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Abstract: Adult T-cell leukemia/lymphoma (ATL), an aggressive type of T-cell malignancy, is caused
by the human T-cell leukemia virus type I (HTLV-1) infections. The outcomes, following therapeutic
interventions for ATL, have not been satisfactory. Photodynamic therapy (PDT) exerts selective
cytotoxic activity against malignant cells, as it is considered a minimally invasive therapeutic procedure.
In PDT, photosensitizing agent administration is followed by irradiation at an absorbance wavelength
of the sensitizer in the presence of oxygen, with ultimate direct tumor cell death, microvasculature
injury, and induced local inflammatory reaction. This review provides an overview of the present
status and state-of-the-art ATL treatments. It also focuses on the photodynamic detection (PDD) of
hematopoietic malignancies and the recent progress of 5-Aminolevulinic acid (ALA)-PDT/PDD, which
can efficiently induce ATL leukemic cell-specific death with minor influence on normal lymphocytes.
Further consideration of the ALA-PDT/PDD system along with the circulatory system regarding the
clinical application in ATL and others will be discussed. ALA-PDT/PDD can be promising as a novel
treatment modality that overcomes unmet medical needs with the optimization of PDT parameters to
increase the effectiveness of the tumor-killing activity and enhance the innate and adaptive anti-tumor
immune responses by the optimized immunogenic cell death.

Keywords: ATL; HTLV-1; PDT; PDD; chemotherapy; allogeneic hematopoietic cell transplantation;
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1. Introduction

Light treatments have been used as therapy for over 3000 years [1,2]. Specifically, light treatment
has been in use for treating various diseases (including psoriasis, rickets, vitiligo, and skin cancer)
in ancient Egyptian, Indian, and Chinese civilizations [3]. Hematoporphyrin (HP), which is a crude
porphyrin extract from blood has fluorescence property, and the fluorescence was used for tumor
detection since about 100 years ago [4,5]. The photosensitizing property of porphyrins, which absorb
light energy and converts it into the production of cytotoxic singlet oxygen (1O2) and other reactive
oxygen species (ROS) in the presence of oxygen, was recognized in the 1900s and extensively studied
using partially purified HP, since the 1970s [3–6]. Photodynamic therapy (PDT) is based on the
principle of a selective uptake of a nontoxic drug or dye: called the photosensitizer, which specifically
localizes to tumor cells and/or malignant tissues, then the lesion is illuminated with low-energy
tissue-penetrating light that is of appropriate and specific wavelength, usually visible light, in the
presence of oxygen. Eventually, tumor cell death and tissue disruption results, following the generation
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of singlet oxygen and other reactive oxygen species (ROS). PDT has been used since the early twentieth
century, employing dyes such as eosin together with light to treat cutaneous disorders especially skin
cancer; however, the range of indications has recently significantly expanded, including the brain,
bladder, endobronchial, esophageal and gastric cancers [3–11].

Intrinsic biochemical and metabolic molecules in the body that are localized within tumor tissues
have been used as light-activated therapeutic targets. The first metabolite in the heme biosynthesis
pathway in humans is 5-Aminolevulinic acid (5ALA). This pathway also includes several porphyrin
metabolites in addition to the end product, heme. Protoporphyrin IX (PpIX) is an immediate heme
precursor porphyrin that has efficient fluorescence and photosensitizing activity. PpIX absorbs energy
directly from an innocuous visible light source as a natural photosensitizer, and then transfers the
energy to molecular oxygen to create 1O2 and other ROS. The 1O2 is one of the cytotoxic molecules that
reacts promptly with cellular constituents, thus inducing tumor cell impairment that eventually leads
to tumor cell death with necrosis and/or apoptosis and tumor disruption [5–7]. 5ALA has been studied
for the detection and treatment of tumors in some organs. Application of 5ALA as a diagnostic tool is
based on the selective accumulation of the heme precursor PpIX in tumors and precancerous lesions.
Photodynamic diagnosis (PDD) and its clinical applications were intended to provide a good definition
of surgical margins in brain or skin tumors to better detect flat precancerous lesions as well as for the
early detection of tumors in the breast, bladder, endobronchial tissues, and gastrointestinal tract [8–12].

