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Abstract:

Since robots have higher reliability and accuracy than humans, they have been used ex-

tensively in production factories to perform a wide variety of tasks instead of human workers.

Moreover, humans have mobilized robots to perform repetitive and dangerous jobs that are re-

quired to be conducted in exceptional environments such as outer space―the universe beyond

the earth’s atmosphere―or the bottom of the sea. However, until now, robots cannot entirely

replace humans. Humans can perform the intended tasks in a specific environment, and au-

tomated robots do not reach human adaptability. Therefore, researchers have been trying to

improve the adaptive capabilities of autonomous robots. Concerning autonomous robots, a

robot control technology using visual information obtained from cameras in the feedback loop,

which is named as visual servoing, is expected to be able to allow the robot to adapt to changing

or unknown environments. However, for a robot with vision sensors, such as cameras, it has

been difficult till now to accurately detect the 3D pose (position and orientation) of the target

object, especially if the target object cannot be predefined since the shape is arbitrary.

A model-based method is a way used to realize the visual servoing. Even though it enables

a monocular vision to detect the distance of the target object from a single image, its accuracy is

not enough. Many studies have used RGB-D camera, composed of one RGB camera and depth

sensor with infrared light, to improve the distance detection capabilities of monocular vision.

These studies still rely on the target detection in a single image or segmentation. Although

the RGB-D camera generates a depth point cloud corresponding to the single image the pose

estimation accuracy should be improved for practical applications. Therefore, some studies use
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deep learning methods for target detection. However, this requires a lot of pictures and pre-

training time. Some studies use a model-based approach to simplify preparatory work. Still,

it cannot avoid the disadvantage that its depth distance measurement is inaccurate. Unlike the

RGB-D method, stereo vision is another possible approach to estimate 3D pose.

The author has proposed a stereo vision visual servoing system that uses a 3D model for

the target’s pose detection. The adoption of 3D model to estimate the target’s pose enables

to improve the 3D pose estimation accuracy. However, the process to construct 3D model

in programming was complicated. For producing industrial parts, some other researches use

CAD models because they are readily available from their design phase. Commercial CAD

packages can help shorten the conversion process from CAD model to a model for pose de-

tection. However, for general objects appearing in people’s daily life, e.g., deformable clothes,

it is impossible to describe them in the CAD model. In order to respond to new requirements

and overcome the disadvantages encountered in constructing 3D models, photo-model-based

clothes processing robot has been developed for picking and placing clothes. It simplified the

model making process since this process does not need to predefine the object’s size, shape,

color, pattern, and design in programming language. And more importantly, it can deal with

deformable goods.

This thesis proposes a real-time 6DOF photo-model-based pose estimation method used for

6DOF visual servoing purposes. This method can detect the full pose of a 3D target object.

To the best of the author’s knowledge, no studies have yet been conducted on 3D pose visual

servoing with only 2D photo-model of an object in the real world. What the author wants to

certify by real experiments in this paper is whether a 2D photo-model generated from one photo

of a 3D target can estimate the full 6DOF pose of the 3D target, and whether the estimated pose

can be used for 3D pose visual servoing. And the results have shown that the full pose of an

arbitrary 3D target can be estimated in real-time by using only a 2D photo and it also enables

3D visual servoing to the target. The above results have been confirmed by real experiments

that use a 6DOF manipulator with stereo vision at the end-effector.
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HφM = [HxM ,HyM ,HzM ,Hε1M ,Hε2M ,Hε3M ]T = [0, 0, 500[mm], 0, 0, 0]T. . . 84

6.1 The target pose value HφM = [HxM ,HyM ,HzM ,Hε1M ,Hε2M ,Hε3M ]T of each

motion step is listed with names of (Step 0) to (Step 19), corresponding to the

target’s motion trajectory in Fig. 6.1. Similar to Fig. 6.1, the arrows in this table

show the changing parameters from the previous step to the next. For example,

in this table, since from (Step 0) to (Step 1) HxM is only changed, there is an

arrow between row (Step 0) and (Step 1) in the column of HxM . And the arrow

of subfigure (Step 1) in Fig. 6.1also shows that the target moves along the x-axis. 89
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Chapter 1

Introduction

Since robots have higher reliability and accuracy than humans, they have been used extensively

in production factories to perform a wide variety of tasks instead of human workers. Moreover,

humans have mobilized robots to perform repetitive tasks or dangerous jobs that are required

in exceptional environments, such as outer space or the bottom of the sea. However, robots

cannot entirely replace humans because they lack human adaptability. Therefore, researchers

have been trying to improve the adaptive capabilities of autonomous robots.

Visual information is useful for an autonomous robot to perceive its surrounding environ-

ment. The field of robot vision researches how to use visual information to enable robots to

perform some given tasks [1]–[5]. In this field, robot control technology uses visual informa-

tion obtained from cameras in a feedback loop known as “visual servoing” to allow robots to

adapt to changing or unknown environments [6]–[13]. However, a robot with vision sensors,

such as cameras, has difficulties detecting the 3D pose of target objects accurately, especially if

the target object cannot be predefined since the shape is arbitrary.

A model-based method is a way to meet the above challenges and used to realize visual

servoing [14]–[16]. The author’s research results in the field of model-based visual servoing

will be introduced in this thesis.
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1.1 Background and motivation

For the development of a robot vision system, it is important to choose a suitable camera config-

uration. Even though the model-based method enables a monocular vision to detect the distance

of the target object from a single image, its accuracy is not enough [17]–[19]. Many studies

have used an RGB-D camera, composed of one RGB camera and a depth sensor with infrared

light, to improve distance detection capabilities to monocular vision [12],[20]–[22]. However,

the RGB-D camera has a major disadvantage: missing depth data caused by the depth sensor.

Some pixels do not have corresponding depth data [23]. What’s more, bright ambient illumi-

nation can affect the contrast of infrared images in active light sensors, resulting in outliers or

holes in the depth map [24]. Unlike optical infrared and electric-field sensing, stereo vision

perceives a greater variety of target material properties and light conditions [25]. It is not de-

pendent on capacitance, reflectivity, or other material properties, as long as the target surface

has some visible features. For the above reasons, the research proposed in this paper is based

on stereo vision, i.e., dual RGB cameras.

The author has proposed a model-based eye-vergence visual servoing system that uses a

3D model for the target’s pose detection [26]. The adoption of a 3D model to estimate the

target’s pose enables the system to improve the 3D pose estimation accuracy. However, the

process of constructing 3D models in programming was complicated. For producing industrial

parts, some other studies use CAD models, because they are readily available from their design

phase. Commercial CAD packages can help shorten the conversion process from CAD model

to a model for pose detection [27]. However, for general objects appearing in people’s daily

lives, e.g., deformable clothes, it is impossible to describe them in the CAD model.

To overcome the disadvantages and difficulties of building 3D models, some studies based

on 2D models have used QR-code or other artificial 2D markers for visual servoing tasks [28].

Some data-driven methods with deep learning techniques use 2D pictures to detect 3D poses

of target objects, they require a large number of pictures and pre-training time [20],[21]. Their
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application ranges are limited. To establish a more general and practical recognition approach, a

photo-model-based clothes processing robot has been developed for picking and placing clothes

using 4DOF detection results of the 2D photo-model [29]–[32]. This photo-model greatly sim-

plified the model making process since this process did not need to define the object’s size,

shape, color, pattern, and design in the programming language. We hope that the photo-model-

based technology will not be limited to clothes-handling, but have a broader range of appli-

cations, e.g., pursuing and catching aquatic animals that try to escape the visual servoing of

underwater robots. Compared to static clothes, the poses of these or other animals will change

when they are moving. The photo-model-based recognition method needs to be improved to be

applicable to real-time pose tracking.

This thesis proposes a real-time 6DOF photo-model-based pose estimation method used for

6DOF visual servoing purposes. This method can detect the full pose of a 3D target object. To

the best of the author’s knowledge, no studies have been conducted on 3D pose visual servoing

with only 2D photo-model of an object in the real world. The author wants to evaluate whether

a 2D photo-model generated from one photo of a 3D target can estimate the full 6DOF pose of

the 3D target and whether the estimated pose can be used for 3D pose visual servoing. Results

show that the full pose of a 3D target can be estimated in real-time by using only a 2D photo,

which enables 3D visual servoing of the target. The above results have been confirmed by real

experiments that use a 6DOF manipulator with stereo vision at the end-effector.

In this paper, firstly, 6DOF model-based recognition method is introduced as necessary

reference technology. Then, the proposed 6DOF photo-model-based recognition method is

presented in detail. In the end, to confirm the tracking capability of the proposed recognition

method, frequency response experiments to track a target have been conducted using a stereo

vision hand-eye robot. The results show that the robot can track a given target in real-time with

its photo-model and completed the visual servoing task. Furthermore, to verify this capability

in a more realistic environment, the photo-model-based visual servoing system is used to track

a marine creature toy floating on the pool surface without pose restrictions. It is confirmed from
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the experimental results that the visual servoing robot can be used to capture a moving marine

creature target and is not susceptible to partial occlusion conditions. Hence, these show that the

2D photo-model got from one photo can estimate the pose of the 3D target.

1.2 Aim and objectives

The overall aim of the research presented in this thesis is to develop a real-time 6DOF photo-

model-based pose estimation method for visual servoing application. To achieve this aim, the

following objectives should be fulfilled:

• to develop a real-time 3D pose estimation method with a 2D photo.

• to develop a visual servoing system using the proposed photo-model-based pose estima-

tion method.

• to verify the real-time pose tracking capability of the visual servoing system by conduct-

ing frequency experiment.

1.3 Thesis contribution

Figure 1.1 shows the 4DOF photo-model-based handling robot (pick and place) introduced by

our previous studies [29]–[32]. The proposed system aims at picking up clothes after a robot

recognizes it and classifies the clothes into a collection box. The robot has been confirmed to

be able to identify 12 different deformable clothes [31],[33].

Referring to the real-time pose estimation technology of the model-based eye-vergence vi-

sual servoing robot shown as Fig. 3.17 [34], this paper extends the past 4DOF photo-model-

based method to a real-time 6DOF recognition method for detecting the full pose of a 3D solid

target object. As shown in Fig. 1.2, a photo-model is used for visual servoing so that a visual

servoing robot (VS-robot) can follow a 3D target whose motion is given by a target control robot

(TC-robot), There is no communication between the two robots except vision information.
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Cloth 

absorption 

pads

Target object (Cloth)

PA-10 robot 

Collection box

Dual-eye cameras

Fig. 1.1: A photo of the clothes handling robot system with dual-eye cameras: PA-10 robot is

equipped with a vacuum unit and two cameras used as stereo vision, where four pads connected

with the air compressor made the robot possible to perform the pick (absorption) and place of

the clothes. In the test, the robot picked up 12 kinds of deformable clothes and classified them,

and set them into the collection box.

Target control 

robot

(TC-robot)
Dual-eye visual 

servoing robot

(VS-robot)

Underwater

background

��

�� ��

��

�� ��

��

��

3D target crab placed on 

underwater background

Prepared target object (crab)

photo-model used for

recognizing crab on background

Fig. 1.2: The motion of the target animal, crab, is given by TC-robot, and the VS-robot moves to

keep desired relative pose of the VS-robot against the crab attached on a panel with sea bottom

backdrop whose motion is given by TC-robot. World coordinate system ΣW , hand coordinate

system ΣH , and target coordinate system ΣM are depicted in the figure.
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In summary, the contributions of this paper are listed as follows.

• A method is proposed to estimate the pose of a 3D target object by using stereo vision

and only one 2D photo.

• With the proposed pose estimation method a photo-model-based visual servoing robot

(Fig. 1.2) is developed. Stereo vision cameras fixed at the end-effector of the VS-robot

perform the real-time pose estimation of the 3D target based on its photo-model.

• The developed system’s visual servoing abilities to a moving 3D target have been con-

firmed through frequency response experiments.

All above points have helped achieve the photo-model-based visual servoing.

1.4 Dissertation structure

This thesis is organized as follows:

Chapter 2 presents a literature review on robot vision, vision-based approaches, basic

classification of visual servoing, and stereo vision.

Chapter 3 describes the model-based recognition method with detailed explanation on

stereo vision geometry, 3D model-based matching and genetic algorithm (GA). And the

developed eye-vergence visual servoing system is introduced.

Chapter 4 describes experiments of the model-based eye-vergence visual servoing system.

Through these experiments, the tracking ability of the eye-vergence visual servoing sys-

tem is verified. Comparing with the fixed camera vision, advantage of the eye-vergence

vision is confirmed.

Chapter 5 presents the proposed 6DOF photo-model-based pose estimation method with

2D photo. In the early stage of development, it is developed based on the fixed camera
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vision. In the future, it will be used on the eye-vergence vision. Photo-model generation

and 3D matching will be introduced in detail.

Chapter 6 describes the real-time 3D pose estimation and visual servoing experimental

results, followed by discussion and conclusion.

Chapter 7 concludes this thesis.

1.5 Publications

The research work presented in thesis has resulted in the following publications.

Journals

(1) “Evaluation of eye-vergence visual servoing by lateral frequency response,” (in Japanese

横軸方向周波数応答実験による両眼転導ビジュアルサーボの評価), Hongzhi Tian,

Yejun Kou, and Mamoru Minami, Transactions of the JSME, Vol.84, No.857, DOI:

10.1299/transjsme.17-00182 (2018)

(2) “Frequency Response Experiments of Eye-Vergence Visual Servoing in Lateral Motion

with 3D Evolutionary Pose Tracking,” Hongzhi Tian, Yu Cui, Mamoru Minami, Akira

Yanou, Artificial Life and Robotics, Vol.22, No.1, pp.36-43 (2017)

International Conferences

(1) “Visual Servoing to Arbitrary Target with Photo-Model-Based Recognition Method,”

Hongzhi Tian, Yejun Kou, Mamoru Minami, 24th International Symposium on Artifi-

cial Life and Robotics, B-Con Plaza, (Beppu, Japan), pp.950-955 (2019)

(2) “Photo-Model-Based Stereo-Vision 3D Perception for Marine Creatures Catching by

ROV,” Hongzhi Tian, Yejun Kou, Takuro Kawakami, Renya Takahashi, Mamoru Mi-

nami, OCEANS 2019 Seattle, Washington State Convention Center, (Seattle, America)

(MTE/IEEE), 55789150 (2019)

7



Chapter 1 Introduction

(3) “Robust Translational/Rotational Eye-Vergence Visual Servoing under Illumination Va-

rieties,” Hongzhi Tian, Yejun Kou, Khaing Win Phyu, Daiki Yamada, Mamoru Minami,

IEEE International Conference on Robotics and Biomimetics, (Macau, China), pp.2032-

2037 (2017)

(4) “Tracking Performances of Eye-Vergence Visual Servoing System under Different Light

Condition with Evolutionary Pose Tracking,” Hongzhi Tian, Yejun Kou, Ryuki Funakubo,

Mamoru Minami, International Symposium on System Integration, (Sapporo, Japan)

(IEEE/SICE), pp.568-573 (2016)

(5) “3D Evolutionary Pose Tracking Experiments of Eye-Vergence Visual Servoing in Lateral

Motion and Arc Swing Motion,” Hongzhi Tian, Ryuki Funakubo, Yejun Kou, Mamoru

Minami. In 2016 IEEE International Conference on Robotics and Biomimetics, (Qing-

dao, China), pp.577-582 (2016)

(6) “Visual Servoing Frequency Response of Eye-vergence System in Lateral Motion with

Evolutionary Pose Tracking of 3D-Object,” Hongzhi Tian, Yu Cui, Mamoru Minami,

Akira Yanou, 21st International Symposium on Artificial Life and Robotics, B-Con Plaza

(Beppu, Japan), pp.658-663 (2016)

National Conferences and Poster Presentation

(1) “Visual Servoing to Arbitrary Target by Using Photo-Model Definition,” Hongzhi Tian,

Yejun Kou, Khaing Win Phyu, Ryuki Funakubo, Mamoru Minami, JSMEロボティクス・

メカトロニクス講演会 (ROBOMECH 2018), 2A1-M17 (2018)

(2) “Eye-Vergenceに基づくビジュアルサーボシステム,”田宏志,侯森,見浪護,于福佳,

前田耕一,矢納陽, SICE,第 7回 CI研究会,宮城県仙台市東北大学, pp.25-32 (2015)

(3) “Eye-Vergenceを用いたビジュアルサーボシステムの6自由度を持つ 3次元マーカへ

の追従特性,”田 宏志,崔禹, 見浪護, 新木遼平, 矢納陽, 第 58回自動制御連合講演

会, 1I2-2 (2015)
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Chapter 2

Literature Review

A literature review on some background topics is introduced in this section, relating to this

study and research for configurations of robot vision, visual servo, stereo vision, and object

recognition techniques.

