
A Proposal of Android Programming Learning
Assistant System with Implementation of Basic

Application Learning
Yan Watequlis Syaifudin, Nobuo Funabiki, Minoru Kuribayashi

Department of Information and Communication Systems
Okayama University

Okayama, Japan
funabiki@okayama-u.ac.jp

Wen-Chung Kao
Department of Electrical Engineering

Taiwan Normal University
Taipei, Taiwan

jungkao@ntnu.edu.tw

Abstract—Purpose - With rapid increase of Android devices
and application systems, Android application programmers have
been strongly demanded. A lot of schools are offering Android
programming courses to meet this demand. However, Android
programming can be different from the conventional one, because
it needs interactive functions through interfaces with users, which
makes the study more difficult.

Design/methodology/approach - We propose an Android Pro-
gramming Learning Assistance System named APLAS, to assist
the Java-based Android programming study and education.

Findings - Using JUnit and Robolectric, the answers from
the students are automatically marked in APLAS, to achieve
independent learning without the presence of teachers. To cover
extensive topics in Android programming, APLAS offers four
stages where each stage involves several topics.

Originality/value - To evaluate the effectiveness of APLAS,
we implemented the Unit Converter assignment that covers the
first two topics, Basic UI in the first stage and Basic Activity in
the second stage. Through solving the assignment, it is expected
to learn a Basic Application development. We asked 40 novice
students of an IT department in Indonesia to solve the both
topics separately. The results show that APLAS is useful and
helpful to learn Android programming, as they could complete
codes with good execution performances.

Index Terms—APLAS; Android application; Learning system;
Java; Test-driven development method; JUnit; Robolectric

Paper type Research paper

I. INTRODUCTION

Nowadays, the use of mobile devices, especially smart-
phones, continues to increase steadily. According to Statista,
the number of mobile device users has reached more than
five billion around the world, and will continue to grow in
the following years. Particularly, smartphone users reach 2.7
billion, which occupies around 52 percent of the mobile device
users.

Google Android and Apple iOS are the two most popular
operating systems for smartphones currently available. Among
them, Android occupies 80 percent of the smartphone market.
Based upon StatCounter GlobalStats, Android is the most
popular operating system for mobile devices. At the beginning
of 2019, Android reached the market share of 37.6 percent
and was followed by Microsoft Windows with 35.6 percent,

which reveals the increasing number of Android applications.
On the other hand, the AppBrain indicates that the number of
applications in the Google Play Store has reached 2.6 millions.

Under this trend, the demand for Android application pro-
grammers has become one of the highest in the IT field
[Statista, 2019]. A lot of schools have offered Android pro-
gramming courses to meet this demand, with a large number
of students are studying it. However, Android programming
seems different from the conventional one for implementing
logic functions, because it additionally needs interactive func-
tions through user interfaces with users, which makes the study
more difficult. Therefore, how to teach Android programming
effectively is an issue that has been widely discussed among
lecturers, teachers, and trainers in order to produce high quality
programmers.

In this paper, we propose an Android Programming Learn-
ing Assistance System named APLAS to assist the Java-based
Android programming study and education. APLAS assumes
the use of Android Studio IDE to develop an Android appli-
cation with the combination of Java and XML. Java is used
to implement the logic functions and XML is to describe the
user interfaces.

In APLAS, adopting the Test-Driven Development (TDD)
method [Farcic & Garcia, 2015], any answer from a student
will be automatically marked, so that it can guide a student to
have independent learning without the help from a teacher. To
achieve it, JUnit and Robolectric are used in APLAS, which
provide the unit testing capability [Koskela, 2008] for the
student’s answer code. That is, JUnit tests the logic functions
and Robolectric tests the interfaces.

It has been observed that Android applications covering a
variety of topics. Then, they could be explored through the
four stages: User Interface, Interactive Application, Content
Provider, and Service Interaction. Each stage contains several
topics separately. When a student starts solving a new topic in
a stage, he/she needs to obtain the package of the necessary
files for the topic, including the task guide describing the set
of tasks to do, and the detailed specifications.

In this paper, we implement the Unit Converter assignment

to build a Basic Application, which can convert units in
temperature, distance, and weight. This assignment covers
the first two topics, Basic UI in the first stage and Basic
Activity in the second stage. Through solving the assignment,
it is expected for a student to learn a Basic Application
development [Syaifudin et al, 2019].

As the first topic, this assignment involves the Basic UI
topic that contains:

1) starting an android project,
2) configuring the resources, and
3) building the layout in the user interface, which are

composed of nine tasks.
By completing these tasks sequentially, a student can build a
user interface for a Unit Converter application.

As the second topic, it covers the Basic Activity topic that
encompasses:

1) creating Java classes,
2) understanding Activity Lifecycle,
3) creating methods accessing of resources, and
4) creating event listeners, which are also made up of nine

tasks.
Then, we asked 40 novice students of an IT department in

Indonesia to solve the assignment. First, they solved the tasks
for Basic UI, and then, solved the tasks for Basic Activity. The
results show that 90% of the students successfully completed
all the tasks in the assignment and built the Unit Converter
application. Thus, it is confirmed that APLAS is useful and
helpful for novice students to learn Android programming by
building a simple user interface. In addition, the performance
evaluations of unit and integration tests in APLAS using JUnit
and Robolectric showed that they both have satisfied execution
speeds.

The rest of this paper is organized as follows: Section II
reviews related works on programming learning and Android
application testing. Section III explains TDD, unit testing,
and integration testing for Android application. Section IV
shows the details of APLAS and learning model. Section V
presents the implementation strategy of Basic Application
development. Section VI explains the process of validating
the codes. Section VII presents evaluations for the Basic UI
topic implementation. Section VIII presents evaluations for
the Basic Activity topic implementation. Finally, Section IX
concludes this paper with future works.

II. RELATED WORKS

In this section, we survey some related works in literature.
Sadeh & Gopalakrishnan [2011] conducted an evaluation of

the unit test use for Android applications. They showed that
Robolectric will produce the fast testing process by providing
relevant instruments to test a user interface code.