An ideal cancer treatment approach comprises not only of the primary tumor killing, but also
of initiating the tumor immune response to simultaneously recognize, pursue, and kill any residual
malignant tumor cells at or near the site of the primary tumors, as well as any distant metastases.
Practically, almost all the commonly used cancer treatments are immunosuppressive. At sufficient
doses to destroy the tumors, chemotherapy, and X-irradiation treatments are also toxic to the bone
marrow, the source of all the cells of the immune system. At a certain level, the dose-limiting toxic
side effects of these treatments, including neutropenia and other forms of myelosuppression, become
evident. There are several potential advantages of PDT over radiotherapy, chemotherapy, and surgery.
PDT has a relatively non-invasive property, can be targeted precisely and repeated doses are applicable
without the limitations of total doses that accompany radiotherapy and chemotherapy. Also, this can
be implemented with little or no scarring following a moderate healing process. Moreover, day-case
settings or outpatients are usually feasible with PDT treatments. That is, it is convenient for the patients,
and has no serious side effects [3,6,7,13–15].

For more than 35 years, the clinical potential of ALA-PDT has been recognized. However,
ALA-PDT applications are still at the initial stages [6,13–15]. This is mainly because the light is
not able to penetrate into the tumor tissues beyond the 3 mm thickness to induce sufficient tumor
necrosis and/or apoptosis. Additionally, a longer incubation time is required for ALA-PDT between
drug applications and light exposures, in order to be metabolically converted into PpIX. Moreover,
investigations into PDD and PDT using clinical specimens for hematopoietic malignancies such as
leukemia and lymphoma have remained at its early stages, so far.

This review presents an overview of the current status of PDD and PDT on hematopoietic
malignancies including leukemia and lymphoma, particularly focusing on adult T-cell leukemia/

lymphoma (ATL).

2. ATL: Current Treatment and Remaining Issues

2.1. Current Treatment

ATL is an intractable peripheral T-cell malignancy caused by the human T-cell leukemia virus
type-I (HTLV-1) which is characterized by multiple organ invasions by ATL cells, a high frequency of
opportunistic infections, the resistance of chemotherapeutic drugs, and poor prognosis [16,17]. ATL is
classified into two types based on the treatment strategies to be implemented; one is the aggressive
type, which includes the acute, lymphoma and unfavorable chronic types, and the other is the indolent



Cancers 2020, 12, 335 3 of 17

type, which includes favorable chronic and smoldering types [16,18]. Patients with aggressive- type
ATL require urgent treatment because of systemic symptoms and rapid progression. We have proposed
a therapeutic strategy for patients with ATL (Figure 1) [19].
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Figure 1. Diagnosis of adult T-cell leukemia/lymphoma (ATL) and the therapeutic strategy. ATL
is divided into two types in order to decide treatment strategy; one is an aggressive type and the
other is an indolent type. The aggressive types are acute, lymphoma, and unfavorable chronic,
while the indolent types include the favorable chronic and smoldering types. Therapeutic strategies
are decided based on these classifications. Allo-HCT, allogeneic hematopoietic cell transplantation;
ATL-G-CSF, combination chemotherapy consisting of vincristine, vindesine, doxorubicin, mitoxantrone,
cyclophosphamide, etoposide, ranimustine, and prednisone with granulocyte-colony stimulating factor
support; AZT⁄IFN-α, zidovudine and interferon-α; CHOP, cyclophosphamide, doxorubicin, vincristine,
and prednisone (CHOP14 is performed every 2 weeks, and CHOP21 is performed every 3 weeks); CR,
complete remission; hyper-CVAD, cyclophosphamide, vincristine, doxorubicin, and dexamethasone;
MAC, myeloablative conditioning; mEPOCH, etoposide, prednisone, vincristine, cyclophosphamide,
and doxorubicin (EPOCH) with modifications; PD, progressive disease; PR, partial remission; PS,
performance status; RIC, reduced-intensity conditioning; SD, stable disease; VCAP−AMP−VECP,
vincristine, cyclophosphamide, doxorubicin and prednisone (VCAP)-doxorubicin, ranimustine and
prednisone (AMP)−vindesine, etoposide, carboplatin, and prednisone (VECP). Figure 1 was reproduced
and modified from Figure 1 in Utsunomiya et al. (Cancer Science, 2015) [19]. Reprint is permitted by
Cancer Science.

Complete remission (CR) rates for patients with aggressive ATL receiving combination
chemotherapy is very low, ranging from 17% to 43%; the median survival time (MST) is also
very short, ranging from 5 to 13 months, as reported by the Lymphoma Study Group (LSG) of the
Japan Clinical Oncology Group (JCOG) [17,19–23]. The MST and 5-year overall survival (OS) rate of
all patients who had registered in these 3 clinical trials (JCOG9109, JCOG9303, JCOG9801) were only
11 months and 14%, respectively [24].