2.1 Computer vision, machine vision, and robot vision

Computer vision (CV) has a dual purpose. From a biological science perspective, computer

vision aims to propose a computational model of the human visual system. From an engineer-

ing perspective, computer vision is designed to build an autonomous system that can perform

specific tasks that human vision systems can achieve (in many cases even exceeding them) [35].

Computer vision aims to use cameras to analyze or understand scenes in the real world. This

discipline studies methodological and algorithmic issues, as well as topics related to the realiza-

tion of design solutions. In CV, people might want to know if a vehicle is driving in the center

of the lane, how many people are in the scene, or may even want to identify a specific person -

all of which can be answered based on recorded images or videos [36].

The differences between computer vision and machine vision are analyzed in detail in

[37]. Machine vision (MV) is concerned with the engineering of integrated mechanical-optical-

electronic software systems for examining natural objects and materials, human artifacts, and
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manufacturing processes in order to detect defects and improve quality, operating efficiency,

and the safety of both products and processes. It is also used to control machines used in man-

ufacturing. [37].

To summarise, the division between MV and CV reflects the separation between engineering

and science. Machine vision systems perform quality tests, guide machines, control processes,

identify components, read codes, and deliver valuable data for optimizing production. [38].

Machine vision must involve the harmonious integration of mechanical handling, lighting, op-

tics, video cameras, image sensors (including visible, infrared radiation, X-ray sensor arrays,

or laser scanners), industrial engineering, human-computer interfacing, control systems, man-

ufacturing, and quality assurance methods. Machine vision is not a scientific endeavor; it is a

branch of systems engineering. [37].

The terms robot vision (RV) and machine vision are usually used interchangeably [2]. How-

ever, there are some subtle differences between them. Some machine vision applications, such

as part inspections (in which parts are placed just in front of the vision sensor to look for faults),

have nothing to do with robotics. [5]. Moreover, RV is not just an engineering field. It is a

science with its particular area of research. Unlike pure computer vision research, robot vision

must incorporate the aspects of robotics into its technologies and algorithms, such as kinematics

and the physical impact of robots on the environment [39]. Visual servoing is a perfect example

of technology that can only be called robot vision, not computer vision [5].

It must be understood that CV, MV, and RV share many terms, concepts, and algorithmic

techniques, but they have different goals and have different priorities to deal with problems.

2.2 Visual tracking and visual servoing

2.2 Visual tracking, also named object tracking, is an important task within the field of computer

vision [40],[41]. It can be applied to many domains, such as visual surveillance [42], human-

computer interaction, and video compression [43].

10



Chapter 2 Literature Review

In its simplest form, tracking can be defined as the problem of estimating the trajectory

of an object in the image plane as it moves around a scene. In other words, a tracker assigns

consistent labels to the tracked objects in different frames of a video, either in the 2D image

plane or in the 3D object space [44].

Visual tracking essentially deals with non-stationary data, both the target object and the

background, that change over time [45]. Visual tracking of an object involves the detection of

some known object features in the acquired images and the estimation of the object’s position

and orientation (pose) with these features [46]. The target object’s pose estimation is very

important for robot motion. Therefore, not only in CV, but also in RV, a visual tracking system

is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human

interaction, and other robotic functions [47]. However, it does not involve robot control.

Visual servoing is a robot control technology that guides robots with real-time and contin-

uous visual feedback [6],[46]. Visual servo control refers to the use of computer vision data

to control the motion of a robot, and relies on techniques from image processing, computer

vision, and control theory [48]. Visual data can be obtained from a camera mounted directly

on the robot manipulator or mobile robot, in which case the movement of the robot will cause

the camera to move [48]. Therefore, the nonlinear dynamic influence of the entire robotic arm

will affect the stable tracking ability of the hand-eye visual servoing system [49],[50]. Visual

servoing is a perfect example of robot vision as opposed to computer vision [5]. Due to the high

requirements of visual servoing, a visual tracking technique may not be directly applicable to

visual servoing.

2.3 Classification of visual servoing

This section introduces the basic classification of the visual servoing research based on control

schemes and tracking approaches.
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2.3.1 Visual servoing control schemes

The two archetypal visual servo control schemes are image-based and position-based visual

servo control [51]. Some studies combine the image-based and position-based methods; there-

fore, visual servo control techniques are broadly classified into three major groups [9]:

1. position-based [52]–[54] (pose-based called in [51],[55]) visual servoing (PBVS),

2. image-based [56]–[59] visual servoing (IBVS),

3. hybrid visual servoing [60] (combining PBVS and IBVS).

In IBVS, the control law is based on the error between current and desired features on the

image plane, and does not involve any estimate of the target’s pose. The features may be the

coordinates of visual features, lines, or moments of regions. This is servoing in 2D.

In PBVS, the pose of the target object is estimated with respect to the camera, and then a

command is issued to the robot controller, which in turn controls the robot. In this case the

image features are extracted as well, but are additionally used to estimate 3D information (the

pose of the object in Cartesian space). A kinematic error is generated in the Cartesian space and

mapped to actuators’ commands [61]. This is servoing in 3D.

The advantages and drawbacks of each visual servoing method have been discussed in a

significant amount of studies [51],[61]. Compared with image-based visual servoing, position-

based visual servoing is more understandable, since the method of the visual servo is more

similar to a human being; that is, it determines the object pose in the Cartesian coordinate frame

and leads to Cartesian robot motion planning. Moreover, in position-based visual servoing, the

robot controller and object pose recognition are separated as independent units.

2.3.2 Tracking approaches for visual servoing purpose

To highlight research characteristics, many studies are named after tracking techniques instead

of control schemes (e.g., model-based visual servoing) [62],[63]. Most of the available tracking
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techniques can be divided into two main classes [64]:

1. feature-based approaches [65]–[67],

2. model-based approaches [63],[68].

The feature-based approach focuses on tracking 2D features, such as geometrical primitives

(e.g., points, segments, edges, circles) or an object’s contours or regions of interest. The main

idea of this method is to select a set of feature points, which are matched against the incoming

video to update the estimation pose. Feature-based techniques are naturally less sensitive to

occlusions, as they are based on local correspondences. Several kinds of research apply this

method to head pose estimation by tracking small facial features, like the corners of the eyes or

mouth. [69] presented a head tracking algorithm using stereo vision to overcome the occlusion

problem. However, the tracker needs to know the initial head pose in order to start tracking,

and this is determined by seven corresponding landmark points in each image that are selected

manually.

The model-based approach explicitly uses a model of the target objects, which helps the

robot estimate the target’s pose precisely. The pose includes position and orientation. It then

uses a model to search a target object in the image, and this model is composed based on how the

target object can be seen in the input image [70]. Compared to feature-based methods, model-

based methods have more information about the target object and usually provide a robust

solution. For example, they can cope with partial occlusion of the objects. Our method is

included in this category. The matched degree of the model to the target can be estimated by

a fitness function, whose maximum value represents the best matching and can be solved by a

GA (Genetic Algorithm). An advantage of our method is that we use a 3D solid model, which

enables it to possess 6DOF (i.e., both the position and orientation). In other methods, such

as feature-based recognition, the pose of the target object should be determined by a set of

image points, which means it requires a very strict camera calibration. Moreover, searching the

corresponding points in stereo vision camera images is also complicated and time-consuming
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[71],[72]. However, a model-based matching method adopts a set-point-model form of thinking.

All points on the solid model are projected as a group into a 2D image without the mispairing

problem. As a result, all projections for each point are correct.

2.4 Camera configuration

From the viewpoint of how the cameras are used, Fig. 2.1 summarizes the camera-robot con-

figurations [73]. Camera-robot configurations used in visual servoing control can be divided

into VM1 monocular eye-in-hand, VM2 monocular eye-to-hand, VM3 binocular eye-in-hand,

VM4 binocular eye-to-hand [74],[75], and VM5 redundant camera system [73],[76]. The eye-

to-hand configuration is also termed stand-alone configuration [73]. In this paper, it is called

eye-to-hand [9],[76]. In the eye-in-hand configuration [15], the camera(s) is(are) mounted on

the robot’s end-effector. In the eye-to-hand configuration, the camera(s) is(are) fixed in the

workspace to see the robot’s hand [76]. These methods can obtain multiple different views to

observe an object by increasing the number of cameras. The eye-in-hand configuration has a

partial but precise sight of the scene, since the camera can be placed near targets by a robot hand,

whereas the eye-to-hand camera has a less accurate but global view of the robot and the targets.

However, in the eye-to-hand configuration, a fixed camera position in the workspace reduces

the adaptability of the system for a changing environment since it is fixed. After considering

those factors, an eye-in-hand configuration was adopted in our approach. Although multi-view

stereo with three or more cameras can give more details, it makes a system too complex and

time-consuming [62],[77].

In this paper, the eye-in-hand configuration, i.e., Fig. 2.1 VM3, is used for the research.

2.4.1 Monocular vision and RGB-D camera sensing

A model-based method is an excellent way to solve the above problems using a model of a target

object [14]. Even though it enables monocular vision to detect the distance of the target object
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Eye-in-hand  Eye-to-hand Eye-in-hand  Eye-to-hand

Fig. 2.1: Camera-robot configurations used in visual servoing control (from left to right):

VM1 monocular eye-in-hand, VM2 monocular eye-to-hand, VM3 binocular eye-in-hand, VM4

binocular eye-to-hand and VM5 redundant camera system. The eye-to-hand configuration is

also named stand-alone configuration. In this paper, it is called eye-to-hand.

from a single image, its accuracy is lower than that of stereo vision [17]–[19]. Moreover, stereo

vision is more sensitive to an object’s pose variation than monocular vision. Some researchers

use an RGB-D camera, one RGB camera, and a depth sensor with infrared light to improve

the distance detection of monocular vision, and conduct picking and placing or visual servoing

tasks [12],[20]–[22]. RGB-D sensors such as the Microsoft Kinect, Inter RealSense, and the

Asus Xtion are inexpensive 3D sensors. A depth image is computed by calculating the distortion

of a known infrared light pattern, which is projected into the scene [78]. These studies still rely

on the target detection or segmentation from a single image and cannot directly use the depth

point cloud for target detection, although the RGB-D camera generates a depth point cloud

corresponding to the single image. Therefore, many studies utilize deep learning methods for

target detection [20]–[22]. However, this requires a large amount of pictures and pre-training

time. Some other studies use model-based methods to simplify preliminary preparations [79].

But both of these methods cannot avoid the disadvantage of the RGB-D camera, i.e., missing

depth data caused by the depth sensor. Some pixels do not have corresponding depth data [23].

Additionally, bright ambient illumination can affect the contrast of infrared images in active

light sensors, resulting in outliers or holes in the depth map [24].

15



Chapter 2 Literature Review

2.4.2 Stereo vision

Stereo vision extracts 3D information from digital images, such as information obtained by

CCD cameras. 3D information is extracted by comparing the relative positions of objects at

different positions in the scene information. Unlike optical infrared and electric-field sensing,

stereo vision is more robust for varying target material properties and light conditions [25]. It

is not dependent on capacitance, reflectivity, or other material properties, as long as the target

surface has some visible features. Stereo vision can be divided into two different categories.

One is a two-view stereo with two cameras. This is similar to the stereopsis of biological

processes. The other is a multi-view stereo with three or more cameras, which is commonly

used in 3D projection reconstruction [80]–[82]. Although multi-view stereo can provide more

detail, it also makes the system too complicated and time-consuming. For the above reasons,

the research proposed in this paper is based on two-view stereo vision, i.e., dual RGB cameras

[83].
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Model-Based Recognition

In conventional methods of the stereo vision, the information of a target object is determined

by a set of image points in different images. The object relative pose recognition process re-

quires a time-consuming and complex search of the corresponding points. The Corresponding

Points Identification Problem [84]–[87] has been pointed out as the difficulty existing 3D image

reconstruction from 2D images input from stereo vision (2D-3D method).

In contrast, the author has employed a “Forward Projection,” i.e., a 3D model has been

projected into stereo vision image planes, and the projected 3D models are compared with the

actual target that is also projected naturally onto the stereo vision image planes (3D-2D method).

The merit of this method is that it can avoid the Corresponding Points Identification Problem,

since the points on a 2D model projected to left and right camera images from points defined on

a 3D model have no irregularities in the correspondence of the points in left and right images.

This chapter discusses the methodology of the proposed model-based recognition method

with a detailed explanation of stereo vision geometry, 3D model-based matching, and genetic

algorithm (GA). And the developed eye-vergence visual servoing system is introduced.
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3.1 HSV color model

HSV (Hue, Saturation, Value) color model is an alternative representation of the RGB (Red,

Green, Blue) color model. Unlike RGB, HSV separates the color type from the color intensity.

It is convenient for color comparison. In this research, it does not need to compare the red,

green, and blue three parameters of color. Only hue is used for object detection. And the HSV

color model is similar to how humans perceive colors. The hue of a color changes little when

the intensity of ambient light changes.

As shown in Fig. 3.1, H (Hue) [0∼360) of the HSV color model represents different color

types such as red or blue. S (Saturation) [0∼1] represents a vividness of a color. And it is

represented by the distance from the center of the hue circle. V (Value) [0∼255] represents the

intensity or brightness of a color. It is the axis orthogonal to the circle of the hue circle. The

smaller the Value is, the darker the color is.

The conversion formula from RGB color model to HSV color model is described as below.

r, g, and b represent the red, green, and blue components of the RGB color model. The V (Value)

is calculated as

V = max{r, g, b}. (3.1)

v is defined as

v = min{r, g, b}. (3.2)

S (Saturation) is calculated as

S =





0 if(V = 0);

(V − v)/V if(V 6= 0).

(3.3)
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Fig. 3.1: HSV color model.

In the end, H (Hue) is calculated as

H =





undefined, if(S = 0);

60(g − b)/(V − v), if(g ≧ b, V = r, and S 6= 0);

360 + 60(g − b)/(V − v), if(g < b, V = r, and S 6= 0);

120 + 60(b− r)/(V − v), if(V = g and S 6= 0);

240 + 60(r − g)/(V − v), if(V = b and S 6= 0).

(3.4)

3.2 Projective transformation matrix

From the relationship of the central projection as shown in Fig. 3.2, the focal length of the

camera is f , the image center coordinate is (Ix0,
Iy0). And the ratios of unit length on the x

axis and the y axis in the camera coordinate system ΣC with unit [mm] and that in the image

coordinate system ΣI with unit [pixel] is ηx, ηy[mm/pixel]. The distance between the origins

of the two coordinate systems is a. An arbitrary point (Cxi,
Cyi,

Czi) in ΣC is transmitted

through the lens to ΣI as image (Ixi,
Iyi). From Fig. 3.2, when the thickness of the lens is not

considered, the coordinate relation between arbitrary points and its image is expressed by the

following relation.

(Ixi −
Ix0)ηx

Cxi

=
a

Czi
(3.5)
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:

a

Fig. 3.2: Projection schematic diagram

(Iyi −
Iy0)ηy

Cyi
=

a
Czi

(3.6)

The following equation is derived by summing up Eqs. (3.5) and (3.6).




Ixi

Iyi


 =

1
Czi



a/ηx 0 Ix0 0

0 a/ηy
Iy0 0







Cxi

Cyi

Czi

1




(3.7)

Because the distance between the object and the lens is a relatively large value as compared with

the focal length, a can be approximated as the focal length f and expressed by the following
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Fig. 3.3: Coordinate systems of stereo vision.

equation.



Ixi

Iyi


 =

1
Czi



f/ηx 0 Ix0 0

0 f/ηy
Iy0 0







Cxi

Cyi

Czi

1




(3.8)

From this, the projection transformation matrix is denoted to the camera as P and summarized

as follows.

P =
1

Czi



f/ηx 0 Ix0 0

0 f/ηy
Iy0 0


 (3.9)

3.3 Stereo vision geometry

Figure 3.3 shows the coordinate system of the stereo vision system. The target object’s coordi-

nate system is represented by
→

ΣM and image coordinate systems of the left and right cameras

are represented by ΣIL and ΣIR. The structure of the manipulator and the cameras are shown in

Fig. 3.4. The coordinates of the target object and the manipulator in the experiment are shown

in Fig. 3.17. The difference between
→

Σ and Σ is explained in Section 3.6.2. A point i on the

target can be described using these coordinates and homogeneous transformation matrices. At

first, a homogeneous transformation matrix from right camera coordinate system
→

ΣCR to
→

ΣM is
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Fig. 3.4: Frame structure of manipulator

defined as CRTM . And an arbitrary point i on the target object in
→

ΣCR and
→

ΣM is defined as

CRri and Mri. Then CRri is,

CRri =
CRTM

Mri. (3.10)

Where Mri is predetermined fixed vectors. Using a homogeneous transformation matrix from

world coordinate system ΣW to the right camera coordinate system
→

ΣCR, i.e., WT CR, then Wri

is got as,

Wri =
WT CR

CRri. (3.11)

The position vector of i point in right image coordinates, IRri is described by using projection

matrix P of camera as,

IRri = P
CRri. (3.12)

By the same way as above, using a homogeneous transformation matrix of fixed values defin-

ing the kinematical relation from the left camera coordinate system
→

ΣCL to the right camera

coordinate system
→

ΣCR, CLT CR, CLri is

CLri =
CLT CR

CRri. (3.13)
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IRri,
ILri is described by the following Eq. (3.14) through projection matrix P .