Chandra & Liem [2013] combined a source code for editing
an evaluator with Oddysseus, a Web-based integrated system
for learning programming with the auto-grader ability. They
developed a source code editing evaluator named Doppel and
Ganger (D&G) that can evaluate the typing process in a text

editor, where Oddysseus can compile and grade the produced
source code. They evaluated D&G by testing source codes of
Pascal, C, and C++ from students.

Funabiki et al [2013] proposed a Web-based Java Program-
ming Learning Assistant System (JPLAS) for self-learning of
Java programming using the TDD method. JPLAS uses JUnit
for unit test of source codes from students. It can enhance
educational effects in Java programming courses by allowing
self-studies of students while reducing teacher loads. They
evaluated the proposed system and showed the effectiveness
of the system implementation in university students.

Ortiz et al [2015] presented an experience based on the use
of m-learning in higher education. They determined the degree
of the acceptance and usability of an educational application
for mobile devices. The application allows teachers to monitor
the tasks of students and detect the structures of written codes
where they found difficulties. They concluded that teaching
tools should be incorporated automatic assessment methods.

Kang & Cho [2015] studied the Android programming
education using Multi Android Development Tools on MIT
App Inventor and Eclipse. For novice students, it is easy to
use puzzle models on MIT App Inventor. However, they have
to use Eclipse to make real applications. Also, the teacher
needs to manually check the validity of the code made by the
student.

Vásquez et al [2017] conducted a survey of Android devel-
opers about their experiences when performing testing. This
study aimed at gathering information about the practices of
testing tools in Android application developments. The result
showed that the most used tool for automated testing is JUnit,
followed by Roboelectic, and then, Robotium. This result
confirmed the previous study of Kochhar et al [2015] that
showed the three tools are actually the favorite ones in Android
application developments.

Garcı́a & Rosa [2016] have developed a Web application
interface for programming learning by children and youth,
namely RoBlock. They designed the Web Application to satisfy
the autodidactic programming learning by using Visual Blocks
Programming, which includes the materials and concepts to
be learned by them. This tool has the similar idea with Multi
Android Development Tools where the block model is referred
on the both works.

Rekhawi & Naser [2018] have developed a Web-based
intelligent tutoring system for teaching Android application
developments. This system provides the lessons of the An-
droid programming overview, the basic user interface, and the
application design. Besides, it offers questions in each lesson
to be answered by students, and evaluations of the submitted
answers to them. Unfortunately, this system fails to support
learning coding for Android application developments.

Luccio [2019] proposed a case to use robots to learn
distributed algorithms by simulations. The proposed system
used robots that are used for educational purposes to increase
the intellectual abilities of students, especially in distributed
algorithms. The author presented a project-based learning
approach that refers to the advanced algorithms course at the

University Ca Foscari of Venice, Italy, in 2017 and 2018.
The result showed that the students participating this project
obtained the excellent final grades, compared to the ones with
traditional written tests.

III. TEST-DRIVEN DEVELOPMENT METHOD IN ANDROID
APPLICATION

In this section we review the TDD method in Android
application developments.

A. Overview of Test-driven Development Method

The TDD method is the software development process that
relies on the repetition of a very short development cycle. The
requirements in the source code are turned into the specific
test cases in the test code [Wikipedia, 2019]. The source
code is improved by passing the tests [Blundell & Milano,
2015]. The test code is written in advance or parallel with the
source code development process, and guides the programmer
at developing the source code. The TDD method is adopted
in APLAS to automatically validate the answer codes of the
students. Testing automation allows improving efficiency and
coverage of application for better validation [Kaur, 2015].

B. TDD in Android Application Developments

To implement TDD method, Android application testing
has to perform automated testing process. This process means
using source code or a design model as predefined requirement
to create a test case and tests the application automatically
[Kim, 2013]. Android application testingshould include three
categories of tests, namely small, medium, and large [Google
Developers, 2019]. To be specific, below the details of each
type of testing:

1) Small tests are unit tests that validate Android appplica-
tions behavior one class at a time and cover big portion
of entire Android application testing. The tools that can
perform a small test are JUnit, Mockito, or Powermock.
JUnit is the most popular, easy to use, and light tool
to perform unit testing in Java platform. Mockito is an
open-source testing framework for Java that allows the
creation of mock objects testing in automated unit tests.
Powermock a unit testing framework that extends others
mock libraries with more powerful capabilities.

2) Medium tests are integration tests that integrate several
components and provided by Robolectric that can be run
on the local Java Virtual Machine (JVM).

3) Large tests are UI tests that run by completing a
UI workflow on an emulator or real device using a
platform like Espresso, UI Automator, or Robotium.
Espresso is an open-source testing framework created
by Google which provides an API that allows to create
user interface tests. UI Automator is a testing framework
that provides a set of APIs to perform UI tests auto-
matically. Robotium is an open-source test framework
that can perform automatic gray box testing cases and
allows developers to write function and acceptance test
scenarios.

In this paper, we adopt unit test using JUnit and integration
test using Robolectric in APLAS. Both types of testing allow
us to define application specifications and validating them
automatically without running the applications on smartphones
or emulators. In addition, most of the functionality of an
android application can be tested with both types of testing.

C. Unit Test

Unit test is a practice to test a small, individual, and isolated
unit of a whole source code, such as a method and a class in
Java. It is useful to prove the validity of the unit code. JUnit
has been the de-facto standard for the automated unit test on
Android application.

D. JUnit

JUnit is considered the most popular unit test framework
for Java. It is fully supported by Android Studio that helps
us create a test process for an Android application project.
The unit test needs a test code that contains one or more
test methods indicated by the @Test annotation. Each test
method contains an assertion method to execute a single
function in the source code and determine the pass or fail
of this test case. The assertion method is provided by the
class library org.junit.Assert extending java.lang.Object class.
Figure 1 shows a simple test code for the unit test on JUnit.