Combination therapy is frequently used for patients with ATL receiving zidovudine and
interferon-α (AZT/IFN-α) antiviral therapy in countries other than Japan. The high efficacy of this
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combination therapy for patients with indolent-type ATL has been reported by Bazarbachi et al. [25],
and they also reported that the OS rate in patients with acute-type ATL who received this combination
therapy was better than that in patients who received chemotherapy [25]. However, it was observed
that the OS rate in patients with acute-type ATL who received AZT/IFN-α was not as favorable as
that in Japanese patients with ATL who had been treated with intensive chemotherapy in the trials
conducted by JCOG-LSG [21,23–26]. In Japan, a randomized phase III study comparing AZT/IFN-α to
watchful waiting is currently ongoing only for patients with indolent-type ATL. Combination therapy
of arsenic trioxide and AZT/IFN-α was reported to be effective in patients with newly diagnosed
chronic-type ATL by Kchour et al. [27].

Dose-intensified chemotherapy using autologous stem cell support for patients with aggressive
ATL failed to improve their outcomes because of frequent ATL relapses and a high incidence of
infectious complications [28]. We first reported the possibility that allogeneic (allo) hematopoietic
cell transplantation (HCT) using myeloablative conditioning (MAC) may improve the outcome of
patients with aggressive ATL [29]. Afterward, many methods of allo-HCT for patients with ATL
using reduced-intensity conditioning, peripheral blood stem cells, and cord blood were developed
by Japanese researchers [30–33]. Furthermore, HLA-haploidentical HCT was performed in patients
with ATL who did not have HLA-matched suitable donors [34]. HLA-haploidentical HCT using
post-cyclophosphamide administration is currently under investigation in patients with ATL in Japan.
Many nationwide retrospective analyses of allo-HCT in patients with ATL were performed using
the Japanese Transplant Registry Unified Management Program database [35]. Although OS rates of
patients with ATL are not so high, allo-HCT is regarded as the only curative treatment for aggressive
ATL in Japan at the present time. Furthermore, allo-HCT is thought to be the curative treatment
in many countries other than Japan [33,36,37]. Recently, two new molecular targeting agents have
been approved for aggressive ATL in Japan. One is anti-CC chemokine receptor 4 (CCR4) antibody,
mogamulizumab, which is effective in CCR4-positive patients with aggressive ATL, and the other is
lenalidomide, which shows high response rates in relapsed patients with aggressive ATL [38–40].

Mogamulizumab in combination with chemotherapy for patients with newly diagnosed aggressive
ATL showed a higher CR rate than that in patients receiving chemotherapy alone [41]. However, the
use of mogamulizumab before allo-HCT showed a negative impact on OS in patients with ATL who
underwent allo-HCT because of a high incidence of severe acute graft-versus-host disease (GVHD)
and high transplant-related mortality [42]. Mogamulizumab has a strong cytotoxic effect that can kill
not only ATL cells, but also CCR4-positive normal regulatory T (T-reg) cells; therefore, severe acute
GVHD might be induced in association with reduced T-reg cells in recipients [43]. An appropriate
use of mogamulizumab for patients with ATL who plan to undergo allo-HCT is now developing in
Japan [44]. In patients with ATL who have CCR4 mutations of ATL cells, mogamulizumab therapy
confers better OS compared to that in patients without CCR4 mutations [45].

Lenalidomide is another new drug that has been approved for relapsed patients with ATL in
Japan [40]. The efficacy of lenalidomide for patients with ATL is expected to be similar to that of
salvage therapy. However, the usefulness of lenalidomide during, before and/or after allo-HCT in
patients with ATL has not been elucidated. This issue should be addressed by future research.

2.2. Remaining Issues

We recognize the fact that a Tax-specific T-lymphocyte (CTL) response is associated with
graft-versus-ATL effects in patients with the acute type of ATL after allo-HCT [46]. Vaccine therapy
with Tax-peptide-pulsed dendric cells is expected to maintain a long-lasting remission in patients with
aggressive ATL. A phase Ia/Ib study of this vaccine with Tax-targeted dendritic cells showed good
efficacy in patients with aggressive ATL that stabilized after chemotherapy [47,48]. A phase II study of
this vaccine therapy will commence in Japan soon. As for the other immunotherapy, immune checkpoint
inhibitors such as programmed cell death-1 (PD-1) inhibitors and programmed cell death-ligand 1
(PD-L1) inhibitors are also expected to show high efficacy for patients with ATL. However, it has been
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reported that patients with indolent ATL progress rapidly after receiving PD-1 inhibitor (nivolumab)
therapy [49,50]. In a small Japanese study of patients with aggressive ATL, no patient showed
characteristics similar to those in the cases reported by Ratner et al. [49–51]. An anti-tumor role of the
PD-1/PD-L1 pathway might be different between the indolent and aggressive stages of ATL. However,
this trial of an anti-PD-1 antibody (nivolumab) should be given special attention.

