problem. Such leakage often occurs inadvertently and through mismanage-
ment. In addition, cyber-attacks aiming to steal classified information have become
increasingly sophisticated. To prevent information leakage, users need to understand
the risks associated with classified information. Furthermore, as complete preven-
tion of cyber-attacks is difficult, it is important to mitigate the damage incurred by
users by detecting the transfer of classified information from their computers.

Hideaki Moriyama
National Institute of Technology, Ariake College, 150 Higashihagio-Machi, Omuta Fukuoka, Japan
e-mail: hideaki@ariake-nct.ac.jp

Toshihiro Yamauchi, Masaya Sato, and Hideo Taniguchi
Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530,
Japan

1

To determine the status of classified information stored on a computer and to
manage the resources that contain such information, we previously proposed a func-
tion for tracing the diffusion of classified information in a guest OS using a vir-
tual machine monitor (VMM), and implemented on kernel-based virtual machine
(KVM) [1] [2] (i.e., a tracing function). The tracing function manages any file or
process with the potential to diffuse classified information in the guest OS. Clas-
sified information can be diffused by any process that involves opening a sensitive
file, reading its content, communicating with another process, or writing the file’s
content to another file. The proposed tracing function operates as follows. First, the
administrator registers any file containing classified information as a file that will
potentially leak classified information (i.e., a managed file). If a process executes
specific operations on such a file, it may cause the classified information to leak.
Therefore, the tracing function registers this process that has the potential to dif-
fuse classified information (i.e., a managed process). By registering the process that
operates the managed files and files or processes that are generated by the man-
aged process, the administrator can detect classified information leaks. The tracing
function is implemented by modifying a VMM. Therefore, this function can be im-
plemented without modifying the source code of the OS. Further, attacks targeting
this function will be difficult to execute because a VMM is more robust than an
OS. However, the tracing function may have large processing overheads because
it hooks all system calls on the VM and registers the processes and files contain-
ing classified information. We analyzed the processing performance of the tracing
function [1] [2] in detail and identified that the processing of the system call exit
involves large overheads, as demonstrated in our previous study [3]. Moreover, we
presented a policy for efficient management to reduce these overheads and reported
on its evaluation.

Although the tracing function reported by Fujii et al. [1] [2] can detect the pro-
cess and files that has potential to diffuse classified information, the administrator
cannot grasp such information at any time. Specifically, the administrator cannot
grasp the list of the managed processes and files from the start of the tracing func-
tion to the present, as well as the list of the managed processes and files currently
registered.

In this study, we developed a solution to the above mentioned problems. In ad-
dition to the method for reducing the processing overheads incurred in outputting
information to the system log, which we demonstrated in our previous study [3],
we implemented a function that outputs information regarding processes and files
to the system log when they are not registered. Moreover, we developed a function
that outputs a list of the managed processes and files from the start of the tracing
function to the present, as well as a list of the managed processes and files currently
registered.

In addition to the method for reducing the processing overheads presented in
our previous study [3], we report on its evaluation using the system call of the file
operation and benchmarks.

Host OS

H/W

VMM

Tracing

function

Guest OS

Update

Diffusion information

(2)(2-A)

(3)

(4)

User space

Kernel space

(2-B)

Judgment of

system call

(1)

System call

User process

User space

Kernel space

Tracing of classified

information diffusion

Fig. 1 Overview of the tracing function

2 Function for Tracing Diffusion of Classified Information

2.1 Overview

Fig. 1 shows an overview of the tracing function. When a user program in the guest
OS requests a system call, the tracing function hooks the system call entry (via
the SYSCALL instruction) and the system call exit (via the SYSRET instruction)
using the hardware breakpoint (Step 1 in Fig. 1). Therefore, the tracing function can
hook the system call using the VMM by detecting debug exceptions in the guest OS
(Step 2 in Fig. 1). If the hooked system call is related to the diffusion of classified
information (Step 2-B in Fig. 1), the tracing function collects the information needed
to trace the diffusion (Step 3 in Fig. 1). Thereafter, control is returned to the guest
OS and the system call process continues (Step 4 in Fig. 1). If the hooked system
call is unrelated to the diffusion of classified information, control is returned to the
guest OS (Step 2-A in Fig.1), and the system call process continues.

2.2 Process Flow

Fig. 2 shows the process flow of the tracing function. After the process moves to
the VMM side, the tracing function process branches depending on whether the
exception that occurred is to be handled via SYSCALL instruction or SYSRET
instruction.

