学位論文要旨

岡山大学大学院医歯薬学総合研究科

専攻分野 歯周病態学
身分 大学院生
氏名 Mohammed Zahedul Islam Nizami

論文題名
Functionalized Graphene Oxide Shields Tooth Dentin from Decalcification
官能化グラフェン酸化物は象牙質を脱灰から保護する

論文内容の要旨 (2000字程度)
Tooth decay and erosion are the critical clinical situations of complicated management because its multifaceted etiology has not yet been clearly understood. Several biomaterials, agents, and therapies have been proposed for the treatment of pain and hypersensitivity, however, none of them has been proven completely efficient, and the development of new desensitizing agents is the obligation now for an aging society.

Recently, significant efforts have been focused on 2-dimensional carbons due to their excellent chemical, physical, and electronic properties. Graphene oxide (GO) is a graphene analog mainly composed of sp3-bonded carbon atoms, possessing extraordinary physical and chemical properties. This in vitro study assessed the efficacy of graphene oxide (GO) and its nanocomposite with metal ions were in protecting dentin decalcification of dentin surface and sealing the orifice of dentinal tubules.

Five different GO-nanocomposites were synthesized by a one-pot method and a 1:1 weight % composite preparation with GO and nanoparticles. All the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The conditions of the surface of the hydroxyapatite plate (HAp) and dentin slice were observed by SEM before and after treatment with GO-nanocomposites and Saforide® as a positive control after they were incubated at 37˚C in EDTA and citrate buffer for 24 hours. The antimicrobial test and the cytotoxicity test were performed for biological characterization by comparing to 0.1% povidone iodine as a positive control. Colony-forming unit (CFU) of S. mutans was counted after treating with GO-nanocomposites for 24 and 48 hours. MTS assay was performed to observe the viability of human epithelial HeLa cell line after treating with GO-nanocomposites for 48 hours.

Almost all GO-nanocomposites were effective to reduce decalcification of hydroxyapatite plate under decalcification conditions. GO-Ag-CaF$_2$ sealed the orifice of dentinal tubules completely (100%), and GO-Ca$_3$(PO$_4$)$_2$, and GO-Ag were moderately (70-80%) or as Saforide® even under decalcification conditions. In addition, no color change was noticed on the dentin surface by treating with GO-nanocomposites.

The ability of the GO-nanocomposites was to reduce dentin decalcification and to seal the orifice of dentinal tubules without discoloration. These results suggest that GO-nanocomposites may be potentially useful to protect dentin decalcification. However, further in vivo studies are needed before clinical studies.