Fig. 1. Unit test on JUnit.

E. Integration Test

Integration test is another practice to test combinations of
individual components that work together. The components
have been tested by unit tests independently. Then, they
are combined together to test the integration of them. In
general, an Android application project is composed of several
components, such as Manifest, Resources, Layout, Activity,
Unit, and Gradle. All or part of the components must be
integrated to form a complete Android application that can
contain a user interface. User interface (UI) test is important,
because numerous Android applications offer UI as the main
function. Robolectric is the framework that brings fast and
reliable integration tests.

F. Robolectric API

Robolectric provides a testing framework that allows to
test an Android application on Java Virtual Machine (JVM)
without an emulator or a device [Hussain et al, 2017]. Then,
it can perform the unit test on JUnit by integrating all the

components in an Android application, as shown in Figure 2.
The test can run fast, because it converts a Java code to a
Dalvik code [Dalvik bytecode, 2019] that deploys an emula-
tor, which rewrites the Android core libraries using shadow
classes. Robolectric redefines Android methods so that they
return default values and forwards the method calls to the
shadow objects, mimicking the Android behaviors [Blundell
& Milano, 2015].

IV. PROPOSAL OF ANDROID PROGRAMMING LEARNING
ASSISTANCE SYSTEM

In this section, we present the Android Programming Learn-
ing Assistance System (APLAS) for assisting self-learning of
Android programming.

A. System Architecture

APLAS adopts Android Studio as the most popular inte-
grated development environment (IDE) for the platform to
develop Android applications. Android Studio is packaged
with the Android SDK that is a set of tools to facilitate
Android developments, allows users to work on tasks using
a combination of Java and XML, and supports main operating
systems of Windows, Linux, and Mac OS. As a system, the
APLAS architecture consists of several components that run
on Android Studio which runs on Java Virtual Machine with
JDK 8, as revealed in Figure 3.

In Android Studio, there are Android components and
test codes. Android components involve Activity, Layout, Re-
sources, and other components like Java Class, Fragments,
Service, Intents, etc. To illustrate, Activity is an Android com-
ponent that contains the logic definitions of a User Interface
using Java. Layout is a definition to build a User Interface
and written in XML. Resources are the additional files and the
static content that need in an Android project, such as bitmaps,
strings, drawables, styles, animation instructions, and more.

A test code is written using Java. The test uses JUnit 4
and Robolectric 4.2.1 as API to run the unit test and the
integration test. Then, the Android components and the test
code are compiled using the Gradle Build Tool and run on
Java Virtual Machine.

B. Four Learning Stages

Learning materials for Android programming contain a va-
riety of topics from basic levels to advanced ones. In APLAS,
the topics of learning will start in basic level and specific topic.
It will be useful to focus in particular part on the enabling
step of functioning as an novice student [Robins et al, 2003].
In this paper, we divide the topics into the following four
stages, referring to the learning courses in [Udacity, 2019],
[Google Training, 2019], [Android Developer Fundamentals,
2019], and [Horton, 2015]:

1) User Interface focuses on creating an Android applica-
tion interface. Besides designing the user interface with
XML, this stage covers configuring project properties
and managing project resources.

2) Interactive Application focuses on implementing the
activity in the project to build an Android interactive
application. It is requested to create Java codes to utilize
widgets, events, fragments, intents, and multimedia.

3) Content Provider focuses on utilizing shared sets of
application data stored in SQLite database on the Web,
or on any other persistent storage location.

4) Service Interaction emphasizes utilizing existing ser-
vices provided by the Android operating system, where
a service indicates an application component that can
perform in the background without a user interface.

C. Learning Topics in Four Stages

Every stage has one or several topics with different contents
for learning. Each topic focuses on a specific case for building
an Android application. The following is a list of learning
topics for each stage on the APLAS.

1) User Interface: This stage ony has one topic named Ba-
sic UI. This topic contains several material lessons including
project properties, layout design using XML, and definition
and management of resources like drawable, colors, strings,
and styles. This is an important step in learning Android, where
users will start creating Android applications by designing
interfaces with XML.

2) Interactive Application: This stage includes four topics,
named Basic Activity, Advanced Widget, Multiple Activity,
and Multimedia Resource. Basic Activity aims to study the
basic of programming in Activity of Android project. Advanced
Widget explores utilizations of widget, timer, style, and data
structure. Multiple Activity investigates how to create an appli-
cation with multiple activities by utilizing intent and fragment.
Multimedia Resource aims to study how to create animations
with XML files and utilize multimedia resources.

3) Content Provider: This stage includes four topics,
named Basic Data Storages, SQLite Database, Network
Connection, and Data Service. Basic Data Storages aims to
study the optios to save persistent application data, including
Shared Preferences, Internal Storage, and External Storage.
SQLite Database aims to study how to store structured data
in a private database, namely SQLite. Network Storage aims
to study how to store data in network including network server
and cloud. Data Service emphasizes how to store data privately
and make them available publicly.

4) Service Interaction: This stage includes four topics,
named AsyncTask, Web Contents, Service Application, and
Notifications. AsyncTask aims to study how to process some
tasks in the background using AsyncTask class. Web Contents
aims to study how to access data available on web service
using the web API. Examples of data provided by web services
are news article, weather, and contacts. Service Application
highlights how to build application as a service. A service is an
application component that performs long-running operations
without a user interface. Notifications aims to study how
to create, deliver, and reuse notifications. A notification is
a message generated by application and displays it outside
application’s normal UI.

Fig. 2. Integration test on Robolectric.