ILri = P
CLri = P

CLTCR ·CR ri (3.14)

Then position vectors projected in the ΣIR and ΣIL of arbitrary point i on target object can be

described IRri and ILri. Here, position and orientation of
→

ΣM based on
→

ΣCR has been defined

as ψM , which means CRTM in Eq. (3.10) is determined by ψM . Then Eqs. 3.12 and 3.14 are

rewritten as,





IRri = fR(ψM , Mri)

ILri = fL(ψM , Mri).
(3.15)

3.4 Orientation representation by quaternion

There are several representations used to describe the orientation of a rigid body. Euler angle is

a well-known one that includes a set of three angles rotating around three coordinates, e.g., z, y,

z successively. A drawback of the Euler angle is the occurrence of representation singularities

(for a manipulator, the Jacobian matrix is singular for some orientation).

An alternative representation is angle/axis, describing the general orientation of a rigid body

as a displacement of an angle around an axis. A general angle/axis representation is not unique

because a rotation by an angle −θ around an axis −k can not be distinguished from a rotation

by θ around k.

A unit quaternion is different from angle/axis representation. It can represent the orientation

of a rigid body without singularities [88]. For the reader’s convenience, a few basic concepts

regarding the use of a unit quaternion to describe the orientation of a rigid body are summarized

hereafter [89]. As shown in Fig. 3.5, the unit quaternion is defined as

Q = [η, ε], (η = cos
θ

2
, ε = sin

θ

2
k), (3.16)

23



Chapter 3 Model-Based Recognition

�

B        After rotation 

�

A Original state

�

��

� · ���
	

2

��


 = (�, ��, ��, ��)

� = ���
	

2

�� = �����
	

2

�� = �����
	

2

�� = �����
	

2

Fig. 3.5: Definition of quaternion in the proposed system.

where k(‖k‖ = 1) is the rotation axis and θ is the rotation angle around k. η is called the scalar

part of the quaternion and ε is called the vector part of the quaternion. They are constrained by

η2 + εTε = 1. (3.17)

It is worth to remark that, unlike the angle/axis representation, a rotation by an angle −θ around

an axis −k have the same quaternion as a rotation by θ around k. Therefore, quaternion can

solve the nonuniqueness problem of angle/axis representation. If the position and orientation

of an object
→

ΣM based on the end-effector
→

ΣE is EψM = [ExM ,E yM ,E zM , ε1, ε2, ε3]
T , the

homogeneous transformation matrix can be calculated as Eq. (3.18) [90]–[93].

ETM =




1− 2ε22 − 2ε23 2(ε1ε2 − ηε3) 2(ε1ε3 + ηε2)
ExM

2(ε1ε2 + ηε3) 1− 2ε21 − 2ε23 2(ε2ε3 − ηε1)
EyM

2(ε1ε3 − ηε2) 2(ε2ε3 + ηε1) 1− 2ε21 − 2ε22
EzM

0 0 0 1



. (3.18)
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3.5 Model-based recognition with Real-Time Multi-Step Ge-

netic Algorithm (RM-GA)

As shown in Fig. 3.6, a 3D-ball-object named as 3D marker is used as 3D target object whose

size and color are known. The sizes of the balls projected into 2D images of left and right

cameras from the 3D model are different because the camera depth distance of each ball is

different.

40mm

40mm

40mm

40mm

40mm 40mm 40mm

Red

Blue

Green

Fig. 3.6: 3D marker

As shown in Fig. 3.7 (a), the dotted line block named R means a searching space that will

be described in detail in Section 4.2.1. Σj is a model searching for the pose of the 3D marker.

The models have the same 3D structure as the 3D marker. The part of inner circle is named

as Sin, and the part between Sin and outer circle is named as Sout. Through the projection

transformation, Sin and Sout are projected onto the 2D coordinates of the left image and right

image shown in (b). Then we take the sampling points on the images like (c) and calculate the

fitness F (Eψj

M̂
) to evaluate the overlap degree between the model and the object in images.

Through the fitness function, 3D marker searching problem can be changed to an optimization

problem. For real-time pose estimation, the optimization problem has been solved by Real-Time

Multi-Step Genetic Algorithm (RM-GA). The pose of j-th 3D model based on the end-effector

→

ΣE is defined by chromosome
x︷ ︸︸ ︷

10 · · ·10︸ ︷︷ ︸
12[bit]

y︷ ︸︸ ︷
11 · · ·01︸ ︷︷ ︸

12[bit]

z︷ ︸︸ ︷
01 · · ·10︸ ︷︷ ︸

12[bit]

ε1︷ ︸︸ ︷
11 · · ·10︸ ︷︷ ︸

12[bit]

ε2︷ ︸︸ ︷
10 · · ·10︸ ︷︷ ︸

12[bit]

ε3︷ ︸︸ ︷
10 · · ·01︸ ︷︷ ︸

12[bit]

.

Firstly, fitness function is explained. Each model has three small circles Sin and two rings
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Fig. 3.7: (a) shows the searching space. And searching models are projected into 2D images

(b). Sampling points are shown in two images (c). When a model completely overlap the object

(d), its fitness function gets the maximum.

Sout. The relative positions of circles and rings in 3D space are unchanged. Each pair of circle

and ring corresponds with a color, and three pairs of circles and rings are corresponding to red,

green, and blue.

As shown in Fig. 3.7 (d), inner portions of a model corresponding to three balls are Sin,R,

Sin,G and Sin,B. Similarly, the three outer portions are Sout,R, Sout,G and Sout,B. Each pair of

circle and ring corresponds with a color, and three pairs of circles and rings are corresponding

to red, green, and blue. Sin,R of a model has 36 sampling points. Sout,R of a model has 24

sampling points. The green and blue portions of a model have the same number of points as

that of red portion. Therefore, the sum of sampling points of a model is

Σs = Σsin + Σsout = 3× 36 + 3× 24 = 180. (3.19)

To determine which solid model is closest to the real target, a correlation function, i.e., fitness

function is defined for evaluation. As shown in Eq. (3.21), the hue of each sampling point ri is

compared with a fixed hue Hu corresponding to the color of ball. For red, green, and blue balls,
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their fixed hue value Hu is set as HR = 0, HG = 120, and HB = 240 respectively. The hue

value of a pixel of a captured image overlapped by ri is hu. If hu is near to Hu, the calculate

value of ri is p(ri) = 1. Otherwise, p(ri) = −1. For the concision of Eq. (3.21), about red ball

u = R, the judgement condition hR ∈ [HR − 20, HR + 20] of p(ri) = 1 is an abberation of

hR ∈ ([0, HR + 20] ∪ [HR − 20 + 360, 360]), i.e., hR ∈ ([0, 20] ∪ [340, 360]) . The judgement

condition of p(ri) = −1 is the complement of that of p(ri) = 1. As shown of Eq. (3.22),

the sum of p(ri) of all the sampling points in a model Σj is defined as fitness F (Eψj

M̂
). The

higher coincidence degree between the inner portion of a model and the corresponding ball of

the image is, the higher fitness is. Conversely, the higher coincidence degree between the outer

portion and the corresponding ball of the image is, lower fitness will be. The fitness function is

defined by Eq. (3.22). When the searching model Σj completely overlaps to the target object

like (d), then the fitness function gives maximum value

Fmax(
Eψ

j

M̂
) = Σs/Σsin = 180/108 = 1.67. (3.20)

p(ri) =





1 (hu ∈ [Hu − 20, Hu + 20], u = R,G,B),

−1 (hu /∈ [Hu − 20, Hu + 20], u = R,G,B).
(3.21)

F (Eψj

M̂
)=





( ∑

IRri∈

SR,in(CRψ
j

M̂
)

p(IRri)−
∑

IRri∈

SR,out(
CRψ

j

M̂
)

p(IRri)
)
/nR,in

+
( ∑

ILri∈

SL,in(CLψ
j

M̂
)

p(ILri)−
∑

ILri∈

SL,out(
CLψ

j

M̂
)

p(ILri)
)
/nL,in





/2

=
{
F (CRψ

j

M̂
) + F (CLψ

j

M̂
)
}
/2 (3.22)
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object through evolutions.
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concentrated to the one of real target object. 

The gene with highest fitness value represents 

true position and orientation of target object.

Fig. 3.8: Evolution process, 3D models converge into the real target object.
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Fig. 3.9: Flow chart of RM-GA.
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The evolution process of RM-GA is shown in Fig. 3.8. At first, models of the target object

whose poses are represented by genes are scattered in the search space. Then the fitness of

each model is calculated. Through selection, crossover, and mutation, a new generation with

the same number of models as the last generation is generated. The models converge to the

real target though evolution progressing. In the final generation, the gene Eψ
M̂

that gives the

highest fitness value can be thought true pose of the real target.

The following is summarized explanation about the real-time pose (position and orientation)

tracking method as shown in Fig. 3.9. About this method,

1. genes are randomly generated to define the poses of the models.

2. These 3D models are projected onto the left and right camera images.

3. The correlation degrees between the 3D object captured by the left and right cameras and

the projected models are calculated through the fitness function.

4. The correlation degrees are utilized to evolve genes representing position/orientation.

5. Because the time for transferring one frame of video to the memory is 9.2[ms], the re-

maining time within the video rate 33[ms] is 33 − 9.2 = 23.8[ms]. During this time the

genes can be evolved nine times by GA.

6. The position/orientation of the model giving the highest fitness among the genes evolved

at the time of 23.8[ms] is taken as the position/orientation measurement result of the 3D

object at that time.

By repeating the above steps 2 ∼ 6, it is measured that the position/orientation of the object in

the moving image continuously input at the video rate.
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3.6 Eye-vergence visual servoing system

3.6.1 Advantage of eye-vergence visual servoing system

Comparing with a fixed eye system that cameras are fixed to the hand, there are advantages in

the eye-vergence system, where cameras can rotate. As shown in Fig. 3.10 (a), in terms of the

fixed eye system when an object is near to the cameras, it may not be recognized. In addition,

in (b), the common visible region of the two cameras is narrow. In (c), even if the object is in a

visible region, it is not captured to the center of the camera image field. There is an aberration

problem because an object is easily affected by lens distortion, which causes the object in the

periphery of the lens to become larger. To avoid lens distortion problems, in this paper, both

cameras have the flexibility to change the angle to capture the object in the center of the image.

Because it is possible to change the orientation of the camera, as shown in Fig. 3.11 (a)-(c), it

improves the performance of observing the object. Corresponding to the problems in Fig. 3.10

(a)-(c), as shown in Fig. 3.11 (a)-(b), the proposed system expands the binocular view zone.

And as shown in (c), it becomes possible that observing an object at the center of the lens. It

can be avoided that the distortion of the input image generated by the lens aberration.

In the eye-vergence system shown in Fig. 3.11, because it is possible to control line-of-

sight direction of cameras for catching object in the center of images, the cameras can continue

gazing the object in the visual field center [94]–[96].

In the application of visual servoing it is necessary to keep stability so that the object should

stay in vision field of cameras. Figure 3.12 (a) shows that cameras can catch an object. (b)

shows that the cameras are fixed to the hand. When an object moves fast, it disappears from

the view field of the camera, and the control system may fall into a dangerous state to move

aimlessly. Thus, in the visual servoing system, it is important to raise the trackability that

cameras can continue catching the object in the camera field of vision. In addition, it is thought

that eye-vergence system has better tracking property than the fixed eye system because the

mass and the moment of inertia of the camera are relatively smaller than the whole manipulator.
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Fig. 3.10: Disadvantages of Fixed Camera System.

(a) Can be seen when the
object  near to the cameras

object

(b) Bigger possible
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(c) In the center of 
the sight

object

Fig. 3.11: Advantages of eye-vergence system.

As shown in Fig. 3.12 (c), the trackability can be raised by adding eyes’ controller.

3.6.2 Symbol meaning

M represents the object and M̂ represents the estimated object. Then
→

ΣM denotes the coordinate

system that moves along with the object. The relationships between coordinate systems such as

the actual pose of the hand
→

ΣE or the recognized pose of the object
→

Σ
M̂

are shown in Fig. 3.18.

→

Σ represents a coordinate system moving in the world coordinate system ΣW . The coordinate

system represented by Σ keeps fixed in ΣW .
→

ΣE,
→

ΣEd,
→

ΣM and
→

Σ
M̂

are all moving in ΣW . ΣEO,

ΣEC and ΣMO keep fixed in the world coordinate system ΣW .
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Fig. 3.12: Dynamical advantage of eye-vergence system.

3.6.3 Generation of desired-trajectory

Fig. 3.13 shows the relationship between the hand and the object. ΣW is the world coordinate

system, and
→

ΣM is the coordinate system fixed on the object. Furthermore, the coordinate

system of the actual hand and its target coordinate system are represented by
→

ΣE,
→

ΣEd. The

relative position/orientation relationship between the target state of the hand and the object is

represented by the homogeneous transformation matrix EdTM . And the relationship between

the actual hand and the object is represented by ETM . At this time, the difference between
→

ΣE

and
→

ΣEd is expressed as ETEd. And ETEd can be described as follows.

ETEd(t) = ETM(t)EdT−1
M (t) (3.23)

(3.23) includes an arbitrary motion ETM(t) of the object represented by
→

ΣE and the relative

time-varying visual servo target trajectory EdTM (t) represented by the arbitrary target posi-
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Fig. 3.13: Motion of the end-effector and object.

tion/orientation of the robot hand
→

ΣEd. ETM(t) is measured by online model-based recognition

method [15],[52] that uses the velocity/angular velocity information of the hand as feedforward

information and a moving image recognition method GA [97] to recognize moving image se-

quence input at video rate. When the estimated object is represented by
→

Σ
M̂

, it is general that

an error MT
M̂

exists between the actual object
→

ΣM and the detected object
→

Σ
M̂

. Here, we re-

construct the position/orientation error ETEd(t) of the hand represented by Eq. (3.23) based on

the object
→

Σ
M̂

estimated as follows.

ETEd(t) = ET
M̂
(t)M̂TEd(t) (3.24)

When Eq. (3.24) is differentiated with respect to time, the following equation is obtained.

EṪEd(t) =
EṪ

M̂
(t)M̂TEd(t) +

ET
M̂
(t)M̂ ṪEd(t). (3.25)
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Fig. 3.14: Hand & Eye-vergence Visual Servoing System. MFF is motion-feedforward.

Here, M̂TEd, M̂ ṪEd is given in advance as the target trajectory of the visual servo, and ET
M̂

,EṪ
M̂

is observed by RM-GA. ETEd(t) and EṪEd(t) are the position/orientation error between
→

ΣE and

→

ΣEd and its time differentiation, which is necessary when constructing the controller. As shown

in Fig. 3.13, there are two errors that should be 0 in the visual servo process. One is the

recognition error between the actual object and the detected object MT
M̂

, and the other is the

error of the motion control given by the target state of the hand and the actual hand ETEd.

3.6.4 Hand visual servoing controller

The proposed visual servo controller consists of two portions, hand position/orientation con-

troller and sight line controller. Its block diagram is shown in Fig. 3.14. The hand visual

servoing is the outer loop. In the figure, the notation “MFF” in the block marked “Pose Pre-

diction” is the abbreviation of “Motion Feedforward.” When the moving speed of the object in

the image is calculated, it is necessary to think about the influence of the position/orientation

changes of the hand because of its velocity/angular velocity. “MFF” is a method that advances

the evolution of the GA using the moving speed of the object to predict the object position after

33[ms] of the video rate [15].

W ṙd =KPP
WrE,Ed +KV P

W ṙE,Ed, (3.26)
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Using the motion trajectory of the hand discussed in the previous section, the target speed

W ṙd of the hand is calculated by PD control law as Eq. (3.26). WrE,Ed is the position vector

from the origin of
→

ΣE to the origin of
→

ΣEd expressed in ΣW in Fig. 3.13. And W ṙE,Ed is its

time differentiation. WrE,Ed,
W ṙE,Ed are obtained from ETEd and EṪEd using the coordinate

transformation from
→

ΣE to ΣW . KPP = diag(0.4, 0.4, 0.4)[1/s] is a spring constant. KV P =

diag(0.1, 0.1, 0.1)[dimensionless] is a positive definite diagonal matrix representing viscous

damping coefficient. The target position/orientation of the hand is WψT
d = [WrTd ,

W εTd ]
T. Wεd

is the target orientation expressed by quaternion, and the target angular velocity vector Wωd of

the hand is calculated by the following equation.