Recently, the genomic landscape of ATL has been clarified by Kataoka et al. based on an integrated
molecular analysis [52]. They have also reported the relationship between genetic alterations and the
prognosis of patients with ATL [53]. These analyses will contribute to the accurate diagnosis and the
establishment of individualized therapeutic strategies in patients with ATL.

3. Basic Understandings of Photodynamic Therapy for ATL

3.1. Photodynamic Detection (PDD) for ATL Cells

Hematopoietic cell lines have been used for the investigation of the biological effects of PDT [54–58].
However, studies on PDD have been concentrated on solid tumors [1–3]. To our knowledge, the first
study of PDD for human hematopoietic malignancies has been reported using human ATL patient
specimen [59].

ATL, an aggressive malignant disease of the CD4 (+) T lymphocytes is induced by the HTLV-1
infection [60–63]. Globally, it is estimated that there are about 20 million HTLV-1-infected persons [64],
and 1.1 million live in Japan. Approximately 1000 cases of ATL are estimated as the annual number in
Japan alone [65]. HTLV-1 infections mainly occur via breastfeeding, resulting in ATL in about 3–5%
of HTLV-1 asymptomatic carriers (ACs) after a prolonged latent period of 40–60 years. Such a long
latent period suggests the possibility of a multi-step leukemogenic and/or lymphomagenic mechanism
in the development of ATL [66]. About 95% of ACs preserve the AC state with no ATL developing
throughout their lives. However, carriers have to live with the fear of possible ATL development.
Therefore, one of the key issues revolves around the need to establish an accurate and sensitive method
to identify high-risk ACs who are highly susceptible to developing ATL, so that they can be examined
intensively and provided with preventive treatments for ATL. However, some indolent ATL patients
may develop an acute crisis, which suggests the progression to the aggressive ATL. Almost 50% of
aggressive ATL patients die within 6 to 12 months despite intensive intervention [19,67]. Consequently,
the challenge that needs to be addressed urgently is for an established method to identify high-risk
indolent ATL patients, who might have developed and/or are likely to develop the aggressive ATL,
and also to establish practical clinical treatments to avoid an acute crisis.

In recent times, preferential accumulation of the endogenous photosensitive metabolite, PpIX,
has been shown in ATL cell lines, after a short-term culture with 5ALA. More than 10- to 100-fold
accumulation of PpIX was observed in ATL leukemic cell lines and ATL patients’ leukemic cells
compared to that in healthy peripheral blood mononuclear cells (PBMCs) after a short-term culture
with 5ALA [59]. Dynamic changes in flow cytometry (FCM) profiles during the onset and progression
of ATL were detected. PBMCs from healthy volunteers; ACs; and patients with smoldering-, chronic-,
acute-type ATL, and HAM/TSP (HTLV-1-associated myelopathy/tropical spastic paraparesis) were
analyzed with flow cytometry, using PpIX and TSLC1/CADM1 (tumor suppressor in lung cancer
1/cell adhesion molecule 1) parameters. Dynamic changes in 2D FCM profiles were shown from
smoldering-, to chronic-, to acute-type ATLs in accordance with progression (Figure 2A). Leukemia
Risk Index (LRI) was defined in order to clarify the profile differences in FCM data. According to the
LRI data, asymptomatic HTLV-1 carrier PBMCs were classified into three categories: Low-risk ACs
(similar to healthy profile), medium-risk ACs (intermediate profile), and high-risk ACs (similar to
smoldering ATL profile). While the increase in LRI was observed to be progression-dependent from
HTLV-1 carriers to indolent ATL, and acute ATL states, HAM/TSP, which is a chronic inflammatory
disease, demonstrated that the LRI is almost similar to that of the low- or medium-risk ACs (Figure 2B).
Furthermore, metabolomics analyses of the porphyrin pathway showed the preferential accumulation
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of the endogenous photosensitive metabolite, PpIX in ATL. Significant changes in the intermediate
metabolites such as 5ALA, porphobilinogen, uroporphyrinogen III and coproporphyrinogen III were
not detected in the normal CD4 (+) T cells, HTLV-1 immortalized cells, and ATL leukemic cells in
cultures with and without 1 mM 5ALA. On the other hand, dramatic differences in PpIX levels were
detected among them. More than several hundred-fold higher PpIX levels were found in the ATL
leukemic cells and PpIX were 10–30-fold higher in ACs cells than that in the normal CD4 (+) T cells
when cultured in the presence of 1 mM 5ALA. No accumulation of PpIX was detected in any of these
cells in the control culture conditions without 5ALA. Additionally, downstream heme molecules;
dihydrobiliverdin, and bilirubin, showed similar profiles with PpIX. This evidence indicated that the
specific stage from PpIX to heme in the heme-metabolic pathway progressively deteriorated with
HTLV-1 infection and at the onset and progression of ATL [59].
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Figure 2. Dynamic changes of Flow cytometry (FCM) profiles during onset and progression of
ATL. (A) FCM profiles with the Protoporphyrin IX (PpIX)/TSLC1 parameters indicating the dynamic
changes during the onset and progression of ATL. (b–d) asymptomatic carrier (AC) peripheral blood
mononuclear cells (PBMCs) profiles showed three patterns: Low-risk ACs (similar to healthy profile),
medium-risk ACs (intermediate profile), and high-risk ACs (similar to smoldering ATL profile).
(B) Leukemia Risk Index (LRI) and Inflammatory Reaction Index (IRI) changes in healthy donors, ACs
and three types of ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP).
(a) ATL showed onset and progression-dependent increase in LRI. AC PBMCs were classified into three
categories (low-, medium-, and high-risk) according to the LRI values, corresponding to the typical
FCM profiles in A). (b) HAM/TSP showed high IRI values. This figure was reproduced and modified
from Figure 3 in Oka et al. (Scientific Reports 2018) [59]. Reprint is permitted by Scientific Reports.