Fig. 3. APLAS Architecture

D. Learning Process in Each Topic

In APLAS, one topic consists of several tasks, which need
to be finished by the students in sequence. Each task has the
unique number and the objective, and is made up of the four
steps, namely:

1) start learning,
2) configure project,
3) do the task, and
4) test the code

The process model of each topic is shown in Figure 4.
The detail of each step is described as follows:
1) Start Learning: This step is designed to start learning

a task, by obtaining the corresponding package of files that
consists of guide document, supplement file(s), and test
code(s). The guide document will guide a student to handle a
task, which involves the learning objective, the requirements
of hardware and software, the resource details described by the
list of files in the task package, the task description, the task
guidance on how to do the task step by step, and the testing
guide. The supplement files include the necessary files in the
Android project, such as images, fonts, and animations. The

test code is used to validate the result of the code in Android
project produced by a student.

2) Configure Project: This step creates or opens a new
Android project on Android Studio, and configures the project
by following the guide document. It needs to be configured as
below:

1) project properties: the project type, the target device, the
application name, the package name, the file location,
and the programming language,

2) Android manifest: the file that describes the essential
information on project structures, the application to the
Android build tools, the Android OS, and Google Play,

3) Gradle configuration: the advanced build toolkit to auto-
mate and manage the build process with flexible custom
build configurations.

The student must synchronize the Gradle and all the Android
components with one single click, and must ensure that the
configuration results are correct and the Gradle synchroniza-
tion process is successful in the next step.

3) Do the Task: This step will do the task described in
the guide document. Each task contains copying the supple-
ment file(s) to the project, and writing the codes to build
an Android component. The codes may appear in Activity,
Layout, Resources, Java classes, or the other components.
After completing this task, students can run the application
to review their achievement in each task.

4) Test the Code: This step validates the student task by
running the test code to get the feedback. If all the tests in the
test code are passed, the result appears with the green icon. If
there is at least one failed test, the result appears with the red
icon, as shown in Figure 5. If a student has passed the task,
he/she may move to the next task.

E. Learning Environment

To use APLAS, every student must use a computer de-
vice that meets the minimum requirements of the hardware
specifications listed in the guide document. Android Studio

Fig. 4. Learning process for each topic.

Fig. 5. Test result.

is installed in the device, which should be connected to the
Internet, because Android Studio can be updated and install
additional APIs to run APLAS, as indicated in Figure 6.

Fig. 6. Learning Environment of APLAS

The teacher will provide the students with a package of
the files required for the assigned topic in a compressed file
format. When a student decompresses it, several folders are
generated. Each folder corresponds to one task with a specific
number such that the students will accomplish the tasks
sequentially. It contains the guide document, the supplement
file(s), and the test code(s) for the task. By following the
instructions in the document guide, the students could try to
cope with the task.

V. BASIC APPLICATION LEARNING IN APLAS

In this section, we present the design and the assignment
implementation for learning Basic Application in APLAS.

A. Overview

At the early stage of Android programming, students should
learn how to create a simple application, which needs User
Interface design using XML and Activity programming using
Java. As the initial stage of implementing APLAS, a simple
application is targeted, called Basic Application. First, the
student will learn the basics of designing an application layout
and defining the resources, which is packaged in the Basic UI
topic. Next, the student will learn the fundamentals of Activity
programming and class programming using Java, which is
packaged in the Basic Activity topic.

B. Outline of Assignment

As an assignment of Basic Application, the Unit Converter
application is implemented in APLAS. Unit Converter is a
simple application to convert a value for temperature, weight,
or length between different units. Figure 7 illustrates the user
interface. This application uses LinierLayout, RelativeLayout,
TextView, EditText, Button, Spinner, Checkbox, RadioGroup,
RadioButton, ImageView, and TableLayout as the components.
The resources defined are strings, fonts, string-arrays, images,
and drawables. In the Activity programming, several proce-
dures, such as changing the value of a unit to another unit,
rounding the decimal value, displaying an image, and hiding
an image should be implemented.

C. Basic UI Topic

First, the details of the Basic UI topic are described.

Fig. 7. Unit Converter application interface.

1) Learning Goals: Referring to Horton’s book and Udac-
ity site, the following three learning goals are set for students
to start an Android application project:

• How to start an Android project (start): needs the
knowledge of Android project paradigm, like the package,
Android SDK, the application compatibility, and Gradle
Build Tool.

• How to configure the resources (resource): requires the
knowledge of Android project resource types.

• How to build a user interface layout (UI): needs the
knowledge of the layout design paradigm using XML.

2) Tasks: The nine tasks in Table I must be completed in
this order, then an application layout will be established. They
include the three learning goals. When a student completes all
of them, the Unit Converter application layout will become
available.

D. Basic Activity Topic

Next, the details of the Basic Activity topic are described.
1) Learning Goals: Activity programming is the fundamen-

tal subject to develop an Android application. The following
four goals allow students to understand the Basic Activity
programming:

• How to create Java class for unit (Java): needs to learn
how to make simple Java classes including fields and
methods.

• How to understand Activity lifecycle (lifecycle): needs
to learn that the Activity class in Android project provides
callbacks to know the change of a state.

• How to create method accessing to project resources
(resource): should gain the understanding of additional

TABLE I
TASKS IN Basic UI TOPIC

No. Task Goal Detail
1 project config-

uration
start start new Android project, configure

the properties, configure the gradle,
and sync the gradle

2 resource con-
figuration

resource configure Android Studio project re-
sources, like string and font

3 Main layout,
Textview,
Button

UI design basic layout, add TextView,
and add a Button

4 Space and
Child layout

UI create Space and add Child Layout

5 String-array,
EditText,
Spinner

resource,
UI

configure string-array resources,
make EditText, and Spinner

6 Checkbox UI create Checkbox and configure the
properties

7 RadioGroup UI create a RadioGroup and add some
RadioButtons inside

8 Image
resource and
ImageView

resource,
UI

add image resource and make Im-
ageView in layout

9 Drawable re-
source and Ta-
ble layout

resource,
UI

add Drawable resource and make
Table layout

files and static contents beside codes, such as bitmaps,
layout definitions, strings, and animation instructions.

• How to create event listener (event): needs to learn
Event as an important way to make an Android ap-
plication provide interactions between the user and the
interactive components or widgets such as Button click
or Spinner select item.