Wωd =KPO
WRE

E∆ε+KV O
WRE

EωE,Ed, (3.27)

Here, E∆ε is the deviation of the quaternion, which is the orientation error of the object repre-

sented by
→

ΣE , and is obtained directly from the recognition result ETEd by RM-GA. Because

S(ω)EREd =
EṘEd is established [98], therefore,

S(ω) = EṘEd
ER−1

Ed, (3.28)

where S(ω) is skew-symmetric matrix and described as Eq. (3.29)

S(ω) =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



. (3.29)

Therefore, EωE,Ed = [ωx, ωy, ωz]
T can be derived from Eq. (3.28) with the rotation matrix

EREd contained in ETEd and its time derivative EṘEd contained in EṪEd.

KPO = diag(0.4, 0.4, 0.4)[1/s] is spring constant. KV O = diag(0.1, 0.1, 0.1)[dimensionless]

is a positive definite diagonal matrix representing viscous damping coefficient.
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The arm robot PA-10 (Mitsubishi Heavy Industries, Ltd.) used in this research has one

redundancy degree of freedom. Because this paper does not consider redundancy, it is removed

by setting the target angle q1d of the first link to 0. Therefore, the target angle of each link

from the target position of the hand can be determined by inverse kinematics. And the target

joint angle qHd = [0, q2d, ..., q7d]
T of the robot hand and the angular velocity q̇Hd are defined as

follows.

qHd = f−1(Wψd) (3.30)

q̇Hd =KPQ(qHd − qH) + J
+(q)




W ṙd

Wωd


 (3.31)

Here, f−1(Wψd) represents inverse kinematics, andKPQ = diag(0.2, 0.2, 0.2, 0.2, 0.2, 0.2,

0.2)[1/s] is a spring constant. The first term on the right side of Eq. (3.31) is feedback, and the

second term gives speed and angular velocity as feedforward. J+(q) is a pseudo inverse matrix

of the Jacobian matrix obtained by partially differentiating the hand position/orientation with

the joint angle vector.
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Fig. 3.15: Block diagram of the hand and eye-vergence visual servoing system.
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3.6.5 Eye-vergence visual servoing controller

As shown in Fig. 3.14 eye-vergence visual servoing controller is the inner loop shown by the

broken line. In this paper, two pan-tilt cameras are used for eye-vergence visual servoing. The

cameras are attached to the hand and can rotate. q8 represents the tilt angle common to the

left and right cameras. And q9 and q10 represent the pan angles. As shown in Fig. 3.16, Ex
M̂

,

Ey
M̂

and Ez
M̂

represent the position of the object detected in the hand coordinate
→

ΣE . The

block that controls eye-vergence is shown in the center of Fig. 3.15. Desired camera angle

qCd = [q8Cd, q9Cd, q10Cd]
T is calculated by using the length defined in Fig. 3.16.

q8Cd = atan2(Ey
M̂
, Ez

M̂
) (3.32)

q9Cd = atan2(l8R − Ex
M̂
, Ez

M̂
) (3.33)

q10Cd = atan2(l8L + Ex
M̂
, Ez

M̂
) (3.34)

Here, l8L = l8R = 120[mm] represents the position of the camera from the origin of
→

ΣE , and

the center line in the sight line of the camera is the z axis of left and right camera coordinates.

The target joint angular velocity q̇Cd = [q̇8Cd, q̇9Cd, q̇10Cd] of eye-vergence is

q̇iCd = KP (qiCd − qi) (i = 8, 9, 10) (3.35)

q̇iCd is input to the pulse motor for camera angle control as a pulse train. Here, KP = 1

represents the spring constant. Further, qd = [qTHd, q
T
Cd]

T and q̇d are constructed from qHd, q̇Hd

in equations Eq. (3.30), Eq. (3.31) and qCd, q̇Cd in equations Eq. (3.32)∼(3.35) Input torque to

the robot using τ = [τT
H , τ

T
C ]

T is determined by the following equation.

τ =KSP (qd − q) +KSD(q̇d − q̇) (3.36)
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(a) Tilt angle ��

Detected Object

(b) Pan angle �� and ���
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Fig. 3.16: Definition of tilt and pan angles with relation of detected object

KSP in the above equation is a spring constant and KSD is a matrix representing viscous

resistance. (3.36) is an operation within the servo amplifier of the robot, and the output of the

controller is q̇Hd in Eq. (3.31) and q̇iCd(i = 8, 9, 10) in Eq. (3.35). The control formula Eq.

(3.36) of the robot’s hand and camera gaze direction is located in the right block on the top of

Fig. 3.15. The block that controls the position/orientation of the hand is shown on the left side

of the upper row, and the control output torque τ is determined together with the outputs qCd,

q̇Cd of the eye-vergence control block and the outputs qHd, q̇Hd of the hand section doing.

The bottom row of Fig. 3.13 shows the forward kinematics of the robot. After correcting

[52],[99] by MFF (Motion Feedforward) of the position/orientation of the marker captured in

the camera image by this relation and the mapping to the left and right cameras, the moving

image is real-time recognized by RM-GA.

3.6.6 Definition of gazing point

In order to evaluate whether the directions of the sight lines of cameras are controlled so as to

take photos of the object at the center of the camera image, the gazing point of the camera is

defined. As shown in Fig. 3.16 the point of intersection of the sight lines of the left and right

cameras is defined as the gazing point of the cameras. As shown in Fig. 3.16 (a), because the

two cameras are installed on a common plate and are rotated by q8, the sight lines of the cameras

have always an intersection in three-dimensional space. Because the gazing direction of the two
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cameras is scanned in the xE − zE plane of
→

ΣE which is fixed to the hand, the y coordinate of

the gazing point represented by
→

ΣE is always −100[mm] .

The motion of object M , end-effector E,detected object M̂ , and gazing point G in the x-axis

of ΣEC are represented by ECxM , ECxE , ECxG and ECx
M̂

, as shown in Fig. 4.3. The distance

between object and end-effector (hand) is expressed as

∆iME = ECiM − ECiE , (i = x, y, z). (3.37)

Tracking error of detection is

∆i
MM̂

= ECiM − ECi
M̂
, (i = x, y, z). (3.38)

Tracking error of end-effector(hand) is

∆iEdE = ECiEd −
ECiE , (i = x, y, z). (3.39)

Tracking error of the gazing point is

∆iMG = ECiM − ECiG, (i = x, y, z). (3.40)

As shown in Fig. 3.18 and Eq. (4.4), the desired value between object and end-effector is

∆xME = 0, ∆yME = −100[mm], ∆zME = 545[mm]. And of cause, the desired tracking error

between gazing point and end-effector is 0, i.e., i
MM̂

= 0 and iEdE = 0.

As shown in Fig. 3.20, the gazing point based on
→

ΣE is represented by q9 and q10. And

0 < q9, q10 < π/2. The following equation can be obtained.

EzG
120 +E xG

= tan(
π

2
− q10) (3.41)

EzG
240− ExG

= tan(
π

2
− q9) (3.42)
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Therefore,

ExG =
240tan(π

2
− q9)

tan(π
2
− q10) + tan(π

2
− q9)

−120, (3.43)

EzG =
240tan(π

2
− q10)tan(

π
2
− q9)

tan(π
2
− q10) + tan(π

2
− q9)

]T. (3.44)
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Fig. 3.17: The 3D marker and the eye-vergence visual servoing system
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Experiment of Model-Based Eye-Vergence

Visual Servoing System

4.1 Lateral visual servoing

In order to confirm the tracking ability of the proposed eye-vergence visual servoing sys-

tem, tracking experiments have been conducted in which the target object reciprocates along

a straight lateral trajectory. Experiments were conducted to verify the effectiveness of the

hand & eye-vergence visual servoing system through PA-10 robot arm manufactured by Mit-

subishi Heavy Industries, LTD. And two rotational cameras manufactured by Sony Industries

are mounted on the end-effector. The resolution of dynamic images is 640 × 480 [pixel]. The

frame frequency of stereo cameras is set as 30[fps]. These experiments are divided in to three

groups, i.e., x-position tracking, 3DOF position visual servoing, and 6DOF position/orientation

visual servoing. Each group includes several experiments in which the angular velocity of the

object are set as ω=0.314, 0.628, and 1.256[rad/s] separately.
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4.1.1 Experiment condition

As shown in Figs. 3.18 and 3.17, EO, MO and EC represent initial hand pose, initial object

pose and midpoint of round-trip tracking movement of the end-effector respectively. Therefore

their coordinate systems are defined as ΣEO, ΣEC and ΣMO separately.

The homogeneous transformation matrix from ΣW to ΣEC and ΣMO are:

WTEC =




0 0 −1 −690[mm]

1 0 0 0[mm]

0 −1 0 485[mm]

0 0 0 1




(4.1)

WTMO =




0 0 −1 −1235[mm]

1 0 0 −150[mm]

0 −1 0 585[mm]

0 0 0 1




. (4.2)

Target object motion function is

MOzM(t) = 150− 150 cos(ωt)[mm]. (4.3)

Target position and orientation relationship between the object and the end-effector is set as:

EdψM = [0,−100[mm], 545[mm], 0, 0, 0]. (4.4)

The object is subjected to reciprocating motion of the sine wave in orbit. Pose relationship of

the coordinate system of the object and the visual servoing system are shown in Fig. 3.17.
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4.1.2 Tracking experiment without recognition

The tracking of the manipulator by visual servoing includes both time lag of recognition and

motion delay of the robot. In this section the motion trajectory of the object is given to to

robot. The robot do not need to detect the pose of 3D marker. In this case, Eq. (3.38) satisfies

∆i
MM̂

= 0. This is equivalent to assuming a situation where there is no delay in recognition

and no recognition error, and it is possible to consider only the motion control performance of

the robot.

The experimental results in the case of directly giving the position/orientation indication

value are shown in Fig. 4.1. (a) is the situation of ω = 0.314[rad/s](Period 20[s]), (b) is

0.628[rad/s](Period 10[s]) and (c) is 1.256[rad/s](Period 5 [s]). ECxM is the x coordinate of the

object, and the dotted line marked ECxE represents the tracking result of the end-effector. The

solid line with ECxG represents the trackability of the eye-vergence system. In (a) ∼ (c), all

ECxG match ECxM , and the gazing point follow the object position without delay. As shown in

Fig. 4.1(d) and (e), each experiment is carried out for 60[s]. Furthermore, the gain curves and

the phase curves are depicted by the experimental data in the periods of 30[s] (0.209[rad/s])，

25[s] (0.251[rad/s])，20[s] (0.314[rad/s])，15[s] (0.419[rad/s])，10[s] (0.628[rad/s]) and 5[s]

(1.256[rad/s]). The solid line 1© in (d) is 20log(axG/axM) calculated with axM and axG defined

in (a). Furthermore, the dashed line 2© in (d) shows 20log(axE/axM). In the phase curve of (e),

the solid line 1© represents ∠ECxG−∠ECxM , the dashed line 2© represents ∠ECxE −∠ECxM .

The gain and phase curves of the eye-vergence system are represented by 1© in (d) and (e)

respectively. On the other hand, the gain and the phase curves of the hand are represented by

2© in (d) and (e) respectively. Up to ω = 0.24[rad/s], the x coordinate position of the hand can

follow the object. Moreover, it can be seen that the gain characteristic of the hand represented

by the broken line 2© in (d) can be approximated by the first order lag system. The break

frequency is ω = 0.24[rad/s] indicated by A© in (d). It can be seen that the gain decreases

due to the increase of the frequency of the motion of the tracked object in (d). The amplitude

of the hand gradually becomes smaller than that of the gazing point of the camera. The phase
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of the hand shown in 2© of (e) is also delayed. However, the gain characteristic of the eye-

vergence system represented by 20log(axG/axM) in 1© in (d) is almost 0[dB]. Therefore, in the

range up to ω = 1.256[rad/s], the system can constantly capture objects in the center of the

cameras’ field of vision. There is hardly delay in the phase of eye-vergence shown in 1© of (e).

In summary, the motion characteristic of eye-vergence is superior to that of the hand. And it is

expected that the tracking performance to the object is good.

4.1.3 Position 3DOF visual servoing experiment

Figure 4.2 shows the x, y and z coordinates of the object recognized by RM-GA and also shows

the time response waveforms of the object, end-effector and gazing point when visual servoing

control is performed. For orientation, the correct value ε = 0 is always given. From Eq. (4.2),

the target orientation of the object is εd = [0, 0, 0]. And in Eq. (3.27) E∆ε = 0. In this

case, only the position is controlled by visual feedback, so the orientation of the end-effector is

consistent with εd, and there is no error.

Comparing (a), (b) and (c) of Fig.4.2 with those of Fig. 4.1, it can be seen that the derivation

between the position of the gazing point ECxG and that of the object ECxM is larger than the

corresponding derivation in Fig. 4.1. That is, recognition error exists. The data of (d) and (e)

of Fig.4.2 are the maximum amplitude of the tracking experiment result of the object, gazing

point and end-effector of the periods 30[s], 25[s], 20[s], 15[s], 10[s] and 5[s]. And it is shown

in the same way in Fig. 4.1. The track characteristic of the end-effector shown in 2© of Fig.4.2

is not much different from that at the time of Fig. 4.1.

In addition, as shown in 1© of (e) of Fig.4.2, the track characteristic of the phase of the

eye-vergence system is slightly delayed as the motion speed of object increases. Therefore,

although the system is slightly delayed due to the recognition process, it can be seen from 1© of

(d) the tracking performance of the object represented by the gain curve does not substantially

affect.
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Fig. 4.1: True object’s desired pose is directly given to the system, which guarantees the pose

tracking recognition error to be zero. So in this figure, only the delays made by dynamic influ-

ences is evaluated. And the figure shows the camera can track the object much better than the

end-effector.
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Fig. 4.2: The object’s pose ε1, ε2 and ε3 are assumed to be given to servoing controller and the

object’s pose x, y and z are recognized by camera.
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4.1.4 Pose 6DOF visual servoing experiment

Real-time recognition of the six variables of position/orientation using RM-GA and control of

hand position/orientation and Gazing Point have been performed. Figure 4.3 shows position x

response examining results with ω = 0.314, 0.628, 1.256 [rad/s].

In Fig. 4.3, (a.1) shows data ECxM , ECxE , ECxG of ω = 0.314 (T=20[s]), (b.1) shows their

data of ω = 0.628 (T=10[s]), (c.1) shows their data of ω = 1.256 (T=5[s]). (a.2), (b.2), and

(c.2) show ∆xEdE , which means the delay of the hand in the x-axis direction, and ∆xMG, which

means the delay of the eye-vergence. Comparing ECxG shown in Fig. 4.2 (a) ∼ (c) and that

shown in Fig. 4.3 (a) ∼ (c) , the error of ECxG in Fig. 4.3 (a) and (b) increases. In particular, it

can be clearly understood by comparing the time around 20 [s] and 40 [s] in both figures.

As shown in (c.1) of Fig. 4.3, the amplitude of ECxG is almost the same as the amplitude of

ECxM (150[mm] ). It can be seen that the position of the gazing point on the x axis ECxG follows

the object ECxM . However, there is a delay in the phases of ECxG comparing with ECxM . As

shown in Fig. 4.3 (c.1), the end-effector amplitude ECxE is reduced to approximately 50[mm],

while ECxM is in amplitude 150[mm] periodic motion. It can be seen that although the RM-GA

is identifying, the tracking range of the end-effector reduces significantly. But ECxG can still

follow, the fact indicates that the inertia of the entire robot is large, and the inertia of the eye

itself is small, which is conducive to continuous tracking. In (a.2), ∆xMG is very small, and

∆xEdE vibrates about 80 [mm].

Therefore, in the T=20[s] experiment, the end-effector tracking has been slow, but there is

no delay in the tracking of gazing point. Under the condition of (b.2) T=10[s], the amplitude of

∆xEdE further increases to 110 [mm]. The effect of eye-vergence can be seen from (a.2) and

(b.2). In (c.2), Both ∆xMG and ∆xEdE have large fluctuations, and gazing point cannot track

3D marker.

Figure 4.3 evaluates the tracking characteristics of the 3D marker represented by ΣEC in

the x-axis direction. Figures 4.4 and 4.5 are evaluated in the y-axis and z-axis directions result.