Then, PDD of PpIX in combination with the ATL leukemic cell marker would be useful to detect
the minor population of leukemic cells in ACs and/or indolent ATL patients as well as for detection of
overt stage acute ATL, which contributes to early detection of high-risk ACs and high-risk indolent
ATL. PDD of PpIX could supply the valuable information on patient status and monitoring the dynamic
changing behavior of leukemic cells or minimum residual disease after treatments in the single cell
resolution. As the significant increase of PpIX have been detected in various kinds of leukemia and
lymphoma cells after a short-term culture with 5ALA, including T-cell, B-cell leukemia/lymphomas,
myeloid leukemias and also lymphomas, PDD of PpIX in combination with malignancy/disease-specific
markers would be useful for the precise diagnosis of various hematopoietic malignancies and also
inflammatory diseases.
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3.2. Photodynamic Therapy (PDT) of ATL Cells

Generally, the published reports of PDT utility for leukemia have almost exclusively been
performed with cultured cell lines [68–72]. To our knowledge from a database search, there are
limited published studies on PDT in vivo or ex-vivo experiments for the treatment of human leukemia.
One study assessed the treatment with extracorporeal photochemotherapy (photopheresis) in four
patients with chronic or smoldering type ATL, which reported that the skin lesions with ATL cell
infiltration began to disappear from 4 to 8 months after starting photopheresis. Cell surface markers
in three of the patients exhibited improvement, while, in the remaining patient, serial decreases in
soluble interleukin-2 receptor levels (950 U/mL to 620) occurred in the serum after 4 months. Based on
the findings of this pilot investigation, application of photopheresis may be successful in ATL [73].