2) Tasks: The nine tasks in Table II must be completed in
this order, to build a Unit Converter application. They include
the four learning goals.

VI. AUTOMATIC CODE VALIDATION IN APLAS

In this section, we present the design and implementation of
the automatic code validation for Basic Application in APLAS.

A. Overview

In APLAS, the final step in each task is the validation of the
answer files of XML and Java source codes from the student.
For self-learning of Android programming, the automatic code
validation method using Unit Testing on JUnit and Integration
Testing on Robolectric, is adopted in APLAS. This is regarded
as the most important mission in APLAS. In this section, we
will explain the validation model, the validation type, and the
details of each type.

B. Validation Model

In APLAS, the student who has completed a task can
validate the answer files using the unit testing method using
Unit Testing and Integration Testing. As shown in Figure 8, the
testing of Java source codes can be done on JUnit with asser-
tion methods directly. On the other hand, the testing of specific
features for the Android project, such as the application layout,

TABLE II
TASKS IN Basic Activity TOPIC.

No. Task Goal Detail
1 make Temper-

ature class
Java make simple Java class to convert

unit in Temperature
2 make Distance

class
Java make simple Java class to convert

unit in Distance
3 make Weight

class
Java make simple Java class to convert

unit in Weight
4 define fields

and methods
in Activity

Java define fields of widgets and assign
them with related resources in the
project

5 make Override
method in Ac-
tivity

lifecycle define methods to state Activity into
onCreate andonStart

6 create Radio-
Group event

event create event listener method for Ra-
dioGroup that will influence con-
tents in Spinner

7 make method
to convert
units

resource create method to access values in
EditText, Spinner, and Checkbox,
run unit conversion, and put the
result on the EditText

8 create Widget
event listener

event create event listener methods for ac-
tion in Button, Spinner, and Check-
box

9 create
ImageView
and event

event define image resource and show it
when Checkbox is checked

the Activity lifecycle, the event listener, and the accessing
resources, needs to use Robolectric to establish the unit testing
of an Android project in the Java environment. Robolectric
creates a new class to simulate an Android application. Then,
the class will be tested with assertion methods on JUnit.

Fig. 8. Validation process of Basic Activity.

The validation of each component can be done through the
following steps:

1) Initiation: This step runs the initial process, such as
building the activity and assigning fields.

2) Validation of Components: The validation of the com-
ponents are as follows:

• Layout validation using Integration Test,
• Resource validation using Integration Test,

• Activity Lifecycle validation using Integration Test,
• Event listener validation using Integration Test,
• Java class validation using Unit Test.

3) Fail Test Message: If there is a failed test, the corre-
sponding message will appear in APLAS.

C. Layout Validation

The Android UI is built using an XML code that contains
the layout elements or widgets such as Button, LinearLayout,
Space, and EditText. Each element has a unique number to
represent the identity. Each element also has properties such
as the width, the height, and the background color, where each
property has the specific data type and value.

To validate the application layout, the following two steps
are applied:

1) Check the completeness and sequence: the number of
elements that must be right and the order of placement
of each element must be correct.

2) Check the value of each property for all the elements:

If the elements in the layout are correct in the number and
the sequence, the value of each property in each element needs
to be tested. Figure 9 shows the process and the sample test
code to prove the accuracy of a layout.

D. Resource Validation

The use of resource files is a way of separating the static
values in the application from the source codes Android
Developer Fundamentals [2019]. The following six types of
resources need to be checked in the Unit Converter applica-
tion:

1) String: The string resource values are stored in the
strings.xml file with XML. To validate them, it must
confirm the availability of each string and the correctness
of its value.

2) Color: The color resource values are stored in colors.xml
file with XML. Likewise, it is essential to check the
availability of each color and the correctness of its value.

3) String-array: The string-array resource values are stored
in strings.xml file with XML. To validate them, it is
necessary to check the availability of each string-array
and the correctness of its value.

4) Font: The font resource files are stored in the font folder
under the res folder. To validate them, it is necessary to
check the availability of each font file.

5) Image: The image resource files are stored in the draw-
able folder under the res folder. Also, it is necessary to
check the availability of each image file.

6) Drawable: The drawable files are stored in the drawable
folder under the res folder. The drawable file is an XML
file that contains the definition of the painting color or
the style in the surface. Hence, it is critical to discern the
availability of each drawable file.

Figure 10 shows the sample test code to validate resources.

Fig. 9. Sample test code to validate layout.

Fig. 10. Sample test code to validate resources.

E. Java Class Validation

A Java class can contain several methods such that each
method has the specific purpose and the functionality. To
test the validity of each Java class, the methods are adopted
through the following two steps:

1) Method structure check: The number of the methods, the
name of each method, and the input/output parameters of
each method must be correct.

2) Method functionality check: The source code must pass
every test method in the test code.

Figure 11 shows the sample test code to validate a Java
class.

F. Activity Lifecycle Validation

Activity has a lifecycle represented by a set of states,

during its entire lifetime from the initially created time until
the destroyed one Android Developer Fundamentals [2019].
This process is known as the Activity Lifecycle on Android
applications. The stages in Activity lifecycle consist of on-
Create, onStart, onResume, onPause, onStop, and onDestroy.
Robolectric can test whether an application enters in one step
in the cycle and moves to the next step, using the code in
Figure 12.

On top of that, Activity is a Java class making an application
to be interactive. The Activity class has the defined methods
and fields. To validate Activity in the project, it is necessary
to check the methods and fields that are defined.

G. Event Listener Validation

Event listener is an interface in the View class that contains

Fig. 11. Sample test code to validate Java class.

Fig. 12. Sample test code to validate Activity lifecycle.

a single callback method Udacity [2019]. This method will
be called by the Android framework if the registered View
with the listener is triggered by a user interaction of the
User Interface. The elements in the layout that have event
listener are Button, Spinner, RadioButton, and Checkbox. The
methods in the event listener interface, such asonClick(),
onItemSelected(), onFocusChange(), and onCheckedChange(),
are used here.