They differ from the frequency response in the x-axis direction, because the 3D marker does not
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Fig. 4.3: Movements of end effector ECxE and gazing point ECxG on the x-axis direction in the

center coordinate system of hand ΣEC . On condition that the object’s pose x, y, z, ε1, ε2 and ε3
are recognized RM-GA.
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Fig. 4.4: Movements of actual object ECyM , end effector ECyE, gazing point ECyG and desired

end effector position ECyEd on the y-axis direction in the center coordinate system of hand ΣEC

on condition that the object’s pose x, y, z, ε1, ε2 and ε3 are recognized by RM-GA.
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Fig. 4.5: Movements of actual object ECzM , end effector ECzE , gazing point ECzG and desired

end effector position ECzEd on the z-axis direction in the center coordinate system of hand ΣEC

on condition that the object’s pose x, y, z, ε1, ε2 and ε3 are recognized by RM-GA.
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Fig. 4.6: Changes of orientation ε1 of hand and detected object during tracking movement.

Target values are ECεE1 = 0 and ECεM1 = 0 respectively.

move in the y- and z-axis directions, so the position target value is always zero. In the frequency

response experiment shown in Fig. 4.3, the y-axis motion result of each variable is shown in

Fig. 4.4. As shown in Fig. 3.19, the camera is 100[mm] higher than the hand in the y-axis

direction, and the positive direction of the y-axis is downward, so the target position of the hand

shown in Fig. 4.4 is ECyEd = 0, the target position of the gazing point is -100[mm].

Comparing (a.1), (b.1) and (c.1) in Fig. 4.4, it is shown that no periodic oscillation occurs.

It can be seen that the gazing point ECyG oscillates around −100 [mm], the same height as the

object. In addition, the magnitude of the gazing point deviation ∆yMG is smaller than the hand

error ∆yEdE. As the frequency of marker movement increases, the fluctuation of the motion

trajectory of the hand and the gazing point gradually increases. In addition, like ECyE, from (a)

to (b) to (c), as the marker’s movement frequency increases, the fluctuation of the gazing point

ECyG increases.

(a.1), (b.1), and (c.1) of Fig. 4.5 represent response curves related to the z-axis direction
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Fig. 4.7: Changes of orientation ε2 of hand and detected object during tracking movement.

Target values are ECεE2 = 0 and ECεM2 = 0 respectively.
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Fig. 4.8: Changes of orientation ε3 of hand and detected object during tracking movement.

Target values are ECεE3 = 0 and ECεM3 = 0 respectively.
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of the hand and gazing point with ω = 0.314, 0.628, 1.256[rad/s] respectively. It can be seen

from the figure that the system can continuously detect the object and can maintain a set dis-

tance from the object to track. However, as shown in (a.2), (b.2), and (c.2), recognition error

∆zMG increases as the frequency of movement of the target object increases. Therefore, the

tracking stability of the end-effector in (c.2) reduces. Because ∆zMG has less vibration than

∆zEdE, compared with the fixed camera system, the eye-vergence system has better tracking

performance and stability.

Figures 4.6, 4.7, and 4.8 are orientation tracking results of the hand and the detection results

of the object corresponding to Figs 4.3 ∼4.5. About the orientation of the recognized object

ε
M̂

= [ε
M̂1, εM̂2, εM̂3]

T and the end-effector εE = [εE1, εE2, εE3]
T, Fig. 4.6 shows ε

M̂1and εE1,

Fig. 4.7 shows ε
M̂2 and εE2, and Fig. 4.8 shows ε

M̂3and εE3. In the experiment, because the

object does not rotate, the actual pose of the object is ECεM = 0. As shown in Eq.(4.5), the

target pose of the hand is ECεEd = 0. Therefore, all response curves represent both tracking

and detection errors.

Figure 4.6 represents the recognized orientation ε
M̂1 of the object rotating around the x-

axis of ΣEC and the orientation response of the hand εE1. The recognition results ε
M̂1 at each

frequency fluctuates around the true value of 0. Comparing these three graphs, it can be seen

that the error of the recognition ε
M̂1 increases as the frequency of movement of the target object

increases. Therefore, the hand tracking error also increases.

Figure 4.7 represents the recognized orientation ε
M̂2 of the object rotating around the y-axis

of ΣEC and the orientation response of the hand εE2. (a), (b), (c) show the experimental data

εE2, εM̂2 at periods T = 20, 10, 5[s]. These results show that the periodic movement in the x-axis

direction of ΣEC will affect the orientation in the y-axis direction. Since the hand movement

of the robot has a delay in the direction of ECx, according to the function of eye-vergence, the

camera will rotate around yE axis of ~ΣE to observe the target object . The author think that

caused an orientation detection error of ε
M̂2 around the y-axis.

Figure 4.8 represents the recognized orientation ε
M̂3 of the object rotating around the y-axis
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of ΣEC and the orientation response of the hand εE3. Same as the Fig. 4.6, the recognition result

of each frequency vibrates slightly. These results do not indicate the actual hand vibration, but

indicate that the convergence of the RM-GA vibrates near the detected object.

Through the frequency response experiments, the eye-vergence system’s tracking perfor-

mance, keeping the target in the field of view, is verified. Through detailed comparison and

analysis of the visual servoing results of the six pose variables, it can be confirmed that the

tracking performance of the eye-vergence system is better than that of the end-effector.

4.2 Arc swing motion tracking experiment under different

light conditions

4.2.1 Fitness distribution under different illumination

For practical application, the light condition is an important effect element for the visual servo-

ing system to recognize the target object. Using still pictures at an instant moment, the fitness

value is calculated with model’s pose varied as parameters. We call it “fitness distribution.” It is

a way to verify whether the RM-GA can detect the true pose of a target object at that moment.

Therefore, to verify the detection capability of RM-GA under different illumination conditions,

the fitness distribution experiment in Ex− Ez plane is conducted.

Figure 4.9 shows the searching area of RM-GA that is defined based on the range of motion

of the object. Target position and orientation relationship between the object and the end-

effector is set as:

EψM = [0,−100[mm], 545[mm], 0, 0, 0]. (4.5)

According to pre-set tracking conditions of Eq. (4.5) and a number of tests, we set the search

area of RM-GA as

Ex
M̂

∈ [−200, 200], Ey
M̂

∈ [−195, 5], Ez
M̂

∈ [350, 750], (unit:[mm]). (4.6)
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Fig. 4.9: Searching area of GA. The origins of models generated by GA are in a cuboid space.

Its range of the target object is Ex
M̂

∈ [−200, 200], Ey
M̂

∈ [−195, 5], Ez
M̂

∈ [350, 750],
unit:[mm].

The object
→

ΣM and the end-effector
→

ΣE do not move in the experiment. And the relative pose

of
→

ΣM and
→

ΣE is the same as Eq. (4.5).

Figure 4.10 shows the results of fitness distribution in different illumination conditions. The

images on the right side of each row are taken by the two cameras in different experimental

conditions. In (a)∼(d), only the illumination is changed, the object and the arm are fixed. The

left two columns (a1∼ d1 and a2∼ d2) of Fig. 4.10 are fitness distributions in Ex − Ez plane

under different experimental conditions. Fitness is calculated by Eq. (3.22). The distribution of

the middle column (a2∼ d2) is the 2D display of a1∼d1.

For example, in the row (b), the two images are taken at 500[lx]. In the case of given

true values Eε
M̂

= EεM = 0, Ey
M̂

= EyM = −100[mm], the target object is searched on

the Ex − Ez plane as shown in Fig. 3.18. And the fitness distribution is shown as Fig. 4.10

(b1). The (b2) is a 2D figure of (b1). There are two highest points (vertex), i.e., the peak

of the mountain of the distribution. One is (Ex1M̂ , Ez1M̂) = (4, 540)[mm]. And the other is

(Ex2M̂ , Ez2M̂ ) = (4, 546)[mm]. That means, according to the model-based matching method,

object is most likely to be in either (Er1M̂ , Eε1M̂) = (4,−100, 540, 0, 0, 0) or (Er2M̂
Eε2M̂) =
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Left image Right image

30��

Left image Right image

500��

Left image Right image

1000��

Left image Right image

2000��

Left image Right image

2000��, Change	the	light	source	position

2000��, Change	the	background

(a)

Left image Right image

������: 3,548 #$%& ' 0.8333

������: 4,540 , 4,546 #$%& ' 0.8519

������: 3,558 , 4,558 			#$%& ' 0.8333

������: 0,538 , +2,554 						#$%& ' 0.7315

������: 1,538 				#$%& ' 0.8333

������: 3,538 , 3,540 		#$%& ' 0.8611

(b)

(c)

(d)

(e)

(f)

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

(e1) (e2) (e3)

(f1) (f2) (f3)

Fig. 4.10: Fitness distribution under different illumination. (a)∼(d) show the results of ex-

periments with different illumination. In (e), the light source position changes. In (f), the

background changes and the illumination is same with (d). (a3)∼(f3) show the left and right

images in each experiment. (a1)∼(f1) show the distribution of fitness on each point on Ex− Ez
plane in search area. Exploration interval is 1[mm], i.e. Ex = −100,−99, ..., 99, 100; Ez =
350, 351, ..., 749, 750[mm]. (a2)∼(f2) are the 2D figure of (a1)∼(f1). In each experiment, “ver-

tex” show the position (Ex
M̂
, Ez

M̂
) with maximum fitness Fmax.
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(4,−100, 546, 0, 0, 0) with fitness value F1 = F2 = Fmax,b = 0.8519. It can be seen that they

are near to the true value shown as as Eq. (4.5).

In (a3), because the environment with the illumination 30[lx] is very dark, there are more

black points in the three balls in the images than that in (b3). Therefore, the Fmax,b > Fmax,a.

From (b) to (d), the illumination is gradually increasing. And there are more and more white

points in the images. They influence the fitness calculation. Therefore, Fmax,b > Fmax,c >

Fmax,d.

By the fitness distribution experiment, it is verified that the fitness function Eq. (3.22) can

transform the target position and orientation estimation problems into optimization problems.

And it has the robustness against the illumination changing.

4.2.2 Content of arc swing motion experiment

In order to study the tracking performance of the system in orientation under different light

conditions, arc swing motion tracking experiment have been conducted. In this light changing

experiment, the illumination condition is divided into 80[lx], 500[lx], 900[lx], and 2200[lx] four

cases. As shown in Fig. 4.12 and Eq. (6.2) with the same set of lateral tracking experiments

the desired value of distance between object
→

ΣM and end-effector
→

ΣE is ExM = 0, EyM =

−100[mm], EzM = 545[mm]. And the relative orientation between object and end-effector is

ε = 0, i.e. in the process of tracking, always keep the x-y plane in
→

ΣE parallel to the x-y plane

in
→

ΣM . ΣB is the coordinate system of the turntable. And the turntable takes ±20◦ reciprocal

uniform rotation movement around y-axis of ΣB . Equation (4.7) shows the periodic function

with period T = 4 × 4.44 = 17.76[s]. Therefore, θ(t) = θ(t + 17.76). In the first period, θ(t)

is shown as follow.

θ(t) =





−4.5t t ∈ [0, 4.44)s (4.7a)

4.5t− 40 t ∈ [4.44, 13.32)s (4.7b)

−4.5t+ 80 t ∈ [13.32, 17.76)s (4.7c)
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Fig. 4.11: The initial state of each coordinate system and the angle motion trajectory of the

turntable.

At this speed the 3D marker will take 80[s] to rotate one cycle, that means the angular velocity

ω = ±2π/T = ±2π/80 ≈ ±0.079[rad/s]≈ ±4.5[◦/s].

4.2.3 Experimental Result

As shown in Fig. 4.14, (a) is fitness value during the tracking process calculated by Eq. (3.22).

It shows at each time the degree of matching between the object and the best individual evolved

from GA. As described in Section 3.5, the maximum of fitness is Fmax = 1.67. The fitness can

be affected by many factors, e.g., the quality of the captured images, the motion of manipulator

or the changing of light. The fitness in Fig. 4.14 (a) takes dramatic fluctuations. It can be seen

that changes in light illumination affect the object recognition.

In Fig. 4.14 (b), (c) and (d), the dashed lines represent the orientation εM of real target ΣM .
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Fig. 4.12: The initial state of object and visual servoing system. The relative position relation-

ship between different coordinate systems is marked. Unit:[mm].
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Orientation tracking result of the detected object
→

Σ
M̂

and end-effector
→

ΣE are shown as the solid

line ε
M̂

and dotted line εE respectively. As shown in Fig. 4.11, the target takes the arc swing

motion on a turntable in a horizontal plane. Therefore, as shown in Fig. 4.14, the orientation of

the target object εM1 and εM3 are all 0.

As shown in Fig. 4.14 (b), it can be seen that the recognition result ε
M̂1 is near to 0.

However, the tracking result of hand had always a small deviation about 0.05. Similar to (b), in

(d) it can be seen that the detection result ε
M̂3 is near to the true value εM3. And the motion of

manipulator is also near to the target.

As shown in Fig. 4.14 (c), the true value of the object is εM2, i.e., the triangular wave in

dashed line. It can been seen that the detected orientation ε
M̂2 can continually track the object

and is closer to the truth value than εE2 of the end-effector. (e) shows the tracking error of hand

∆εEM2 and detection error of stereo vision ∆ε
MM̂2. At about 32[s], there is a transient error in

orientation detection. Because the time is short and the system responds slowly, this error does

not have much effect on the tracking motion.

Through the results, it can be confirmed that although the fitness is changed a lot because of

the illumination changing, the recognition and the motion of manipulator was not influenced so

much. It shows that the system can overcome some illumination change and track the orienta-

tion of the target object continually.
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(b) 5[s]

Left image Right image

(d) 20[s]

Left image Right image

(c) 50[s]

Left image Right image

(a) 36[s]

Left image Right image

Recognition result

Fig. 4.13: The experimental status and dual-eye images under different illuminations. The

upper left corner of each picture is marked with the current illumination. And the subtitle of

each picture is the photography time corresponding to the time in Fig.4.14
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Fig. 4.14: Tracking results under different illumination. εM = [εM1, εM2, εM3]
T is the actual

orientation of the target object. εE = [εE1, εE2, εE3]
T is the orientation of the end-effector. And

detected orientation is ε
M̂

= [ε
M̂1, εM̂2, εM̂3]

T . In ε2 direction, tracking error of end-effector

(hand) is ∆εME2 and detection error is ∆ε
MM̂2.
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Chapter 5

Photo-Model-Based Recognition

This chapter discusses the methodology of the proposed photo-model-based recognition method.

Firstly, the geometry of a stereo vision system and symbol definition will be described to make

it easy to understand the recognition method. Secondly, the generation and matching of a photo-

model are introduced. Then, an evaluation function is designed to convert the object recognition

problem into an optimization problem. In the end, a genetic algorithm is chosen as a solution

to the optimization problem to ensure that the recognition method can detect an object in real-

time. Although the eye-vergence vision has better tracking ability than the fixed camera vision,

it is more complex than the later one. In this study, as the initial stage of the development, the

real-time photo-model-based 6DOF pose estimation method is developed based on the fixed

camera system. In the future, it will be used in the eye-vergence visual system.

5.1 Stereo vision geometry and definition of each symbol

Figure 1.2 shows the developed photo-model-based visual servoing system, VS-robot. Each

coordinate system is as follows:

• ΣW : world coordinate system,

• ΣH : end-effector (hand) coordinate system,
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• ΣM : object coordinate system.

The world coordinate system ΣW is fixed on the floor. The homogeneous transformation ma-

trices from ΣW to ΣH and ΣM are WTH and WTM respectively. WTH can be calculated with

the joint angles of VS-robot. Based on ΣW , the pose of end-effector WφH and target WφM are

represented as

Wφk = [WrTk ,
WεTk ]

T = [Wxk,
W yk,

W zk,
Wε1k,

Wε2k,
Wε3k]

T, (k = H,M). (5.1)

Figure 5.1 shows a perspective projection of the stereo vision system.

• ΣCL, ΣCR: left and right camera coordinate systems,

• ΣIL, ΣIR: left and right image coordinate systems,

• ΣMj : j-th model coordinate system,

• Σ
M̂

: the coordinate system of RM-GA searching result that is not shown in Fig. 5.1.

The position vectors of an arbitrary i-th point of the j-th 3D model coordinate ΣMj based on

different coordinate systems are as follows:

• Wr
j
i : 3D position of an arbitrary i-th point on j-th 3D model based on ΣW ,

• Mr
j
i : 3D position of an arbitrary i-th point on j-th 3D model in ΣMj ,

• CRr
j
i and CLr

j
i : 3D position of an arbitrary i-th point on j-th 3D model based on ΣCR and

ΣCL,

• ILr
j
i and IRr

j
i : 2D projected position on ΣIL and ΣIR of an arbitrary i-th point on j-th 3D

model.

The pose of the j-th 3D model, including three position variables and three orientation vari-

ables in quaternion based on ΣH , is represented as

Hφ
j
M = [Hx

j

M ,Hy
j

M ,Hz
j

M ,Hε
j

1M ,Hεj2M ,Hε3
j

M ]T. (5.2)
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For simplicity, the Hφ
j
M is written as φ

j
M hereafter.