In our recent publication, we showed that ALA-PDT successfully induced ATL leukemic cell
death. ATL leukemic cell lines cultured in the presence of 1 mM 5ALA treated with 10 min of visible
light exposure followed by FCM analyses using PI and Annexin V-FITC staining, showed that almost
all ATL leukemic cells died by apoptotic and/or necrotic cell death after PDT treatment. Furthermore,
98.7% of ATL leukemic cell death could be induced with PBMC specimens from chronic ATL patients
subjected to the same treatment, while 77.5% of normal PBMCs survived (Figure 3A(a–d)). Two
clear peaks, corresponding to normal and ATL leukemic cell populations, respectively, were observed
without light exposure conditions in the PpIX/TSLC1 profile of FCM (Figure 3B(a,b)). On the contrary,
ATL leukemic cell peak completely disappeared and only a single peak corresponding to the normal
cells remained after the light exposure, showing almost the same PpIX/TSLC1 profile of FCM as that of
low- or medium-risk ACs (Figure 2; Figure 3B(c,d)). Essentially the same results as that of the PBMC
experiments were reproduced with whole blood PDT experiments using chronic ATL patient blood
specimens. This is because chronic ATL is an indolent type of ATL that may progress to an aggressive
type of acute ATL. This evidence clearly shows that ALA-PDT treatment successfully eliminated ATL
leukemic cells with highly-specific leukemia cell death via apoptosis and/or necrosis with minimal
damage to normal PBMCs even in whole blood specimens, indicating the possibility ALA-PDT/PDD
can inhibit the progression of ATL from indolent to aggressive types. Moreover, PpIX (+)/TSLC1 (+)
ATL leukemic cells and intermediate pre-leukemic cells were sensitively detected by ALA-PDD for
precise diagnosis, suggesting the possible role of ALA-PDT/PDD in preemptive therapy of ATL by
eliminating the small population of leukemic and/or pre-leukemic cells in high-risk indolent ATL
before the overt onset of aggressive ATL. Additionally, elimination of leukemic and/or pre-leukemic
ATL cell population from high-risk ACs with ALA-PDT/PDD would be hopeful. The ALA-PDT/PDD
along with the circulatory system may help with the diagnosis and treatment of various types of
malignancies other than ATL, such as other types of lymphoid/myeloid leukemia.

PDT kills malignant tumor cells by apoptosis and/or necrosis, and also induces various effects in
the tumor microenvironments. These effects on the tumor-associated or -infiltrating immune cells take
the lead in infiltrating various kinds of immune cells, for instance, the monocytes/macrophages and
neutrophils, into the targeted sites. Immunogenic cell death also stimulates the host immune system,
causing acute inflammation to release various kinds of acute-phase response and proinflammatory
mediators, such as chemokines, HSPs, complement proteins, arachidonic acid derivatives, and cytokines
(e.g., IL-1, IL-6, and TNF-α) [7,74,75]. Danger signals, called damage-associated molecular patterns
(DAMPs), are produced from PDT-treated dying cells. DAMPs enhance antigen presentation by
dendritic cells (DCs) and the recruitment of antigen-specific CD8(+) CTLs [7,74–77]. LCL521, acid
ceramidase inhibitor, enhanced PDT, and PDT-generated vaccine effects have an effective restriction
of the myeloid-derived suppressor cells, (MDSCs), and Tregs activities [78,79]. Antibodies against
PD-1 and PD-L1, the immune checkpoint proteins, are a novel modality of therapeutic drugs for the
treatment of cancers. The combination of ZnP@pyro PDT treatment with anti-PD-L1 consequently
induces the eradication of light-irradiated primary tumors and furthermore the complete inhibition of
untreated distant tumors by enhancing the systemic tumor-specific cytotoxic T cell response [75,80].
Further research will be able to optimize various PDT-related parameters.
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Figure 3. FCM analyses of chronic ATL patient PBMCs before and after photodynamic therapy (PDT).
After PDT treatment, cells were labeled with PI, tumor suppressor in lung cancer 1 (TSLC1)-Alexa647,
and Annexin V-FITC and analyzed. (A) (d) FCM analyses showed that 98.7% of TSLC1(+) ATL leukemic
cells were TSLC1(+)/Annexin V(+) dead cells (red), whereas 77.5% of TSLC1(-) normal cells were
TSLC1(-)/Annexin V(-) live cells (blue) after aminolevulinic acid (ALA)-PDT treatment, indicating that
ALA-PDT induced highly-specific ATL leukemia cell death with minimal damage to normal PBMCs.
FCM analyses of chronic ATL patient specimens before and after ALA-PDT treatment. (B) (a,b) Chronic
ATL PBMCs incubated in 1 mM 5ALA for 48 h showing 2 peaks corresponding to the normal and
ATL leukemic cells in TSLC1-FITC and PpIX profiles. (c,d) After 10 min of light exposure-treatment,
the ATL leukemic cell peak completely disappeared and only the normal cell peak remained. This
figure is reproduced, modified from Figures 5 and 6 in Oka et al. (Scientific Reports 2018) [59] Reprint is
permitted by Scientific Reports.