The validation of Event listener is processed through the
following steps:

1) Make an event for a widget: A number of widgets, But-
ton, Spinner, and RadioButton, can generate an event. In
the test code, Button can call the performClick() method
to generate an onClick() event, Spinner can call the
setSelection() method to generate an onItemSelected()
event, and RadioButton can call the setChecked() method
to generate an onCheckedChange() event.

2) Check the Result: After an event is generated, the result
of the event is compared with the correct value using
the test code, as shown in Figure 13.

VII. EVALUATION FOR Basic UI

In this paper, we evaluate the APLAS implementation for
Basic Application learning through applications to 40 under-
graduate students majoring in IT, with Basic UI and Basic
Activity) topics. In this section, we will discuss the evaluation
results for the Basic UI topic. In the next section, we will
discuss the evaluation results for the Basic Activity topic.

A. Solving Activity Results

For evaluations, we have appointed 40 undergraduate stu-
dents majoring in IT to solve the assignment using APLAS
on Android Studio Android Studio [2019]. Each student used
their own computer in the Android programming class. The
computer adopted Windows 10 OS, Intel Core I5-3470 3.2GHz
CPU, and 12GB RAM, where JUnit spends 1−2 milliseconds
and Robolectric does 6−8 seconds to mark one answer. During
the class, the required time and the feedback from APLAS for
each task were recorded. Table III summarizes the results.

TABLE III
SOLVING ACTIVITY RESULTS FOR Basic UI

task no. 1 2 3 4 5 6 7 8 9

of passed 39 39 40 38 36 36 36 36 35

of failed 1 0 0 1 2 0 0 0 1

of skipped 0 1 1 1 2 4 4 4 4

of passed un-
der 15 minutes

3 3 4 7 6 8 6 7 2

of passed un-
der 30 minutes

20 24 24 30 27 28 28 29 17

average time
(minutes)

26 26 29 19 23 21 20 20 31

shortest time
(minutes)

10 11 8 4 7 3 5 3 4

longest time
(minutes)

55 85 95 40 45 45 40 35 55

Fig. 13. Sample test code to validate event.

B. Discussions on Solving Activity Results

Table III indicates that 35 among the 40 students (87.5%)
successfully completed the given nine tasks. On the other hand,
five students (12.5%) could not complete any task. One student
among them failed task 1, by failing to synchronize gradle due
to the Internet connection failure. Because all the tasks must
be done sequentially, the failed student needs to skip all the
remaining tasks. One student failed task 4 and two students
failed task 5, which are related to the UI design. One student
failed task 9, which is related to making the table layout.

The required time to complete one task is distributed from
19 to 31 minutes (24 minutes on average). The shortest time is
at 3− 11 minutes. The longest time is from 35 to 95 minutes.
The improvement in the completion time was observed at task
4, where the longest time was reduced to 40 minutes.

C. Task Difficulty Analysis

The difficulty level of each task can be analyzed depending
on the number of students who could complete each task in
less than 30 minutes and in less than 15 minutes respectively.
Afterwards, the difficulty level of the tasks was categorized
into four levels in Table IV.

TABLE IV
TASK DIFFICULTY LEVEL CLASSIFICATION FOR Basic UI

level # of passed un-
der 15 minutes

of passed un-
der 30 minutes

tasks no.

very hard 0-2 0-19 9

hard 3-4 20-24 1,2,3

medium 5-6 25-27 5

easy 7-8 28-30 4,6,7,8

D. Feedbacks from Students

After solving the assignment, we requested each student to
give an opinion on the problems for each task. Figure 14 shows
the distribution of their opinions.

First, most of the students gave the positive opinion Easy
to do on this topic. However, five students gave the negative
opinion for any task including task 9 that was classified as

Fig. 14. Opinions for Basic UI topic.

very hard. Then, we analyzed the reasons of the failures in
the four tasks. task 1 failed due to the Internet connection
error. Android Studio could not synchronize gradle. task 4
and task 5 failed due to the insufficient knowledge of XML.
As well, task 9 failed as a result of the insufficient knowledge
on the table structure in the database. In addition, most of
the students suffered from the specification insufficiency of
hardware, which caused problems in loading and executions.

VIII. EVALUATION FOR Basic Activity

In this section, we discuss the evaluation results for the
Basic Activity topic.

A. Result of Basic Activity

For evaluations of this topic, we have also appointed 40 un-
dergraduate students majoring in IT. Once more, each student
used the own computer that has the same specifications in the
Android programming class, and the required time and the
feedback from APLAS for each task were recorded. Table V
summarizes the results.

B. Discussions on Solving Activity Results

Table V indicates that 36 among the 40 students (90%)
successfully completed all the tasks in sequence. Beyond that,

TABLE V
SOLVING ACTIVITY RESULTS FOR Basic Activity

task no. 1 2 3 4 5 6 7 8 9

of passed 40 40 40 38 37 37 37 37 36

of failed 0 0 0 1 2 0 0 0 1

of skipped 0 0 0 0 1 3 3 3 3

of passed un-
der 5 minutes

8 7 8 7 6 4 6 4 4

of passed un-
der 20 minutes

28 28 28 29 23 27 24 27 19

average time
(minutes)

22 22 28 21 17 16 16 16 19

shortest time
(minutes)

3 4 4 4 4 3 4 4 4

longest time
(minutes)

90 105 105 100 55 52 45 57 61

there are four students who could not complete any task.
One student failed task 4, a stage which a student begins
programming the Activity with defining several fields and
methods. Two students failed task 5, which is for learning
Activity Lifecycle. One student failed task 9, which is for
learning how to process ImageView.

The required time to complete one task is distributed from
16 to 28 minutes (20 minutes on average). The shortest time is
from 3 to 4 minutes. The longest time is at 90− 105 minutes.
The improvement in the completion time was observed at task
5, where the longest time was reduced to 55 minutes. It is
noted that three students did not pass task 4 and task 5, and
their time was not recorded.