As the searching result of RM-GA explained in Section 5.4, the detected result is defined

as,

Hφ
M̂

= [Hx
M̂
,Hy

M̂
,Hz

M̂
,Hε1̂M ,Hε2̂M ,Hε3̂M ]T. (5.3)

Based on ΣW , the homogenous transformation matrix WT
M̂

is calculated by Eq. (5.5). The

j-th model’s pose based on ΣH and ΣW are represented as Eqs. (5.2) and (5.6), respectively,

including three position variables and three orientation variables in quaternion. The pose Wφ
j
M

is derived from WTMj that is calculated in Eq. (5.4) [93].

WTMj =
WTH

HTMj(φ
j
M) (5.4)

WT
M̂

= WTH
HT

M̂
(Hφ

M̂
) (5.5)

Wφ
j
M = [(WrjM)T, (WεjM)T]T = [Wxj

M ,W yjM ,WzjM ,Wεj1M ,Wεj2M ,Wεj3M ]T (5.6)

About stereo vision, position CLr
j
i can be calculated by using Eq. (5.7),

CLr
j
i =

CLTM (φj
M , q) Mr

j
i , (5.7)

where Mr
j
i is predetermined as a fixed vector since ΣMj is fixed on the j-th model. Similarly,

CRr
j
i is calculated by using CRTM (φ

j
M , q). Since q can be measured by robot’s joint sensors, it

could be thought to have been known, then q is omitted hereafter.

The proposed system is an eye-in-hand system with dual-eye stereo-vison cameras. Camera

model is pinhole model. Eq. (5.8) represents the projective transformation matrix Pk,

Pk =
1

kzi



f/ηx 0 Ix0 0

0 f/ηy
Iy0 0


 , (5.8)
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where,

• k = CL, CR,

• kzi : z-axis position of the i-th point in the camera sight direction in ΣCR and ΣCL,

• f : focal length,

• ηx, ηy: [mm/pixel] in x-axis, and y-axis,

• Ix0,
Iy0: [pixel] offset of origin of ΣI .

The 2D position vector of the i-th point in the left camera image coordinates ILr
j
i can be

described by using projective transformation matrix PCL as,

ILr
j
i = PCL

CLr
j
i = PCL

CLTM(φj
M)Mrji . (5.9)

Then, ILr
j
i can be conceptually described by function fL as,

ILr
j
i (φ

j
M) = fL(φ

j
M ,Mr

j

i ). (5.10)

Like the description of ILr
j
i , IRr

j
i can also be calculated as the same manner.

In the visual servoing experiments of Section 6.2.1 and Section 6.2.2, ΣM will move along

predetermined trajectories. Therefore, WTM is a known time-varying matrix. The goal of the

visual servoing experiment is to control the end-effector to maintain the relative pose with the

target object as

MTHd =




1 0 0 0

0 1 0 0

0 0 1 −500[mm]

0 0 0 1



, (5.11)
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Fig. 5.1: Perspective projection of stereo vision system. In the searching space, a j-th 3D solid

model is represented by the picture of crab, which is defined by j-th model coordinate system

ΣMj . The distance between ΣCL and ΣCR, i.e. baseline, is 323[mm].

where ΣHd is the desired pose of ΣH . Based on ΣW , the pose of ΣHd,

WφHd = [WrTHd,
WεTHd]

T = [WxHd,
W yHd,

WzHd,
Wε1Hd,

W ε2Hd,
Wε3Hd]

T, (5.12)

is derived from WTHd that is calculated by Eq. (5.13) [93].

WTHd =
WTM

MTHd. (5.13)

Figure 1.2 shows the initial poses of ΣM and ΣH at t = 0[s]. They are also defined as

ΣM0 and ΣH0 respectively. The directions of ΣM0 and ΣH0 are different from ΣW . Their

orientations in quaternion are WεM0 = WεH0 = [−0.5, −0.5, 0.5]T [34]. It is difficult to

directly imagine. Therefore, when we talk about the experiment results, the orientations of ΣM

and ΣH are calculated as Eq. (5.14), i.e., relative orientations to the initial status.

εk =
Wεk −

Wεk0, (k = M,H) (5.14)
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C01

Seahorse

13×4.5×2.7[cm]

C02

Coelacanth

7.0×14.5×6.0[cm]

C03

Moray eel

3.0×14.2×2.3[cm]

C04

Dolphin

8×6×4.5[cm]

C05

Bigfin reef squid

21×8.25×4.5[cm]

C06

Jellyfish

9×9×11[cm]

C07

Leatherback sea turtle

10.5×13.2×3[cm]

C08

Octopus 

14.3×12.5×3.5[cm]

C09

Anemonefish

12×3.6×5[cm]

C10

Mobula

10×8×2[cm]

C11

Bluespotted ribbontail ray

8.5×15.0×1.5[cm]

C12

Crab

17.5×14×4[cm]

Fig. 5.2: Twelve marine biological creature models. The code name is from C01 to C12. The

second line of each frame shows the English name. And the last line shows the size of each 3D

toy (unit: [cm]).

Similarly, the desired orientation of the end-effector is

εHd =
WεHd −

WεH0, (5.15)

and εHd means εM because the control goal is shown as Eq. (5.11). Because the orientation of

the target object does not change in the position visual servoing experiment, as shown in Fig.

6.4 (1.d) ∼ (1.f),

εHd = εM = 0. (5.16)
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C01 C02 C03 C04

C05 C06 C07 C08

C09 C10 C11 C12

Fig. 5.3: Twelve pictures of marine biological creature models are shown with blue sea back-

ground corresponding to Fig. 5.2. The code name is from C01 to C12. The size of each picture

is 640× 480 [pixel]. Each dashed line rectangle indicates a photo-model.
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5.2 Photo-model generation

There are two main portions of the proposed pose estimation method. The first portion is 2D

model generation and the latter is relative pose estimation using the generated 2D model. This

subsection is a description of the first portion before an explanation of a matching method. As

shown in Fig. 5.2, 12 different sea creature toys are prepared as 3D target objects whose code

names are from C01 to C12. The table includes the English name and the size of each 3D toy.

Figure 5.3 shows photo-models with blue sea background. The size of each picture is 640×480

[pixel]. Each dashed line rectangle indicates a photo-model used in pose estimation of 3D toy

targets. The photo-model is only part of a picture including a target shape as shown by the

rectangles in Fig. 5.3.

The model generation process is represented as Fig. 5.4. It should be noted that the photo-

model is only part of a picture including target shape. Firstly, a background image is captured

by the camera and the average hue value of the background image is calculated as shown in Fig.

5.4 (a). Then, the solid crab target object is put on the background. A 640× 480 [pixel] picture

is captured at a distance of 400[mm] from the object as shown in (b). In (c), a photo-model

composed of dots with color information of hue is set as Sin. Finally, the outside space Sout of

the model is generated by enveloping Sin as shown in (d).

5.3 3D photo-model-based matching

Figure 5.5 shows a generated photo-model placed in the 3D searching space with assumed pose

of φ
j
M (sub figure on the top of Fig. 5.5) and the left and right 2D searching models that are

projected from photo model with the pose being assumed to be φ
j
M (sub figures on the left and

right bottom of Fig. 5.5) respectively. In Fig. 5.5, a generated 2D photo-model is projected from

the 3D space onto the left and right 2D searching planes. The sub figures on the top of Fig. 5.5

shows a generated 3D solid photo model S(φj
M) composed of Sin(φ

j
M) (inner dotted points) and

the outside space enveloping Sin(φ
j
M) denoted as outer dotted line Sout(φ

j
M). The sub figures on
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(a) Background (b) Target object in background

(c) space of model is

shown by black points group

(d) Enveloping space of        is

shown by points group

Sout

Sin
Sin

Sin Sin

Sout

Fig. 5.4: (a) shows a photograph of background image, (b) shows a photograph of the target

object, the crab, in background, (c) represents a photograph of surface space model Sin by

inner points group and (d) represents an outer points group of outside space of model Sout that

enveloping Sin.

the left/right bottom of Fig. 5.5 show the left/right projected 2D searching models SL(φ
j
M) and

SR(φ
j
M) respectively. Both SL(φ

j
M) and SR(φ

j
M) consist of inner and outer portions SL,in(φ

j
M),

SL,out(φ
j
M) and SR,in(φ

j
M), SR,out(φ

j
M).

The evaluation of the correlation between the projected model and the images including real

target object that are input from the dual-eye cameras is defined as a fitness function.

5.3.1 Definition of the fitness function

An overlap degree, that means correlation degree, between a projected model and the target in

images captured by the dual-eye cameras is used as a fitness [100]. The highest fitness value

represents the best pose of the model φ̂ among φ
j
M that coincides with the crab’s pose in 3D

space as depicted at top of Fig. 5.5.

A model is composed of some sampling points. The number of them is “N .” After forward

projection, as shown in Fig. 5.1, each point coordinate in left image ΣIL is ILr
j
i . And evaluation
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forward 

projection

Left image Right image

2D searching model: 2D searching model:

3D searching space 

Fig. 5.5: A photo model S(φj
M) in the 3D searching space on the top of this figure is a 2D

model but it has 3D pose information φ
j
M . The left and right 2D searching models represented

as SL(φ
j
M) and SR(φ

j
M) on the left/right bottom, are calculated by forward projection from the

2D photo-model S(φj
M).
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value of each point ILr
j
i in inner portion of the model (ILr

j
i ∈ SR,in(φ

j
M)) is pL,in(

ILr
j
i ) calcu-

lated by Eq. (5.17). The one of outer portion (ILr
j
i ∈ SL,out(φ

j
M)) is pL,out(

ILr
j
i ) calculated by

Eq. (5.18)

pL,in(
ILr

j
i ) =





2, if(|HIL(
ILr

j
i )−HML(

ILr
j
i )| ≤ 30);

−0.005, else if(|H̄B −HIL(
ILr

j
i )| ≤ 30);

0, otherwise;

(5.17)

pL,out(
ILr

j
i ) =





0.1, if(|H̄B −HIL(
ILr

j
i )| ≤ 20);

−0.5, otherwise;

(5.18)

where

• HIL(
ILr

j
i ): the hue value of the left camera image at the point ILr

j
i (i-th point in j-th

photo model, lying in SL,in),

• HML(
ILr

j
i ): the hue value of photo model at the point ILr

j
i (i-th point in SL,in),

• H̄B: the average hue value of the background image, i.e., Fig. 5.4 (a).

The pR,in(
IRr

j
i ) and pR,out(

IRr
j
i ) are defined as the same above manner. The fitness F (φj

M) of

a model is calculated as Eq. (5.19), and its abbreviated form is Eq. (5.20),

F (φj
M)=

[(∑

IRr
j
i∈

SR,in(φ
j
M

)

pR,in(
IRr

j
i )+

∑

IRr
j
i∈

SR,out(φ
j
M

)

pR,out(
IRr

j
i )
)
/N+

(∑

ILr
j
i∈

SL,in(φ
j
M

)

pL,in(
ILr

j
i ) +

∑

ILr
j
i∈

SL,out(φ
j
M

)

pL,out(
ILr

j
i )
)
/N

]
/2

(5.19)

= [FR(φ
j
M) + FL(φ

j
M)]/2. (5.20)

The fixed values in Eqs. (5.17) and (5.18) have been tuned experimentally to provide a peak

in the fitness value distribution at the true pose. Figure 5.7 (a) shows j-th model, the evaluation

points of hue value, · · · ILrji−1,
ILr

j
i ,

ILr
j
i+1 · · · , are indicated by white dots in inside area SL,in,

and those in outside strip SL,out. Figure 5.7 (b) shows another situation that the overlapping
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possible location takes a lot of time. RM-GA : Calculation of some selected poses to save time.

Fig. 5.6: We have proposed Real-time Multi-step Genetic Algorithm (RM-GA) for searching

the pose of target object in real-time.

x
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j-th model
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object
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j
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j
iÄ1

SL;in

SL;out

P
IL

y

(a) Evaluation position ILr
j
i , that is i-th point of j-th

model, which is projected on left image whose pose φ
j
M

is given by evolutionary process of GA.

x

Left camera image

j-th

model

Real 

target 

object

SL;in

SL;out

P
IL

(C)

(D)

(A)(B)

y

(b) Classification of evaluation points (A)∼(D) on

the photo model is explained. (A) represents

points that satisfy the first case of Eq. (5.17),

|HIL(
ILr

j
i )−HML(

ILr
j
i )|≤ 30, representing that

inner model SL,in overlaps with the real target. (B)

does |H̄B −HIL(
ILr

j
i )|≤ 30, representing that in-

ner model SL,in overlaps with background. (C)

does |H̄B − HIL(
ILr

j
i )|≤ 20, meaning that the

outer model SL,out overlaps with background, and

(D) shows SL,out overlaps with the real target.

Fig. 5.7: Calculation of the matched degree of each point in model space (SL,in and SL,out).
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area of real crab and the model increased than the one depicted in (a). The hue value of the

left camera input image at the point ILr
j
i is represented by HIL(

ILr
j
i ). The i-th point of j-th

model in SL,in and SL,out and the hue value of the same point ILr
j
i on the model is defined as

HML(
ILr

j
i ). The average hue value of background calculated from Fig. 5.4 (a) is defined as

H̄B.

In Eq. (5.17), if the hue value of each point on 3D target in left images, HIL(
ILr

j
i ), which

lies inside the surface model frame SL,in, and the hue value of corresponding same point in

a model, HML(
ILr

j
i ), have similar values with a tolerance less than 30, that is |HIL(

ILr
j
i ) −

HML(
ILr

j
i )| ≤ 30 then this means that model’s hue value and input target crab’s hue value have

close hue distance at the same checking point of ILr
j
i . This represents photo model overlaps

to the real crab projected in left camera image in Sin, which is represented by dots designated

by (A) in Fig. 5.7 (b). In this case the fitness value would be increased with the voting value

of “+2.” The fitness value will decrease with the value of “-0.005” for every point ILr
j
i in Sin

by the condition, |H̄B −HIL(
ILr

j
i )| ≤ 30 in Eq. (5.17), when model’s crab area overlaps with

blue background. This represents that the model does not overlap precisely the target in the

input image, which are represented by (B) in Fig. 5.7 (b). In this case, “-0.005” is given as a

penalty to decrease F . Otherwise, the evaluation value will be “0.”

Similarly, in Eq. (5.18), if the hue value of each point in the left camera image lying in SL,out

has similar value to the average hue value of background H̄B calculated from Fig. 5.4 (a) with

the tolerance of 20, the fitness value will be increased with the value of “+0.1.” This means SL,out

strip area surrounding SL,in overlaps the background, expressing the model and the crab overlap

rather correctly as (C) in Fig. 5.7 (b). Since this situation means that the model’s position and

orientation matches to the real crab, plus points “0.1” is given to the function pL,out, which is

described in Eq. (5.18). Otherwise, the fitness value will decrease with the penalty value of

“-0.5.” This represents points on SL,out overlaps with the real crab as (D) in Fig. 5.7 (b).
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5.4 Improved Real-Time Multi-Step Genetic Algorithm (RM-

GA)

The main problem of identifying the pose of the object can be converted into an optimization

problem if the fitness function has been designed to give the maximum value only in the case

that the model whose pose coincides with the target object in the 3D space. Several optimization

methods can search the maximum value of the evaluation function. For real-time recognition in

dynamic images input with frame rate 30[fps], we have proposed a Real-time Multi-step Genetic

Algorithm (RM-GA) [101],[102]. RM-GA evaluation process is applied to find the maximum

value as an optimal solution because of its simplicity and effectiveness. The 20 individuals of

RM-GA are used in this experiment, where the chromosome of an individual consists of 72[bit]

with six variables. Each variable is coded by 12[bit] as shown in Eq. (5.21), the first three

variables of a model (Hxj
M ,HyjM ,HzjM ) represents the position in 3D space and the last three

variables (Hεj1M ,Hεj2M ,Hεj3M ) represents the orientation. The genes of RM-GA representing

possible pose solution is defined as below:

Hx
j
M︷ ︸︸ ︷

01 · · ·01︸ ︷︷ ︸
12[bit]

Hy
j
M︷ ︸︸ ︷

00 · · ·01︸ ︷︷ ︸
12[bit]

Hz
j
M︷ ︸︸ ︷

11 · · ·01︸ ︷︷ ︸
12[bit]

Hε
j
1M︷ ︸︸ ︷

01 · · ·01︸ ︷︷ ︸
12[bit]

Hε
j
2M︷ ︸︸ ︷

01 · · ·11︸ ︷︷ ︸
12[bit]

Hε
j
3M︷ ︸︸ ︷

01 · · ·10︸ ︷︷ ︸
12[bit]

. (5.21)

As the searching result of RM-GA, the output best individual is defined as,

Hφ
M̂

= [Hx
M̂
,Hy

M̂
,Hz

M̂
,Hε1̂M ,Hε2̂M ,Hε3̂M ]T. (5.22)

Figure 5.8 (a) shows the process flow in the RM-GA in which 3D models converge into

the real 3D solid target object. In Fig. 5.8 (a), a target object is a crab, and each 3D model is

depicted as a rectangle with dotted lines including the same shape and same color information

of the target. But models have different poses φ
j
M (j=1, 2, · · · , 20) as shown at the top of Fig.