4. Bench to Bed; Clinical Applications of PDT for ATL and Others

4.1. PDT for ATL Cells

Based on the findings described above, we are now at the stage of preparing clinical applications
for this treatment. Although clinical treatments for aggressive ATL have been expanded over these
years, they are still insufficient. Particularly, there are two main problems remaining in the current
treatment of ATL; the first is the acquisition of resistance to conventional therapy during induction
therapy and the second is the lack of treatment options at the time of recurrence. PDT is expected
to solve these problems since it has the efficient and distinct cytotoxic mechanism that is clearly
different from that of conventional treatments. As a bridge to allogeneic HCT, patients need to
receive intensive combination chemotherapy to reduce the tumor burden; however, many cases could
become refractory to chemotherapy before transplant. Although the efficacy of anti-CCR4 antibodies
and immunomodulatory drugs such as lenalidomide have been approved for aggressive ATL, the
pretransplant use of these drugs could cause severe GVHD after HCT, and thus, it is not appropriate
as a bridging therapy to HCT [42,81]. As compared to anti-CCR4 antibodies or lenalidomide, the
effect of PDT on normal immune cells appears to be negligible, the adverse effect of pretransplant
PDT on GVHD after transplant is considered to be limited. Combining PDT with the conventional
induction chemotherapy may enable faster and deeper remissions, which leads to safe transplant.
On the other hand, it is also important to develop alternative treatments for refractory or recurrent
diseases. We confirmed that in vitro experimental ALA-PDT could exert cytotoxic activity on ATL
cells freshly obtained from patients with aggressive ATL which is clinically resistant to conventional
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chemotherapy or anti-CCR4 antibodies [82], suggesting that ALA-PDT can be a treatment modality for
refractory or recurrent ATL patients after receiving the existing conventional treatments.

For the actual clinical applications, it is necessary to devise an in vivo system of PDT that can
be used to expose circulating hematological cancer cells to the light. Tumors that have been targeted
by PDT so far have been solid cancers such as skin cancer, esophageal cancer, and bladder cancer
that can be easily exposed to light [83–85]. In contrast to solid tumors, the application of PDT to
hematological malignancies is a challenging process because basically these do not present on the skin
or luminal surface where light can reach. In this regard, previous studies on animal experiments about
in vivo PDT system for hematological malignancies [57,86–88] and clinical studies of extracorporeal
phototherapy using ultraviolet (UV-ECP) for mycosis fungoides (MF) and Sezary syndrome (SS)
provide promising suggestions [89,90]. One preclinical study of an in-vivo animal model of PDT
demonstrated that hematological cancer cells in peripheral blood could be directly killed by PDT. These
studies indicate that direct killing can be observed in in-vivo environments where the light-shielding
effect by erythrocytes may be interrupted with the cytotoxic effect of PDT on tumor cells. However, the
direct killing alone does not provide sufficient clinical effect on blood cancers that have tumors in sites
other than peripheral blood, and thus, a so-called abscopal effect is necessary. To consider this, the
clinical observations that PDT using the extracorporeal circulation system has been effective for MF/SS
may be giving us hints. UV-ECP is a form of phototherapy where blood is exposed extracorporeally
to the photoactivated drug 8-methoxypsoralen (8-MOP). MF/SS was originally a dermatological
hematologic tumor that was effective with direct skin irradiation, but PDT using an extracorporeal
circulation system was performed on patients with a stage after systemic invasiveness and it has
been reported that it works well beyond the direct killing effects. Even when just a limited portion
of the total blood cells is treated by one course of the UV-ECP procedure, the usual experience is
that of a larger reduction in malignant T cells [91]. Such a finding suggests that ECP may induce an
immune-mediated response to malignant cells, as well as direct killing. The possible mechanism is
proposed as follows: the induction of apoptosis of malignant T cells, maturation of dendritic cells
(DCs), presentation of tumor-loaded DCs to CTL, and expansion of a population of CTLs against the
malignant cells [89,92–94]. Similar biological effects have also been reported in ALA-PDT [95–97].
ATL is known to be sensitive to immunotherapy and may be a good target for PDT as an immune
modulation therapy. We are currently planning a Phase1 clinical trial of ALA-PDT using extracorporeal
circulation for aggressive ATL (Figure 4).
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Figure 4. Model of ALA-PDT for hematopoietic malignancies using extracorporeal circulation system.

5ALA is administered orally, and then visible light is exposed to ATL cells and normal
lymphocytes in peripheral blood using the extracorporeal circulation system. Direct killing effects and
immune-modulating effects are expected.
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There are several remaining issues to overcome for the start of clinical trials. First, to safely
perform extracorporeal circulation, careful consideration of patient eligibility is required since patients
suffering from aggressive ATL are often in poor general condition. Second, in the development of an
extracorporeal circulation device, it is necessary to estimate the light shielding effect of red blood cells
in peripheral blood and determine an appropriate amount of light irradiation. Third, the influence
of PDT on normal hematopoietic cells in human clinical situations should be accurately evaluated.
Because hematological cancer cells flow in the circulating bloodstream together with normal blood
cells, it is impossible to specifically irradiate tumor cells with PDT. Each normal lymphocyte subset
has its own specific function and the unpredicted depletion or modulation of the function of a certain
subset can disrupt the overall immune balance.