C. Task Difficulty Analysis

For Basic Activity, the difficulty level of each task can be
analyzed depending on the number of students who could
complete each task in less than 20 minutes or less than 5
minutes. The number of students who completed a task under
5 minutes appears to be fewer, which indicates the level of
difficulty of the task becomes higher. Also, the difficulty level
of the tasks can be categorized into the three levels in Table VI.

TABLE VI
TASK DIFFICULTY LEVEL CLASSIFICATION FOR Basic Activity

level # of passed under
5 minutes

of passed under
20 minutes

tasks no.

hard 0-4 0-20 9

medium 4-6 21-27 5,6,7,8

easy 7-8 28-30 1,2,3,4

D. Feedbacks from Students

Figure 15 shows the distribution of the opinions from
the students. Most of the students gave positive opinions on
learning Basic Activity topic with APLAS. Only five students
expressed negative feedback that this learning was not easy.
All of them failed on task 4, task 5, and task 9, where they

faced the most difficult task of creating event listener with an
image file. The improvements will be in future studies.

Fig. 15. Opinions for Basic Activity topic.

IX. CONCLUSION

In this paper, we proposed the Android Programming Learn-
ing Assistance System (APLAS) to assist the Java-based An-
droid programming study and education through four stages.
Based on the Test-Driven Development (TDD) method using
JUnit and Robolectric, the answers from the students are auto-
matically marked in APLAS. The design and implementation
for learning Basic Application were presented to cover the first
two topics, where the application results in the Unit Converter
assignment confirms the effectiveness of APLAS. In future
works, we will continue the implementation of APLAS for the
remaining stages, including the functions for tracking failed
tests and online learning, and the handbook for teachers to
guide students to use APLAS.

ACKNOWLEDGMENT

We are very grateful to Mr. Pramana Yoga Saputra and
Mr. Rudy Ariyanto from State Polytechnic of Malang, and
Mrs. Inggriani Liem from Del Institute of Technology, for
great helps in directing the students to solve the first APLAS
assignment for evaluations.

REFERENCES

Android Open Source Project, (2019). Dalvik
bytecode. Android Open Source Project
(AOSP) repository (Online). Retrieved from
https://source.android.com/devices/tech/dalvik/dalvik-
bytecode.

AppBrain (2019, March). Number of Android
apps on Google Play. Retrieved from
https://www.appbrain.com/stats/number-of-android-apps.

Blundell, P., & Milano, D., T., 2015. Learning android appli-
cation testing. Packt Publishing.

Chandra, T., N., & Liem, I. (2013). Source code editing
evaluator for learning programming. Proceeding of 4th
International Conference on Electrical Engineering and
Informatics (ICEEI 2013), Kuala Lumpur, 169-175.

Eclipse Foundation. (2019). Eclipse IDE. Retrieved from
https://www.eclipse.org.

Farcic, V., & Garcia, A. (2015). Test-driven Java development.
Packt Publishing.

Funabiki, N., Matsushima, Y., Nakanishi, T., Watanabe, K., &
Amano, N. (2013, February). A Java programming learn-
ing assistant system using test-driven development method.
IAENG International Journal of Computer Science, vol. 40,
no. 1, 38-46.

Google Developers (2019). Android Studio. Retrieved from
https://developer.android.com/studio/.

Google Developers, (2019). Android Developer Fundamentals.
Google developers training course. Retrieved from
https://developer.android.com/courses/fundamentals-
training/overview-v2.

Garcı́a, P., G., F., & Rosa, F., D., (2016). RoBlock – Web
App for Programming Learning. International Journal of
Emerging Technologies in Learning (iJET), Vol 11, no.12,
45-53.

Google Developers, (2019). Espresso. Google
Developers Documentation (Online). Retrieved from
https://developer.android.com/training/testing/espresso.

Google Developers, (2019). Fundamental of testing. Google
Developers Documentation (Online). Retrieved from
https://developer.android.com/training/testing/fundamentals.

Google Developers, (2019). Google training courses.
Google developers training course. Retrieved from
https://developer.android.com/courses/.

Google Developers, (2019). UI Automator. Google
Developers Documentation (Online). Retrieved from
https://developer.android.com/training/testing/ui-automator.

Google Inc. (2019). Google Play Store (online). Retrieved
from https://play.google.com/store.

Gradle Inc. (2019). Gradle Build Tool. Retrieved from
https://gradle.org/.

Horton, J., (2015). Android programming for beginners. Packt
Publishing.

Hussain, A., Razak, H., A., & Mkpojiogu, E., O., (2017,
April). The perceived usability of automated testing tools
for mobile applications. Journal of Engineering, Science,
and Technology, Special Issue on ISSC ’2016, 86-93.

JUnit (2019). JUnit, Retrieved from https://junit.org/junit4/.
Kang, H., & Cho, J., (2015). Case study on efficient Android

programming education using multi Android development
tools. Indian Journal of Science and Technology, vol. 8, no.
19, 1-5.

Kaur, A., (2015). Review of Mobile Applications Testing with
Automated Techniques. International Journal of Advanced
Research in Computer and Communication Engineering,
vol. 4, no. 10, 503-507.

Kim, H., K., (2013, October). Test Driven Mobile Applica-
tions Development. Proceedings of the World Congress on
Engineering and Computer Science 2013, San Fransisco,
USA, vol. 2.

Kochhar, P., S., Thung, F., Nagappan, N., Zimmermann, T., &
Lo, D., (2015, April). Understanding the Test Automation

Culture of App Developers. Proceeding of 2015 IEEE 8th
International Conference on Software Testing, Verification
and Validation (ICST), Graz, Austria.

Koskela, L. (2008). Test Driven: Practical TDD and accep-
tance TDD for Java developer. Manning Publications.

Luccio, F., L., (2019). Learning distributed algorithms by
programming robots. Journal of e-Learning and Knowledge
Society, Vol. 15, No. 2, 89–100.

Massachusetts Institute of Technolgy, (2019). MIT App Inven-
tor. Retrieved from https://appinventor.mit.edu.