By hooking the SYSCALL instruction, the tracing function obtains the system
call number, page table information, and value of the file descriptor. On the other
hand, by hooking the SYSRET instruction, the tracing function obtains the system

Exception occurrence

SYSRET

SYSCALLJudgement of

SYSCALL or SYSRET

Judgement system call

number

read write

Exception end

SYSCALL

processing

From SYSCALL

processing

Registration of the

process by the PID

Displaying all

registered processes

Obtaining the PID

that issued read

Displaying all

registered files

Obtaining the PID

that issued write

Obtaining the full path

name of the write file

Registration of the file

by the full path name

Other system call

processing

From other system

call processing

Fig. 2 Process flow of the tracing function

call number, return value of the success or failure of the system call, and details
of the file handled by the system call. At this time, the tracing function determines
whether the hooked system call is related to the diffusion of classified information;
in which case, it collects the information needed to trace the diffusion. Control is
then returned to the guest OS and the system call process continues. If the trac-
ing function registers the managed file or process, it records the pathname of the
destination file, inode number, the command name that caused the diffusion, and
process ID. Furthermore, the tracing function outputs this information to the system
log (/var/log/messages).

trace_file_list[0](Init): ino=266297, name=/secret.txt

trace process PID: 773

trace_process_list: 773

sensitive data is diffused to "root/copy01-secret.txt"

(inode number: 272338) by "cp" (pid: 773)

trace_file_list[0](Init): ino=266297, name=/secret.txt

trace_file_list[1]: ino= 272338, name=root/copy01-secret.txt

trace process PID: 777

trace_process_list: 773, 774, 775, 776, 777

sensitive data is diffused to "root/copy05-secret.txt"

(inode number: 272342) by "cp" (pid: 777)

trace_file_list[0](Init): ino=266297, name=/secret.txt

trace_file_list[1]: ino= 272338, name=root/copy01-secret.txt

trace_file_list[2]: ino= 272339, name=root/copy02-secret.txt

trace_file_list[3]: ino= 272340, name=root/copy03-secret.txt

trace_file_list[4]: ino= 272341, name=root/copy04-secret.txt

trace_file_list[5]: ino= 272342, name=root/copy05-secret.txt

…
…

…
…

cp command log

(1st time)

cp command log

(5th time)

…

Fig. 3 Example of the log of the diffusion of classified information

3 Grasping the Potential Diffusion of Classified Information

3.1 Problem with the Current Method

When the administrator of the guest OS or the administrator of the computer con-
firms the diffusion of classified information, satisfaction of the following two re-
quirements is necessary.

Requirement 1: The administrator must grasp the list of the managed processes
and files from the start of the tracing function to the present.

Requirement 2: The administrator must grasp the list of the managed processes
and files currently registered.

In the execution of the service, by satisfying Requirement 1, the administrator can
grasp the classified information that is referred to, updated, or newly generated by
the service. This would enable the administrator to determine whether the service
is handling the classified information as intended. Moreover, by satisfying Require-
ment 2, the administrator can grasp the current classified information.

The previous tracing function outputted the list of all the managed processes
that would potentially leak information from the start of the tracing to the present
whenever a new process was registered. Similar to the registration of a new process,
the previous tracing function outputted the list of all the managed files that would
potentially leak from the start of the tracing to the present, whenever a new file was
registered. Fig. 3 shows an example of this log. Fig. 3 is an example of a log in

which /secret.txt (inode=266297) is registered as managed file that is potentially
being leaked; the file has been duplicated five times using the cp command. In the
fifth execution of the cp command, the tracing function registers a newly managed
process (PID = 777) when the read system call occurs, and the tracing function
outputs the information regarding the five managed processes (PID = 773, 774, 775,
776, 777) as a system log from tracing start to end. Moreover, the tracing function
registers the newly managed file copy05-secret.txt (inode = 272342) when the write
system call occurs, and the tracing function outputs the information regarding the
six managed files (inode = 266297, 272338, 272339, 272340, 272341, 272342) as a
system log from tracing start to end.

Therefore, the previous tracing function required the editing process based on
the log of all diffusions of classified information to satisfy Requirement 1. Further-
more, the previous tracing function cannot satisfy Requirement 2 because it does
not output the log when a process or a file is no longer being managed.

3.2 Improved Method to Grasp the Potential Diffusion of Classified
Processes/Files

To satisfy Requirements 1 and 2, in this study, we implemented the following two
improvements:

Improvement 1: The tracing function outputs the log messages when a process
becomes exits.

Improvement 2: The tracing function outputs the log messages when a file is re-
moved.