5.8 (a) whose poses have been defined by the chromosomes, Eq. (5.21). Note that the system
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Model

3D search space (First generation)

Output 

Convergence in successively input images

3D search space (i-th generation)

Target object

(a)

3D search space (n-th generation)

3D search space

Evaluation (1)

(fitness evaluation of each model)

Sorting

(sort all models based on their fitness values)

Selection

(save models with highest fitness values)

Crossover and mutation

Start

Evaluation (2)

(fitness 

evaluation

of newly 

generated

models)

Yes

No
Timer= 33[ms]

Input code name of 2D photo-model

Output the recognized 3D pose of the object

(position and orientation of the best individual)

(b)

To End?

End

No

Yes

Input new image

(captured by dual-eye cameras )

Initialization

(generate a population of models)

Start Timer

Reset the timer to zero

Fig. 5.8: RM-GA evolution process in which 3D models with random poses converge to the

real 3D solid target object in 3D space. The pose of the model with the highest fitness value

represents the estimated pose of the target object at that instant: (a) schematic diagram of the

evolutionary process and (b) flowchart of RM-GA process during each 33[ms] control period,

from “Input new image” to “Output.”
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performs the evaluation process in the left and right 2D image planes. And the convergence

of searching models occurs in 3D searching space. The fitness function value evaluates the

overlap degree between an individual and the target object. The fitter individuals are selected to

regenerate the next genes. Thus, the genes converge to the real target after some transient period

of evolution. Then, the gene that gives the highest fitness value stands for the most trustful pose

as shown in the bottom part in Fig. 5.8 (a).

Figure 5.8 (b) shows a flowchart for the RM-GA evolution process for recognition and pose

estimation:

(1) Firstly, the individuals are randomly generated in the 3D searching area as the first genera-

tion.

(2) New images captured by dual-eye cameras are input.

(3) The fitness value of every individual is calculated.

(4) Every individual’s fitness value is sorted by the calculated fitness value.

(5) The best individual is selected from the current population, and the weak individuals are

removed.

(6) Then, the individuals for the next generation are reproduced by making crossover and mu-

tation between the selected individuals.

(7) Only new individuals in the next generation are evaluated by the fitness function, shown by

“Evaluation (2)” block, because the right and left images do not change and top individuals

with highest fitness do not need to calculate fitness again since the image is constant during

33[ms].

(8) And then, the above procedures (5)-(7) are repeated within 33 [ms]. Because the time

needed for transferring one frame of video from image input board to the memory of main
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CPU is 9[ms] , the remaining time within the video rate 33[ms] is 33 − 9 = 24[ms]. Then

24[ms] remains for RM-GA to evolve.

(9) Finally, the RM-GA outputs the best individual. If the process is not ended, it will input

new images and repeat the above procedures.

5.5 Fitness distribution

Fitness function Eq. (5.19) converts the target recognition and pose estimation problem into

an optimization problem if variables to give the maximum peak represents the target’s pose.

To ensure whether this problem conversion about Eq. (5.19) is feasible, a way is a brute-

force search or an exhaustive search. Using still pictures at an instant moment, the fitness value

F (φj
M) is calculated with its pose varied as parameters. We call it “fitness distribution.” It is also

a way to verify whether the RM-GA can detect the true pose of a target object at that moment.

Even though the fitness distribution is made by an exhaustive search method, it is impossible

to calculate all possibilities. This time, the position incremental distance of fitness value is

set at 1.0[mm], and the orientation increment is 0.01[] (quaternion does not have the unit).

Search ranges of fitness distribution are set as position: HxM and HyM ∈ [−180, 180][mm],

HzM ∈ [320, 680][mm]; orientation: Hε1M , Hε2M , and Hε3M ∈ [−0.35, 0.35].

Figures 5.9 and 5.10 show left and right images captured by the stereo vision system and

the fitness distribution of C04 dolphin and C12 crab in detail. Figure 5.9 (a) shows the left and

right camera images of C04 dolphin, and (b), (c) show the x − y and y − z position fitness

distribution respectively, and (d), (e) show the orientation fitness distribution. All the fitness

distribution (b)∼(e) have peaks. For example, in Fig. 5.9 (b), the x − y position that gives

maximum peak is (HxM ,HyM) = (−3, 7)[mm] and this result shows it is near the true position

(0, 0)[mm] given by Eq. (6.2). About another object C12 crab, Fig. 5.10 (b) and (c) shows

the position fitness distribution, and (d) and (e) show the orientation fitness distribution. All

the fitness distribution (b)∼(e) also have peaks near the true value. The results of other target
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objects except of C04 and C12 are similar to Figures 5.9 and 5.10, then they are not listed in

this paper. Each subfigure of the results has a main peak near the true value HφM given by

Eq. (6.2). Therefore, it has been confirmed that fitness function Eq. (5.19) can convert the

target recognition and pose estimation problem into an optimization problem. Furthermore, it

has been confirmed that the proposed method can estimate 3D target pose by using stereo vision

and 2D photo-model. But the gentle shapes of peaks given by (d) and (e) in Figs. 5.9 and 5.10

mean that the estimated orientations tend to include estimation errors than the positions whose

fitness distributions have sharp peaks as shown in Figs. 5.9 and 5.10.

RM-GA searching experiments have been also conducted to compare with the fitness dis-

tribution. The results show that RM-GA can find the pose of all target objects from C01 to

C12 in less than 10[s] by using the left and right still images. In this experiment, the optimiza-

tion procedure is conducted by static still photographs not dynamic images, then the RM-GA

process means usual GA process practically. For example, the left and right camera images

shown at Fig. 5.9 (a) are used for the RM-GA searching experiment concerning C04 dolphin.

And the detected pose by RM-GA Hφ
M̂

= [Hx
M̂
,Hy

M̂
,Hz

M̂
,Hε1̂M ,Hε2̂M ,Hε3̂M ]T is shown

at the row of C04 in Table 5.1, which includes also results of other 3D toys shown in Fig. 5.2.

The real pose that gives maximum peak is represented by HφM = [HxM ,HyM ,HzM ,Hε1M ,

Hε2M , Hε3M ]T, and is shown in the same row. The detection errors ∆φ = HφM − Hφ
M̂

=

[∆x,∆y,∆z,∆ε1,∆ε2,∆ε3]
T is also listed in the table. From the error values of C01∼C12, it

has been confirmed that the poses of all 3D toys could be estimated by GA evolutional proce-

dures with the position error being less than 10[mm] and orientation error being less than 0.15

in quaternion.

In this section, by the fitness distribution experiment, it is verified that the fitness function

Eq. (5.19) can transform the target position and orientation estimation problems into optimiza-

tion problems. It is also confirmed that the proposed method can estimate the 3D target pose by

using stereo vision and 2D photo-model. Since the estimated value of RM-GA is close to the

peak result in the fitness distribution experiment, RM-GA can be used practically as a solution
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Table 5.1: Peak coordinates HφM = [HxM ,HyM ,HzM ,Hε1M ,Hε2M ,Hε3M ]T of 12 tar-

get objects in the fitness distribution, RM-GA detection results Hφ
M̂

= [Hx
M̂
,Hy

M̂
,

Hz
M̂
,Hε1̂M ,Hε2̂M ,Hε3̂M ]T and errors ∆φM = HφM−Hφ

M̂
= [∆x,∆y,∆z,∆ε1,∆ε2,∆ε3]

T

are listed. Search range of fitness distribution, position: x ∈ [−180, 180][mm], y ∈
[−180, 180][mm], z ∈ [320, 680][mm]; orientation: ε1, ε2, and ε3 ∈ [−0.35, 0.35]. Search inter-

val of fitness are 1.0[mm] in position; orientation: 0.01[]. True values given by TC-robot shown

in Fig. 1.2 are HφM = [HxM ,HyM ,HzM ,Hε1M ,Hε2M ,Hε3M ]T = [0, 0, 500[mm], 0, 0, 0]T.

Pose 

Target

Number

Real pose that gives maximum peak Detected pose by RM-GA Error values

Position

[mm]

Orientation

(quaternion[])

Position

[mm]

Orientation

(quaternion[])

Position

[mm]

Orientation

(quaternion[])

C01 -2.0 0.0 501.0 -0.03 -0.09 0.04 -2.25 0.39 497.62 -0.03 -0.15 0.04 0.25 -0.39 3.38 0.00 0.06 0.00 

C02 5.0 -3.0 494.0 0.11 -0.18 -0.06 12.11 -2.64 495.57 0.10 -0.17 -0.05 -7.11 -0.36 -1.57 0.01 -0.01 -0.01 

C03 -2.0 5.0 508.0 0.01 -0.1 0.03 -2.54 4.98 509.24 0.03 -0.07 0.02 0.54 0.02 -1.24 -0.02 -0.03 0.01 

C04 -3.0 7.0 506.0 -0.02 -0.02 -0.01 -3.13 7.13 506.41 -0.03 -0.04 -0.04 0.13 -0.13 -0.41 0.01 0.02 0.03 

C05 -1.0 -11.0 500.0 0.02 0.02 0.03 -0.39 -10.45 500.55 0.02 0.02 0.04 -0.61 -0.55 -0.55 0.00 0.00 -0.01 

C06 -2.0 5.0 493.0 0.11 0.11 0.07 -3.13 5.66 494.30 0.16 0.04 0.02 1.13 -0.66 -1.30 -0.05 0.07 0.05 

C07 12.0 4.0 517.0 0.03 -0.01 -0.01 9.38 4.79 514.22 -0.03 -0.08 -0.01 2.63 -0.79 2.78 0.06 0.07 0.00 

C08 -6.0 -1.0 504.0 0.02 -0.02 -0.07 -6.05 -2.25 502.11 0.08 -0.07 -0.08 0.05 1.25 1.89 -0.06 0.05 0.01 

C09 6.0 -6.0 502.0 -0.1 0.09 -0.04 3.81 -6.05 498.20 -0.06 0.09 -0.04 2.19 0.05 3.80 -0.04 0.00 0.00 

C10 6.0 6.0 507.0 0.01 0.04 -0.04 6.35 4.00 504.45 -0.06 -0.10 -0.04 -0.35 2.00 2.55 0.07 0.14 0.00 

C11 9.0 1.0 513.0 0.04 0.16 -0.06 7.62 1.27 509.14 0.05 0.09 -0.05 1.38 -0.27 3.86 -0.01 0.07 -0.01 

C12 0.0 1.0 497.0 -0.09 0.06 0.01 0.29 1.76 498.50 0.06 -0.04 0.03 -0.29 -0.76 -1.50 -0.15 0.10 -0.02 

H
xM

H
y
M

H
zM

H
"1M

H
"2M

H
"3M

H
xbM

H
ybM

H
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H
"
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"
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Åx Åy Åz Å"1 Å"2 Å"3

to detect the pose of the 3D target objects by using 2D photo-model.
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Fig. 5.9: Fitness distribution of C04 dolphin. (a) Left and right camera images, (b) fitness

distribution in the x-y plane, (c) fitness distribution in the y-z plane, (d) fitness distribution of

orientation in ε1-ε2, and (e) fitness distribution of orientation in ε2-ε3. In each subfigure of

(b)∼(e), the maximum fitness and corresponding coordinate are shown in a text box.
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Fig. 5.10: Fitness distribution of C12 crab. (a) Left and right camera images, (b) fitness dis-

tribution in the x-y plane, (c) fitness distribution in the y-z plane, (d) fitness distribution of

orientation in ε1-ε2, and (e) fitness distribution of orientation in ε2-ε3. In each subfigure of

(b)∼(e), the maximum fitness and corresponding coordinate are shown in a text box.
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Chapter 6

Experiments of Photo-Model-Based Visual

Servoing

6.1 Pose 6DOF visual tracking

As introduced in Section 2.2, the guidance of robots through real-time and continuous visual

feedback is generally known as visual servoing. Only the constant observation of the objects

of interest is referred to as visual tracking, and it does not involve the robot control. The visual

tracking is essential as a basis for visual servoing.In this section, the visual tracking experi-

ment will be conducted to verify the tracking ability of the proposed stereo vision recognition

method. In the Sections 6.2 and 6.3, visual servoing experiments will be conducted to confirm

the feedback control ability of the visual servoing robot.

6.1.1 Experimental content

The initial condition of the pose real-time estimation experiment is shown at top subfigure (Step

0) in Fig. 6.1. The pose of the target object represented by ΣM based on the end-effector ΣH

is set as Eq. (6.2). In Fig. 6.1, each subfigure, i.e., each (Step), is a state of the target object

at a special time point in the experiment. For example, subfigure (Step 0) shows the state of
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the target object at the beginning time point t = 0[s] of the experiment. And the target’s pose

of (Step 0) HφM = [HxM ,HyM ,HzM ,Hε1M ,Hε2M ,Hε3M ]T = [0, 0, 500[mm], 0, 0, 0]T is also

shown in Table 6.1. In this pose estimation experiment, the VS-robot in Fig. 1.2 does not move.

The TC-robot controls the target object to move, with one of the elements of target pose of

(HxM ,HyM ,HzM ,Hε1M ,Hε2M , Hε3M ) being changed and others being kept to be constant as

shown in Table 6.1. The table lists the pose of TC-robot and the transition of the pose when the

target pose is changed from (Step 0) to (Step 19).

For example, as shown in Fig. 6.1, from (Step 0) to (Step 1), HxM that is x-coordinate of

target pose, is changed from 0[mm] to -50[mm] by TC-robot based on the ΣM . HyM , HzM , and

orientation parameters HεM are constant. In subfigure (Step 1) of Fig. 6.1, the arrow shows

the moving direction along the x-axis from former (Step 0) to this (Step 1). And as shown in

Table 6.1, the arrow between rows (Step 0) and (Step 1) in the column of HxM has the same

meaning and indicates that only HxM is changed from 0[mm] at (Step 0) to -50[mm] at (Step

1). In Fig. 6.1, from (Step 1) to (Step 2), HyM that is y-coordinate of target pose, is changed

from 0[mm] to -50[mm] by TC-robot. HxM , HzM , and orientation parameters HεM at (Step 2)

are the same with the parameters at (Step 1). And the arrow in subfigure (Step 2) in Fig. 6.1

shows the moving direction along the y-axis. And as shown in Table 6.1, the arrow between

rows (Step 1) and (Step 2) in the column of HyM also represents that only HyM is changed from

0[mm] at (Step 1) to -50[mm] at (Step 2) by TC-robot. The position of TC-robot is changed

with the same manner from (Step 2) to (Step 10), which represents the same pose as (Step 0).

From (Step 11) to (Step 19), the position of the target is kept to be constant, but the orien-

tation is changed. The TC-robot rotates the target to ε1M = 0.174 around xM axis at (Step 11)

and then to ε1M = −0.174 around xM axis at (Step 12). And at (Step 13) the target is rotated

back to the initial pose of (Step 10). From (Step 14) to (Step 16), the target object rotates only

around y-axis and from (Step 17) to (Step 19) it does around z-axis. The poses of ΣM at (Step

10), (Step 13), (Step 16), and (Step 19) are the same with the initial state (Step 0).

Table 6.1 shows the real pose of the target object at each step. The position trajectories of
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Table 6.1: The target pose value HφM = [HxM ,HyM ,HzM ,Hε1M ,Hε2M ,Hε3M ]T of each mo-

tion step is listed with names of (Step 0) to (Step 19), corresponding to the target’s motion

trajectory in Fig. 6.1. Similar to Fig. 6.1, the arrows in this table show the changing parameters

from the previous step to the next. For example, in this table, since from (Step 0) to (Step 1)
HxM is only changed, there is an arrow between row (Step 0) and (Step 1) in the column of
HxM . And the arrow of subfigure (Step 1) in Fig. 6.1 also shows that the target moves along

the x-axis.