Mockito framework site (2019). Mockito - Tasty mock-
ing framework for unit tests in Java. Retrieved from
https://site.mockito.org/.

Ortiz, 0., Alcover, P., M., Sánchez, F., Pastor, J., A., &
Herrero, R., (2015). M-Learning Tools: The Development of
Programming Skills in Engineering Degrees. IEEE Journal
of Latin-American Learning Technologies, Vol. 10, No. 3,
86–91.

Oracle Corporation (2019). Java pro-
gramming language. Retrieved from
https://docs.oracle.com/javase/7/docs/technotes/guides/language/.

JDK8 Oracle Corporation, 2019. Open JDK 8, Retrieved from
https://openjdk.java.net/projects/jdk8u/.

Powermock framework site (2019). Powermock, Retrieved
from https://powermock.github.io/.

Rekhawi, H., A., A., & Naser, S., S., A., (2018). An in-
telligent tutoring system for learning Android applications
UI development. International Journal of Engineering and
Information System, vol. 2, no. 1, 1-14.

Robins, A., Rountree, J., Rountree, N., (2003). Learning and
Teaching Programming: A Review and Discussion. Com-
puter Science Education, Vol. 13, No. 2, 137–172 .

Robolectric (2019). Robolectric. Retrieved from
http://robolectric.org/.

Robotium (2019). RobotiumTech/robotium:
Android UI testing. Retrieved from
https://github.com/RobotiumTech/robotium/.

Sadeh, B. & Gopalakrishnan, S. (2011). A study on the
evaluation of unit testing for Android systems. International
Journal on New Computer Architectures and Their Appli-
cations, 1(4), 926-941.

SQLite Consortium (2019). SQLite. Retrieved from
https://www.sqlite.org/index.html.

StatCounter GlobalStats (2019, February). Operating
system market share worldwide. Retrieved from
http://gs.statcounter.com/os-market-share.

Statista GmbH (2019, March). Number of smartphone users
worldwide from 2014 to 2020 (in billions). Retrieved
from https://www.statista.com/statistics/330695/number-of-
smartphone-users-worldwide/.

Statista GmbH (2019). App Developers - statistics & facts.
Retrieved from https://www.statista.com/topics/1694/app-
developers/.

Syaifudin, Y., W., Funabiki, N., & Kuribayashi, M. (2019,
March). Learning model for Android programming learn-
ing assistant system. Proceeding of 2019 IEICE General

Conference, Waseda University, Tokyo, S89-S90.
Udacity Inc., 2019. Android basics by Google.

Udacity nanodegree program. Retrieved from
https://www.udacity.com/course/android-basics-
nanodegree-by-google–nd803.

W3C (2019). Extensible Markup Language (XML). Retrieved
from https://www.w3.org/XML/.

Vásquez, M., L., Cardenas, C., B., Moran, K., & Poshyvanyk,
D., (2017, September). How do Developers Test Android
Applications?. Proceeding of 2017 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME),
Shanghai, China.

Wikimedia Foundation Inc., 2019. Test-driven development.
Wikipedia - The Free Encyclopedia (Online). Retrieved from
https://en.wikipedia.org/wiki/Test-driven development.

Yan Watequlis Syaifudin received the bachelor degree in
Informatics from Bandung Institute of Technology, Indonesia,
in 2003, and the master degree in Information Technology
from Sepuluh Nopember Institute of Technology, Surabaya,
Indonesia, in 2011, respectively. In 2005, he joined State
Polytechnic of Malang, Indonesia as a lecturer. He is currently
a Ph.D. candidate in Graduate School of Natural Science
and Technology at Okayama University, Japan. His research
interests include educational technology and database systems.
He is a student member of IEICE.

Nobuo Funabiki received the B.S. and Ph.D. degrees in
mathematical engineering and information physics from the
University of Tokyo, Japan, in 1984 and 1993, respectively.
He received the M.S. degree in electrical engineering from
Case Western Reserve University, USA, in 1991. From 1984 to
1994, he was with Sumitomo Metal Industries, Ltd., Japan. In
1994, he joined the Department of Information and Computer
Sciences at Osaka University, Japan, as an assistant professor,
and became an associate professor in 1995. In 2001, he moved
to the Department of Communication Network Engineering
(currently, Department of Electrical and Communication En-
gineering) at Okayama University as a professor. He was
the chairman at IEEE Hiroshima section in 2015 and 2016.
His research interests include computer networks, optimization
algorithms, educational technology, and Web technology. He
is a member of IEEE, IEICE, and IPSJ.

Minoru Kuribayashi received his B.E., M.E., and D.E.
degrees from Kobe University, Kobe, Japan, in 1999, 2001,
and 2004. From 2002 to 2007, he was a research associate at
the Department of Electrical and Electronic Engineering, Kobe
University. In 2007, he was appointed as an assistant professor
at the Division of Electrical and Electronic Engineering, Kobe
University. Since 2015, he has been an associate professor
in the Graduate School of Natural Science and Technology,
Okayama University. His research interests include digital
watermarking, information security, cryptography, and coding
theory. He received the young professionals award from IEEE
Kansai Section in 2014. He is a senior member of IEEE and

IEICE.

Wen-Chung Kao received the M.S. and Ph.D. degrees in
electrical engineering from National Taiwan University, Tai-
wan, in 1992 and 1996, respectively. From 1996 to 2000,
he was a Department Manager at SoC Technology Center,
ERSO, ITRI, Taiwan. From 2000 to 2004, he was an Assistant
Vice President at NuCam Corporation in Foxlink Group,
Taiwan. Since 2004, he has been with National Taiwan Normal
University, Taipei, Taiwan, where he is currently a Professor at
Department of Electrical Engineering and the Dean of School
of Continuing Education. His current research interests include
system-on-a-chip (SoC), flexible electrophoretic display, ma-
chine vision system, digital camera system, and color imaging
science. He is a fellow of IEEE.