Additionally, we implemented the following two improvements, as shown in our
previous study [3],

Existing Improvement 1: When the tracing function detects a newly registered
process, it only outputs this process’s information log.

Existing Improvement 2: When the tracing function detects a newly registered
file, it only outputs this file’s information log.

These improvements can reduce the processing overheads in the tracing function.
Therefore, in addition to the above two improvements and two existing improve-
ments, we also implemented the following two improvements:

Improvement 3: A processing function that integrates all classified information
logs.

Improvement 4: A processing function that edits all classified information logs.

Consequently, Improvement 3 can satisfy Requirement 1, and Improvement 4 can
satisfy Requirement 2.

Fig. 4 shows an example of the classified information log following implemen-
tation of the two new improvements and the two existing improvements. As in Fig.

…trace_file_list[0](Init): ino=266297, name=/secret.txt

trace process PID: 773

sensitive data is diffused to "root/copy01-secret.txt"

(inode number: 272338) by "cp" (pid: 773)

trace_file_list[1]: ino= 272338, name=root/copy01-secret.txt

exit trace process PID: 773

trace process PID: 777

sensitive data is diffused to "root/copy05-secret.txt"

(inode number: 272342) by "cp" (pid: 777)

trace_file_list[5]: ino= 272342, name=root/copy05-secret.txt

exit trace process PID: 777

…
…

…
…

…

cp command log

(1st time)

cp command log

(5th time)

…

Fig. 4 Example of the classified information log of the improved tracing function

3, Fig. 4 is an example of a log in which /secret.txt (inode = 266297) is registered
as a managed file, and the file is duplicated five times using the cp command. In
the fifth execution of the cp command, the tracing function registers a newly man-
aged process (PID = 777) and outputs only this process information as a system log.
Moreover, the tracing function registers the newly managed file copy05-secret.txt
(inode = 272342) and outputs only this file information as a system log. When the
fifth execution of the cp command is completed, the tracing function also outputs
the finished process (PID = 777) information as a system log using Improvements 1
and 2.

Note that the processing function of Improvement 3 that integrates all classified
information logs can be achieved by integrating all logs. Therefore, editing pro-
cessing in the previous tracing function is unnecessary. The processing function for
editing all logs shown in Improvement 4 can be realized by excluding the finished
process or the removed file information shown in Improvements 1 and 2 from the
classified log information obtained by the existing Improvements 1 and 2.

4 Performance Evaluation

4.1 Perspective of the Evaluation

We reduced the processing overheads by implementing existing Improvements 1
and 2 and provided a basic performance evaluation in our previous study [3]. In this
study, we implemented Improvements 1 and 2 in addition to the existing improve-

473.8

160.6

546.6

183.6

460.6

149.0

463.6

182.0

0

100

200

300

400

500

600

read write read write

P
ro

ce
ss

in
g
 t

im
e
(μ
s)

before

improvement

after

improvement

Processing to target
the unmanaged file

Processing to target
the managed file

Fig. 5 Processing time of the read/write system calls

ments and performed a detailed evaluation using a file operation system call and a
benchmark for file access.

4.2 File Operation System Call

To evaluate file operation, we measured the processing time of the read and write
system calls. This operation obtains data from a 100 kB file by using the read system
call and writes these data to another file using the write system call. The range of
the measurement time is the processing time of the tracing function from the start
to the end in each system call. We measured each case in which the tracing function
registers the managed file and the unmanaged file. Moreover, we measured each
case, using both the unimproved and improved tracing functions.

The measurement results are shown in Fig. 5. The measurement results demon-
strated that the improvement effect was significant in the read system call. The pro-
cessing time of the read system call for the target managed file was 546.6 µs before
the improvement and 463.6 µs after the improvement. In summary, using the im-
provement, the processing time was reduced by 83.0 µs.

However, the improvement effect was not significant in the write system call.
The processing time of the write system call for the target managed file was 183.6
µs before the improvement and 182.0 µs after the improvement. In summary, using
the improvement, the processing time was reduced by 1.6 µs.

From the analysis of the processing overheads of the tracing function in our previ-
ous study [3], we established that, using the existing improvements, the effectiveness
of reducing the processing overheads in the read system call was more significant
than that of the write system call. The results of this measurement is explained by
the analysis conducted in our previous study [3].