Pose

Step

Position[mm] Orientation(quaternion[])

(Step 0) 0 0 500 0 0 0

(Step 1) -50 0 500 0 0 0

(Step 2) -50 -50 500 0 0 0

(Step 3) 0 -50 500 0 0 0

(Step 4) 0 0 500 0 0 0

(Step 5) 0 0 550 0 0 0

(Step 6) -50 0 550 0 0 0

(Step 7) -50 -50 550 0 0 0

(Step 8) 0 -50 550 0 0 0

(Step 9) 0 0 550 0 0 0

(Step 10) 0 0 500 0 0 0

(Step 11) 0 0 500 0.174 0 0

(Step 12) 0 0 500 -0.174 0 0

(Step 13) 0 0 500 0 0 0

(Step 14) 0 0 500 0 0.174 0

(Step 15) 0 0 500 0 -0.174 0

(Step 16) 0 0 500 0 0 0

(Step 17) 0 0 500 0 0 -0.174

(Step 18) 0 0 500 0 0 0.174

(Step 19) 0 0 500 0 0 0

H
xM

H
y
M

H
zM

H
"1M

H
"2M

H
"3M

the target are shown at the subfigures from (Step 0) to (Step 10) in Fig. 6.1 and the time profiles

of target pose given by TC-robot are depicted as (a) to (f) at the center of Fig. 6.1. Target’s pose

time profiles (a)∼(f) are enlarged and shown as dashed lines in Fig. 6.2. The solid lines in Fig.

6.2 show the pose estimation results. The 3D pose estimation error is shown as Fig. 6.3.

6.1.2 Results and discussion

Figure 6.2 (a)∼(f) show the pose estimation results [Hx
M̂
,Hy

M̂
,Hz

M̂
,Hε1̂M ,Hε3̂M ,Hε3̂M ]T de-

picted with solid lines. (a)∼(c) are position recognition results. (d)∼(f) are orientation recog-
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nition results. The true values HφM = [HxM ,HyM ,HzM , Hε1M , Hε2M , Hε3M ]T are shown as

dashed lines, which is enlarged from Fig. 6.1. The descriptions of (Step 0)∼(Step 19) in Fig.

6.2, where “Step” has been eliminated to save space, are the time points corresponding to those

in Fig. 6.1. In the beginning period of recognition time t = 0 ∼ 6[s], the detection results of

RM-GA gradually converge to the true pose HφM . Then, the estimation results are almost sim-

ilar to the real pose. Even though the detection result Hz
M̂

in (c) have some fluctuations when

the target moves along the x- or y-axis at (Step 1), (Step 4), (Step 6), and (Step 8), RM-GA can

quickly converge to the true pose in the later. The position estimation results in (a)∼(c) shows

that the proposed method can track the position of the moving target object. The orientation

estimation results in the period of (Step 11)∼(Step 13) in (d), (Step 14)∼(Step 16) in (e), and

(Step 17)∼(Step 19) in (f) show that this method can also track the changing orientation of the

target in real-time.

Figure 6.3 shows the errors of the pose tracking results. And the detection errors of x and

y coordinates in (a) and (b) are in the range of ±20[mm] except at time (Step 3), (Step 6), and

(Step 8), which represents the time that the target’s motion includes accelerations. And about

distance estimation in z coordinate, Fig. 6.3 (c) shows that the error is in the range of ±30[mm]

roughly. Some large fluctuations in (a)∼(c) show the time delay of position coordinate detec-

tion, e.g., (Step 1), (Step 6), and (Step 8) in (a). About the orientation estimation, the error of

ε3 in (f) is small and less than those of ε1 in (d) and ε2 in (e). In the period of (Step 1)∼(Step

10), it can be confirmed that the change of position of the target object interferes with tracking

errors of the orientation estimation. And in the period of (Step 11) to (Step 19), even though

the orientation of the target object has been changed, the position detection errors in (a)∼(c) are

kept to be small.

Through the above analyses and discussions of experimental results, it has been confirmed

that the proposed photo-model-based recognition method can detect an object’s pose in real-

time by using RM-GA.
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Fig. 6.1: The target in this pose tracking experiment is C12 crab shown in Figs. 5.2 and 5.3. The

subfigures of (a)∼(f) show all the poses time profile of the target ΣM based on ΣH . The crab’s

position time profile is shown by (a), (b), and (c) based on the end-effector ΣH . Orientation

motion is shown by (d), (e), and (f). The subfigures (Step 0)∼(Step 19) shows the target motion

schematically. The arrows in (Step 0)∼(Step 19) show the target’s moving direction. Motion

curves (a)∼(f) are enlarged and shown as dashed lines in Fig. 6.2. The poses of ΣM at (Step

10), (Step 13), (Step 16), and (Step 19) are the same with the initial state (Step 0).
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Fig. 6.2: The 3D pose estimation results of the target whose motions are displayed in Fig. 6.1.

The target is C12 crab shown in Fig. 5.2 and 5.3. The crab’s position detection results are

shown in above (a), (b), and (c) as solid lines. Orientation detection results are shown in (d),

(e), and (f) as solid lines. The dashed lines are enlarged from Fig. 6.1 and show the true pose of

the target object. (Step 0)∼(Step 19) that are written at the top of this figure show the specific

time points which are corresponding to the subfigures in Fig. 6.1. And from (Step 2) to (Step

19), “Step” has been eliminated to save space. The right side axes of (d)∼(f) indicate angles

that are calculated from quaternion to degree.

92



Chapter 6 Experiments of Photo-Model-Based Visual Servoing

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90 100 110

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

0 10 20 30 40 50 60 70 80 90 100 110

-100
-80
-60
-40
-20

0
20
40
60
80

100
120

0 10 20 30 40 50 60 70 80 90 100 110

-30
-20
-10

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100 110

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80 90 100 110

-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40

0 10 20 30 40 50 60 70 80 90 100 110

47 
35 
23 
11 
0 
-11 
-23 
-35 
-47 
-60 

E
rr

o
r 

in
 

x
-a

x
is

 [
m

m
]

E
rr

o
r 

in
 

y
-a

x
is

 [
m

m
]

E
rr

o
r 

in
 

z-
ax

is
 [

m
m

]

E
rr

o
r 

in
 

�
�

[]
 

E
rr

o
r 

in
 

�
�

[]

E
rr

o
r  

in

 �
�

[]

Recognition time (�) [s] 

Åx =
H
xM Ä

H
x
bM

(a)

(b)

(c)

(d)

(e)

(f)

(Step 1)(2)(3)(4)(5)(6)(7) (8) (9)(10) (11) (12) (14) (15) (17) (18)

�
�
(D

eg
re

e)
�
�
(D

eg
re

e)
�
�
(D

eg
re

e)
35 

23 

11 

0 

-11 

-23 

-35 

(Step 0)

35 

23 

11 

0 

-11 

-23 

-35 

Å y =
H
y
M
Ä

H
y
bM

Å z =
H
zM Ä

H
z
bM

Å "1 = H
"1M Ä

H
"
c1M

Å x =
H
xM Ä

H
x
bM

Å y =
H
y
M
Ä

H
y
bM

(13) (16) (19)

Fig. 6.3: The 3D pose estimation errors corresponding to Fig. 6.2. The crab’s position detection

errors are shown in (a), (b), and (c). Orientation detection errors are shown in (d), (e), and (f).

(Step 0)∼(Step 19) at the top of this figure show the specific time points which are correspond-

ing to the subfigures in Fig. 6.1. And from (Step 2) to (Step 19), “Step” has been eliminated to

save space.
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6.2 Visual servoing experiments with two manipulators

In this section, the target object’s pose 6DOF visual servoing will be conducted to confirm

the tracking ability of the visual servoing system. In these experiments, ΣM will move along

predetermined trajectories. Therefore, WTM is a known time-varying matrix. The goal of the

visual servoing experiment is to control the end-effector to maintain the relative pose with the

target object as

MTHd =




1 0 0 0

0 1 0 0

0 0 1 −500[mm]

0 0 0 1



, (6.1)

where ΣHd is the desired pose of ΣH .

At the beginning, VS-robot shown in Fig. 1.2 is set in front of TC-robot, and the 3D target’s

pose based on ΣH is set as

HφM = [HrTM ,H εTM ]T = [HxM ,HyM ,HzM ,Hε1M ,Hε2M ,Hε3M ]T = [0, 0, 500[mm], 0, 0, 0]T.

(6.2)

6.2.1 Visual servoing with the object’s position changing

In the position frequency response experiment, the target object is C12 crab. Its position tra-

jectories are sine curves with an amplitude of 100 [mm] and a period of 20 [s] in the yW and

zW -axes directions, and with amplitude of 100 [mm] and a period of 60 [s] in the xW -axis

direction. Its orientation does not change, i.e., εM = 0.

The experiment results are shown in Fig. 6.4. The point curves WrM = [WxM ,WyM ,

WzM ]T represents the predetermined movement trajectory of ΣM along the xW -, yW -, and zW -

axes of ΣW and orientation εM = [ε1M , ε2M , ε3M ]T = [0, 0, 0]T. The solid lines WrH =
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[WxH ,
WyH ,

W zH ]
T and εH are the visual servoing results of end-effector. Figure 1.2 shows the

initial status of ΣM and ΣH at t = 0[s].

It can be seen that even though the tracking curves WrH delay somewhat in phase, the visual

servoing system with photo-model-based recognition method can track the object WrM in time.

6.2.2 Visual servoing with the object’s orientation changing

In this subsection, visual servoing experiment will conducted with the object’s orientation

changing. Its position WrM does not change. ΣM rotates half period, i.e., 20[s], around zM ,

xM , and yM axes with sine wave respectively. The maximum rotation degree is 25[◦], i.e., 0.216

in quaternion [34]. The subfigures (2.1)∼(2.3) on the top of Fig. 6.5 show some states of target

object and end-effector during the experiment. According to the visual servoing control goal

Eq. (6.1), even though the target object only rotates without position changing, the end-effector

needs to adjust both own position and orientation to face towards the target object. Therefore,

the position/orientation visual servoing experiment is more complicated than the position one.

As shown in (2.a)∼(2.c), the broken lines show the desired position WrHd = [WxHd,
WyHd,

WzHd]
T of the end-effector. In (2.d)∼(2.f), according to the control goal Eq. (6.1), end-

effector’s desired orientation εHd = εM . The visual servoing results of the end-effector (WxH ,

WyH ,
WzH , ε1H , ε2H , ε3H) are shown as solid lines in Fig. 6.5.

In (2.a)∼(2.c), the position curves WxM ,WyM , and WzM of ΣM do not change. In (2.d)∼(2.f),

the point curves εM = [ε1M , ε2M , ε3M ]T represents the rotation trajectories of ΣM . Starting

from the initial status εM = 0, the target object rotates around zM axis. After it rotates back to

the initial status, it starts to rotate around xM axis. Rotational motion is performed separately.

For example, as shown in Fig. 6.5 (2.d), when the target object rotates around x-axis, only ε1M

has value and ε2M = ε3M = 0.

Through the results in (2.d)∼(2.f), on the overall trend, it can be seen that εH varies with the

changing of εM . And (2.a)∼(2.c) indicates that the real position WrH of the end-effector is also

near to the desired one WrHd. Therefore, the visual servoing system with photo-model-based
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Fig. 6.5: Visual servoing with the object’s orientation changing. Position WrM does not change.

ΣM rotates half period around zM , xM , and yM axes with sine wave respectively. The desired

pose of the end-effector is (WxHd,
W yHd,

WzHd, ε1Hd, ε2Hd, ε3Hd). The real pose of the end-

effector is (WxH ,
W yH ,

WzH , ε1H , ε2H , ε3H).
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recognition method can track the object’s orientation in time. And the position can be detected

correctly although the orientation εM changes. The results verified that the 2D photo-model of

a 3D target is able to estimate the 3D target pose.

6.3 Position visual servoing with pool environment

6.3.1 Experimental environment and content

As shown in Fig. 6.6, a squid toy is a target object. And a marker pen is hung on the end-effector

along the ZH direction. In the experiment, the stereo vision detects the pose six parameters

HφM of the object and the detection result is Hφ
M̂

. The goal is based on Hφ
M̂

to control the

end-effector to move to the top of the squid object and to maintain the relative position

HdrM = [HdxM ,HdyM ,HdzM ]T = [0, 0, 600]T[mm], (6.3)

where ΣHd is the desired pose of the end-effector. The squid floats on the water in the pool

without pose constraints. In the end, a marker pen is released and falls off to hit the squid

to confirm the position visual servoing ability. The purpose of the experiment is to verify the

availability of the proposed photo-model-based visual servoing system for catching a marine

creature.

6.3.2 Results and discussion of the experiment

Figure 6.7 shows the states of the visual servoing in chronological order. At the beginning

t = 0[s], in (a), the distance between ΣH and ΣM at the vertical direction was HzM = WzH −

WzM = 680[mm]. In other directions, HxM and HyM were unknown. Figure 6.7 (b) shows that

at t = 5[s], the end-effector has been controlled to move near the target position with a height

about HzM = 600[mm]. Comparing with (a), the height of the end-effector had a significant

drop in (b). In two camera images of (b), the squid became bigger than that in (a). As shown
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Fig. 6.6: Photo-model-based stereo vision system

in Fig. 6.7 (c) and (f), in the experiment, the moving direction of the squid target object was

change by a stick randomly. And in (d), (e) and (g), the wave was made by the stick to mimic

the natural situation. In the end, in (h), the marker pen was released and hit the squid.

Figure 6.8 shows the experimental results. The dotted line shows the pose of the end-

effector. The solid line shows the pose of the object detected by RM-GA.

In the top subfigures (a), (b), and (c), WxH , W yH , and W zH are the position tracking results

of the end-effector. Wx
M̂

, W y
M̂

, and Wz
M̂

are position recognition results of RM-GA and

calculated by Eq. (5.5) for comparing with the position tracking results of the robot. They are

all based on ΣW .

In the bottom subfigures (d), (e), and (f), ε1H , ε2H , and ε3H are the relative orientation of

the end-effector to its initial status calculated by Eq. (5.14). Because in this experiment end-

effector’s orientation dose not change, they are all 0. Hε1̂M , Hε2̂M , and Hε3̂M are orientation

recognition results of RM-GA based on ΣH .

In this experiment, the true pose of the target object is unknown. We only know the hight

HzM = 680[mm] at the beginning t = 0[s]. In (c), at t = 0[s], the detection result Hz
M̂

=

WzH − Wz
M̂

was near to 680[mm]. It can be seen that the stereo vision can detect the distance

correctly. Later, W zH reduced. The end-effector moved down to track the squid at 600[mm]

relative hight because of the control goal Eq.(6.3). Even if the orientation of the squid changed,
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Fig. 6.7: Position 3DOF visual servoing experiment with pose (position/orientation) 6DOF

estimation. The marker pen was tied on a rope and hung near the end-effector. From (a) to (g),

the rope was fixed by a student. At (h), the rope is released, and the marker pen hit the squid.

At the end (i), the squid drifted away due to the impact. (g1) and (h1) are enlarged views of a

part of (g) and (h) respectively.
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Fig. 6.8: Robot recognition and visual servoing results. WxH , WyH , and WzH in (a), (b), and

(c) are the position tracking results of the end-effector. ε1H ,ε2H , and ε3H in (d), (e), and (f) are

the relative orientation of the end-effector to its initial status calculated by Eq. (5.14). Because

in this experiment end-effector’s orientation dose not change, they are all 0. Wx
M̂

, Wy
M̂

, and
Wz

M̂
are position recognition results of RM-GA. They are all based on ΣW and calculated by

Eq. (5.5). Hε1̂M , Hε2̂M , and Hε3̂M are orientation recognition results of RM-GA based on ΣH .
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the end-effector could track the target continually. In the end, the marker pen was released and

hit the squid.

According to the results, it can be seen that the photo-model-based pose estimation method

is not susceptible to partial occlusion conditions. It can detect the object’s pose and control the

robot to track it continually, even though there were waves and light reflection on the water. It

is confirmed that the system has an ability to conduct a visual servoing task for a moving target

and has a robustness against external disturbances.

It is verified that the proposed pose estimation method can make the robot’s hand-eye track

the designated 3D target object by using its 2D photo-model. This means that the 3D target’s

pose can be estimated in real-time by 2D photo-model.
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Chapter 7

Conclusion

This thesis proposed a real-time 6DOF photo-model-based pose estimation method for the pur-

pose of 6DOF visual servoing. First, as a basic reference study, this paper introduced a model-

based eye-vergence visual servoing system. Stereo vision geometry, 3D model-based matching,

and RM-GA were explained in detail. Second, the experimental results of lateral and arc swing

motion tracking proved that the system could detect the 6DOF of a target object and then con-

tinuously track it.

With reference to the above technology, the paper proposed a real-time 6DOF photo-model-

based pose estimation method. It then introduced the generation and 3D matching of a photo-

model. The fitness function was designed to convert the object recognition problem into an

optimization problem. RM-GA was used as a solution to the optimization problem to ensure

object detection in real-time. According to the results of the fitness distribution and real-time 3D

pose visual servoing experiments, the full pose of a 3D target object was successfully estimated

in real-time using only a 2D photo, thus enabling 3D visual servoing of the target. The above

results were confirmed by real experiments using a 6DOF manipulator with stereo vision at the

end-effector.

Because the eye-vergence vision system has better tracking ability than the fixed camera

vision, the proposed photo-model-based 6DOF recognition method will be used in the eye-

vergence vision system in future works.
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