In summary, although various problems remain, ALA-PDT can be promising as a novel treatment
modality that overcomes unmet medical needs in current ATL treatment by having a direct-killing
effect with distinct cytotoxic mechanisms and a possible abscopal antitumor effect by harnessing
host immunity.

4.2. Other Possible Clinical Applications of ALA-PDT

UV-ECP has been used for cutaneous T cell lymphoma (CTCL) [98]. As in most reports on UV-ECP
for CTCL, its use was in combination with other agents and modalities (including retinoids, PUVA,
interferons, and others); indicating that ECP can be safely combined with many other therapeutic
agents. ALA-PDT may have a possibility to apply CTCL as well. Also, ALA-PDT may be used for the
prevention of metastasis of solid cancers because it could be a unique approach to eliminate circulating
tumor cells (CTCs) from the bloodstream [99].

Other indications where ALA-PDT can be used are GVHD and solid organ transplant rejection.
Chronic GVHD is an immune complication that occurs in 30–50% of patients who have undergone
allogeneic HCT. Although it crucially affects the mortality and morbidity of long-term survivors
after transplant, there is no established secondary treatment for steroid-refractory cases. Various
treatments such as UV-ECP, iburutinib, ruxolitinib, and low-dose IL-2 have been studied for chronic
GVHD [100,101]. Previous studies reported that UV-ECP can induce tolerance by modulating immune
cells [102]. We studied the effect of ALA-PDT on allo-activated T cells using murine allogeneic BMT
model and found that the activated donor-derived effector T cells acquired PpIX after exposure of
5ALA and was susceptible to apoptosis by PDT, suggesting ALA-PDT can reduce GVHD-responsible
effector T cells and might improve clinical symptoms of GVHD [82]. ALA-PDT can be used with other
immune-suppressive therapies and may offer a promising basic modality for patients with refractory
chronic GVHD in the future.

5. Conclusions and Perspectives

The treatment of leukemia with PDT is an interesting approach because the side effects of PDT are
modest in comparison to current chemotherapy and radiotherapy for leukemia. PDT is a relatively
non-invasive approach. Therefore, it can be targeted precisely, and with repeated treatments, the
limitations of chemotherapy and radiotherapy that are related to the total dose are not the norm
with PDT, also, little or no scarring occurs with a moderate healing process. Recent progress in
ALA-PDT treatment revealed successful elimination of ATL leukemic cells with the highly-specific
leukemia cell death via apoptosis and/or necrosis with minimal damage to the normal PBMCs even
in whole blood specimens; indicating the possibility that ALA-PDT/PDD can inhibit the progression
of ATL from indolent to aggressive types. Moreover, ATL intermediate pre-leukemic cells as well as
leukemic cells were sensitively detected by ALA-PDD for precise diagnosis, suggesting the possibility
of ALA-PDT/PDD use as preemptive therapy of ATL since it eliminates the small population of
leukemic and/or pre-leukemic cells in high-risk indolent ATL before the overt onset of aggressive ATL.
Additionally, there is an optimistic expectation for the elimination of leukemic and/or pre-leukemic ATL
cell population from high-risk ACs with ALA-PDT/PDD. Along with the extracorporeal circulation



Cancers 2020, 12, 335 11 of 17

system, ALA-PDT/PDD may facilitate the early diagnosis and treatment of various malignancies
besides ATL, including other lymphoid/myeloid leukemia types. Furthermore, aberrantly-activated
cells in non-malignant diseases such as chronic inflammatory diseases, auto-immune diseases, GVHDs,
transplantation rejection could be targeted. Circulating tumor cells (CTCs) in the peripheral blood,
which are responsible for tumor metastasis from primary cancers and sarcomas, could also be targeted
with this treatment.

To optimize several PDT-related parameters such as photosensitizer and light doses,
photosensitizer and light sources, drug-light intervals, fluence rates, in combination with chemotherapy
in order to enhance the effectiveness of the tumor-killing activity, and also to enhance the innate and
adaptive anti-tumor immune responses with optimization of immunogenic cell death, further research
is required.
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