0

10

20

30

40

50

60

70

80

90

100

Processing to target

the unmanaged file

Processing to target

the managed file

P
ro

ce
ss

in
g
 t

im
e(

m
s)

before

improvement

after

improvement

0

100

200

300

400

500

600

700

800

900

1000

Processing to target

the unmanaged file

Processing to target

the managed file

P
ro

ce
ss

in
g
 t

im
e(

m
s)

before

improvement

after

improvement

0

10

20

30

40

50

60

70

80

90

100

Processing to target

the unmanaged file

Processing to target

the managed file

P
ro

ce
ss

in
g
 t

im
e(

m
s)

before

improvement

after

improvement

0

100

200

300

400

500

600

700

800

900

1000

Processing to target

the unmanaged file

Processing to target

the managed file

P
ro

ce
ss

in
g
 t

im
e

(m
s)

before

improvement

after

improvement

(A) Results of Random Read (B) Results of Sequential Read

(C) Results of Random Write (D) Results of Sequential Write

Fig. 6 Processing time using the fio benchmark

4.3 Benchmark for File Access

To evaluate file access performance, we used the fio (Flexible I/O Tester) bench-
mark. We measured the processing time using four types of file access patterns:
Random Read, Random Write, Sequential Read, and Sequential Write. We prepared
1,000 4 kB files and accessed them using a block size of 4 kB. We measured each
case in which the tracing function registers the classified and the unmanaged file.
Moreover, we measured each case using both the unimproved and improved tracing
functions.

The measurement results obtained using the fio benchmark are shown in Fig.
6. The measurement results of Random Read are shown in Fig. 6-(A). The effec-
tiveness of reducing the processing overheads was not significant in each case. For
example, the processing time of the target managed file was approximately 100 ms
before the improvement and approximately 92 ms after the improvement. Therefore,
using the improvement, the processing time was reduced by approximately 8 ms.

Additionally, the same characteristic as in Fig. 6-(A) is observed in Fig. 6-(B).
The processing time of the target managed file was approximately 95 ms before the

improvement and 87 ms after the improvement. Hence, using the improvement, the
processing time was reduced by approximately 8 ms, which is the same as (A).

Therefore, in the case of the Read access pattern, the reduction in processing
time was less than 10%, and the effectiveness of the improvement is not significant,
neither for Random nor Sequential, and whether the tracing file targets the managed
nor the unmanaged file.

The measurement results of Random Write are shown in Fig. 6-(C). The effec-
tiveness of reducing the processing overheads was significant when the tracing func-
tion targeted a managed file. For example, the processing time of the target managed
file was approximately 927 ms before the improvement and approximately 104 ms
after the improvement. Thus, using the improvement, the processing time was re-
duced by approximately 823 ms. However, the effectiveness of reducing the process-
ing time was not significant when the tracing function targeted an unmanaged file.
Next, the processing time was approximately 95 ms before the improvement and
approximately 87 ms after the improvement. Therefore, using the improvement, the
processing time was reduced by approximately 8 ms.

Additionally, the same characteristic as in Fig. 6-(C) is observed in Sequential
Write, as shown in Fig. 6-(D). For example, the processing time of the target man-
aged file was approximately 938 ms before the improvement and approximately 99
ms after the improvement. That is, using the improvement, the processing time was
reduced by approximately 839 ms. The processing time was approximately 97 ms
before the improvement and approximately 88 ms after the improvement. Hence,
using the improvement, the processing time was reduced by approximately 9 ms.

Therefore, in the case of the Write access pattern, the reduction in processing
time was approximately 89%, and the effectiveness of the improvement in targeting
the managed file is significant, both for Random and Sequential. Meanwhile, the
reduction in processing time was approximately 8%–9%, and the effectiveness of
the improvement in targeting the unmanaged file is not significant.

Considering the measurement results, the effectiveness of the improvement in
the Read access pattern for the managed file was insignificant and that in the Write
access pattern was substantial. The effectiveness of the improvement in the Read
access pattern appears insignificant in the comparison of the processing time before
and after the improvement because the registration of the managed process occurred
once. However, the effectiveness of improvement in the Write access pattern appears
substantial in the comparison of the processing time before and after the improve-
ment because the registration of the managed files occurred 1,000 times.

5 Related Work

Hizver et al. proposed a method for improving the performance of VM monitor-
ing [4, 5, 6]. To reduce the performance degradation on a virtual machine intro-
spection (VMI), they proposed a method for monitoring at regular intervals, instead
of monitoring constantly. However, it has been pointed out that missed detection

may occur when monitoring at regular intervals. Similarly, Shi et al. achieved per-
formance improvement by setting the EPT protection for monitoring at regular in-
tervals [5]. In our proposed method, missed detection does not occur because the
monitoring of the diffusion of classified information is constant. Additionally, we
achieved performance improvement by reducing the output information to a log file.
We did not compare about the evaluation of the performance, because these meth-
ods differ from our proposed method in the purpose of the system and the target
environment.

