## **Supplementary Information**

# Controlling Electronic States of Few-walled Carbon Nanotube Yarn via Joule-annealing and *p*-type Doping Towards Large Thermoelectric Power Factor

May Thu Zar Myint<sup>a,b</sup>, Takeshi Nishikawa<sup>a</sup>, Kazuki Omoto<sup>a</sup>, Hirotaka Inoue<sup>a</sup>, Yoshifumi Yamashita<sup>a</sup>, Aung Ko Ko Kyaw<sup>c\*</sup>,Yasuhiko Hayashi<sup>a\*</sup>

<sup>a</sup> Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.

<sup>b</sup> Faculty of Advanced Materials Engineering, University of Technology (Yatanarpon Cyber City), Pyin Oo Lwin District, Mandalay Division, Myanmar.

<sup>c</sup> Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China.

E-mail: hayashi.yasuhiko@okayama-u.ac.jp and aung@sustech.edu.cn

### Contents

#### Figures

| Figure S1: | SEM images of pristine, Joule-annealed and Joule-annealed followed by F4TCNQ doped CNT yarn.                                                       |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Figure S2: | Fitted curves of the temperature dependence Seebeck coefficient for pristine, Joule-annealed and Joule-annealed followed by F4TCNQ doped CNT yarn. |  |
| Figure S3: | Relationship between the amount of joule-annealing and the intensity of 2D band to G band.                                                         |  |
| Figure S4: | Possible mechanism of morphology-change after Joule-annealing and doping.                                                                          |  |
| Figure S5: | Raman spectrum of F4TCNQ.                                                                                                                          |  |
| Figure S6: | TEM images of pristine, Joule-annealed and Joule-annealed followed by F4TCNQ doped CNT yarn.                                                       |  |
| Figure S7: | TGA analysis of the CNT yarn before and after Joule-annealing.                                                                                     |  |
|            |                                                                                                                                                    |  |

### Tables

Table S1: The values of the intensity ratio of  $I_G/I_D$  and  $I_{2D}/I_G$ .



Figure S1: SEM images of (a) pristine, (b) Joule-annealed, (c) Joule-annealed followed by 2.5 mg/ml F4TCNQ doped, and (d) Joule-annealed followed by 10 mg/ml F4TCNQ doped FWCNT yarns.

| Joule Heat (W) | I <sub>G</sub> /I <sub>D</sub> | $I_{2D}/I_G$ |
|----------------|--------------------------------|--------------|
| 0 (pristine)   | 1                              | 0.3          |
| 1              | 1.6                            | 0.5          |
| 2              | 5                              | 0.5          |
| 3              | 11.2                           | 0.5          |
| 3.4            | 15.7                           | 0.4          |
| 4              | 17.8                           | 0.7          |

Table S1: The values of the intensity ratio of IG/ID and I2D/IG.



Figure S2: Fitted curves of the temperature dependent Seebeck coefficient for (a) pristine, (b) Joule-annealed and (c) Joule-annealing followed by F4TCNQ doped FWCNT yarns.



Figure S3: Relationship between the amount of joule-annealing and the intensity of 2D band to G band in Raman spectroscopy, indication of the formation of multi-layered graphene structure on the surface of FWCNT yarn.



Figure S4: Possible mechanism of morphology-change after Joule-annealing and doping.



Figure S5: Raman spectrum of F4TCNQ.



Figure S6: TEM images of (a) pristine, (b) Joule-annealed, and (c) Joule-annealing followed by 2.5 mg/ml F4TCNQ doped FWCNT yarns.



Figure S7: TGA analysis of the FWCNT yarn before and after Joule-annealing.