Zhan et al. proposed a method for the fine-grained control flow integrity verifi-
cation of a virtual machine (VM) to satisfy the performance requirements in actual
operation [6]. Their method recommends, detecting the code execution in page units
and comparing it with the correct processing flow, rather than detecting a branch, to
prevent the VMM from being called frequently and to suppress performance degra-
dation. However, the detection accuracy of this method is lower than that of branch
detection. In our proposed method, we took care not to reduce important classified
information during the improvement.

Jia et al. proposed a method to guarantee the integrity of VMM program code and
the validity of data, considering that the VMM used by the VMI and the host OS
may be damaged by an attack in a cloud environment [7]. Their proposed method is
based on the premise of VMM safety.

Enck et al. proposed a system for information-flow tracking on Android [8]. Their
system tracks information flow in Android by taint analysis using modified libraries.
In contrast to this study, the proposed method does not require modification of pro-
grams running on the VM.

Ji et al. proposed a system to investigate attacks using information flow track-
ing [9]. Their system achieved low overheads by recording system call events
and accurate monitoring using on-demand process replay. Although the proposed
method collects all information required for tracing the diffusion of classified infor-
mation, suppressing the log output reduces unnecessary performance degradation.
Moreover, owing to the on-demand log display function, the system manager can
analyze the diffusion using the log information.

6 Conclusion

In this paper, we described the improvement and evaluation of a function for tracing
the diffusion of classified information on KVM. First, we clarified the requirements
of the tracing function when the administrator of the guest OS or the administrator
of the computer confirms the diffusion of classified information. Moreover, we clar-
ified the problems regarding the processing and outputting of a log. To address these
problems and satisfy the requirements, we proposed four improvement methods. In
the evaluation section, we measured the processing time of the tracing function to
evaluate the effectiveness of the improvements. In the measurement results obtained
using a file operation system call, the improvement effect was significant in the read

system call and the processing time was reduced by 83.0 µs. Moreover, in the mea-
surement results obtained using the fio benchmark, the reduction in processing time
was approximately 89% in the case of the Write access pattern; further, the effec-
tiveness of the improvement in targeting the managed file is significant.

In our future studies, we will reduce the overheads related to the construction of
a full pathname.

Acknowledgements This work was partially supported by JSPS KAKENHI Grant Numbers
19H04109 and 19K20246.

References

1. S. Fujii, M. Sato, T. Yamauchi and H. Taniguchi: Evaluation and Design of Function for Trac-
ing Diffusion of Classified Information for File Operations with KVM, The Journal of Super-
computing, Vol.72, Issue 5, pp.1841–1861, (2, 2016). doi: 10.1007/s11227-016-1671-5

2. S. Fujii, M. Sato, T. Yamauchi and H. Taniguchi: Design of Function for Tracing Diffusion
of Classified Information for IPC on KVM, Journal of Information Processing, Vol.24, No.5,
pp.781–792, (9, 2016). doi: 10.2197/ipsjjip.24.781

3. H. Moriyama, T. Yamauchi, M. Sato and H. Taniguchi: Performance Improvement and Eval-
uation of Function for Tracing Diffusion of Classified Information on KVM, 2017 Fifth In-
ternational Symposium on Computing and Networking (CANDAR), pp.463–468, (11, 2017).
doi: 10.1109/CANDAR.2017.91

4. J. Hizver and T. C. Chiueh: Real-time deep virtual machine introspection and its applications,
Proceedings of the 10th ACM SIGPLAN/SIGOPS international conference on Virtual execu-
tion environments, pp.3–14, (2014).

5. J. Shi, Y. Yang and C. Tang: Hardware assisted hypervisor introspection, SpringerPlus, 5(647)
(2016)

6. D. Zhan, L. Ye, B. Fang, et al.: Checking virtual machine kernel control-flow integrity using
a page-level dynamic tracing approach, Soft Comput 22, pp.7977–7987, (2018).

7. L. Jia, M. Zhu, B. Tu: T-VMI: Trusted Virtual Machine Introspection in Cloud Environments,
Proceedings of 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pp.478–487, (2017).

8. W. Enck et al.: TaintDroid: An information-Flow tracking system for realtime privacy mon-
itoring on smartphones, ACM Transactions on Computer Systems, vol.32, no.2, Article 5,
pp1–29, (2014).

9. Y. Ji et al.: RAIN: Refinable Attack Investigation with On-demand Inter-Process Information
Flow Tracking, Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS2017), pp.377–390, (2017).

