Toughening of highly translucent zirconia by monoclinic ZrO₂ and SiO₂ particle coating

Soichiro UNO¹,², Masahiro OKADA¹, Hiroaki TAKETA¹,², Yasuhiro TORII² and Takuya MATSUMOTO¹

¹ Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
² Department of Comprehensive Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan

Corresponding author, Takuya MATSUMOTO; E-mail: tmatsu@md.okayama-u.ac.jp

The mechanical properties of highly translucent partially stabilized zirconia (PSZ) need to be improved; however, improvement of mechanical properties often decreases translucency. To overcome this problem, a monoclinic ZrO₂ (mZrO₃)/SiO₂ dispersion was prepared and applied as a coating material for PSZ. The influence of surface treatment by the mZrO₃/SiO₂ dispersion on the surface topography, crystallography, and mechanical properties of highly translucent PSZ was investigated in this study. Following the treatment, the mechanical strength of highly translucent PSZ improved by 170% compared with control, for the best mZrO₃/SiO₂ dispersion ratio and heating temperature condition, while maintaining its translucency. The proposed coating is promising for improving the mechanical properties of highly translucent PSZ.

Keywords: Highly translucent partially stabilized zirconia, Monoclinic phase, Biaxial flexural strength, Thermal treatment

INTRODUCTION

Ceramic restorations are in high demand in the field of dentistry, owing to their high esthetics and biocompatibility that allows to avoid metal allergy. Among ceramic materials, zirconia has received the most attention, owing to its good mechanical strength. Zirconia can exist in three crystal phases: monoclinic, tetragonal, and cubic. When non-stabilized zirconia is heated above its phase transition temperature and cooled back to room temperature, its crystal structure is transformed from the tetragonal to the monoclinic phase, accompanied by a 3–4% volume expansion, leading to easy degradation of zirconia. Addition of yttria (Y₂O₃) avoids this crystal phase transformation and makes the material thermodynamically metastable; this material is called yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Conventional Y-TZP (stabilized with ca. 3 mol% Y₂O₃) exhibits very good mechanical strength, because when a crack is formed on its surface, the crystal phase around the crack transforms from tetragonal to monoclinic (tetragonal-monoclinic transition). This tetragonal-monoclinic transition prohibits crack growth and breaking. However, owing to the nature of tetragonal zirconia (ZrO₂) and the presence of alumina (Al₂O₃) as a sintering agent, conventional Y-TZP has low translucency.

Highly translucent partially stabilized zirconia (PSZ) was developed for overcoming this problem; the phase composition of this novel material is different from that of conventional Y-TZP. Owing to a higher Y₂O₃ stabilizer content, this highly translucent zirconia contains a significant amount of cubic zirconia (cZrO₂) and a smaller amount of Al₂O₃, rendering this zirconia more translucent. Moreover, such highly translucent zirconia ceramics are hydrothermally stable, because cZrO₂ grains do not transform to the monoclinic zirconia (mZrO₂). A large amount of cZrO₂ on the other hand, results in a decrease in mechanical properties, especially in terms of strength and fracture toughness.

In previous studies, the mechanical strength of highly translucent zirconia was improved by adding other oxides. In addition, infiltrating glass ceramics was also considered for this purpose. Although these approaches are valuable, improvement is not sufficient for maintaining the material’s translucency. Therefore, easier handling and more economical methods are required.

In this study, we attempted to increase the mechanical strength of highly translucent PSZ while maintaining its translucency; we used surface coating, the motivation for which was the toughening mechanism of strengthened glass, where the outer surface is compressed for avoiding breakage owing to the outside stress. We used a dispersion containing mZrO₂ and SiO₂ as a coating agent for PSZ. The mZrO₂ works to form a compressive stress layer on the material’s surface using volume change, when the crystal phase changed from tetragonal to monoclinic phase. The SiO₂ serves as a binder to improve wettability and to accelerate the sintering of mZrO₂. In addition, both mZrO₂ and SiO₂ have smaller thermal expansion coefficients than the base PSZ material, which also supports formation of a compressive stress layer on the material’s surface.
MATERIALS AND METHODS

Materials
Pre-sintered PSZ (Katana UTML) was kindly supplied by Kuraray Noritake Dental (Tokyo, Japan). Alumina particles (size, 50 µm) (Hi-Aluminas; Shofu, Kyoto, Japan) were used for sandblasting. The crystal composition of as-sintered Katana UTML is reported as follows: cZrO₂ 70.6 wt%; tZrO₂ 28.9 wt%; mZrO₂ 0.2 wt%; rhombohedral zirconia (rZrO₂) 0.3 wt%7). The mZrO₂ crystals (particle size, 13 nm) were prepared by a hydrothermal treatment of a 4 mol/L ZrOCl₂ (Wako Pure Chemical Industries, Osaka, Japan) aqueous solution at 200°C13,14). The mZrO₂ crystals were centrifugally washed with ultrapure water, dried in air, and then re-dispersed in ultrapure water (solid content, 50 wt%). Milli-Q water (Millipore, Bedford, MA, USA) with a specific resistance of 18.2×10⁶ Ω·cm was used to prepare and to disperse the mZrO₂ crystals. An aqueous suspension of 50 wt% SiO₂ stabilized by Na₂O (LUDOX® TM-50, Sigma-Aldrich, St. Louis, MO, USA) was used for the component of coating. A dispersion for the coating of PSZ was made by mixing the two components and diluting into 25 wt% solid content by ultrapure water, and then sonicating them with an ultrasonic bath (ASU-2D; AS ONE, Osaka, Japan) for 10 min at 23 kHz, to obtain the dispersion.

Sample preparation
A low-speed cutting machine was used to cut the pre-sintered zirconia under a wet condition with tap water. After the disks were sintered at 1,550°C for 2 h (heating rate: 10 °C/min from room temperature to 1,550°C; cooling rate: below 10 °C/min), the sintered PSZ (~14 mm in diameter and ~1.2 mm in thickness) were subjected to the following treatment procedures (Fig. 1):
1) Sandblasting: Both sides of the as-sintered disk were ground under the wet condition, using a rotator fixed with a coarse diamond grinding disk (Apex CPG 125 µm; Buehler, Illinois Tool Works, Chicago, IL, USA) followed by grounding using P600 and P1000 silicon carbide abrasive papers (Nihon Kenshi, Hiroshima, Japan). Then, the single-side of the disk after grinding was sandblasted with 50 µm alumina particles, using a laboratory sandblaster (Hi-Blaster III; Shofu) at 0.2 MPa for 10 s. After the sandblasting, each disk was cleaned with ultrapure water three times, using an ultrasonic cleaner (ASU-2D; AS ONE, Osaka, Japan) for 10 min at 23 kHz, to remove the alumina particles and debris.
2) Surface coating: A drop (10 µL) of the mZrO₂/SiO₂ dispersion (mZrO₂/SiO₂ weight ratio: 20/1, 10/1, 8/3, or 6/5) was applied on the sandblasted side of the disk, and then dried using mild air blowing.
3) Heating treatment: The mZrO₂/SiO₂-coated samples were heated in a calcination furnace (KBF314, Koyo Thermo Systems, Nara, Japan) at three different temperatures (1,000, 1,300, and 1,500°C) for 2 h (heating rate: 10°C/min; cooling rate: <10°C/min).

In this study, the mZrO₂/SiO₂-coated PSZ treated at different heating temperatures (1,000, 1,300, or 1,500°C) was prepared at a constant mZrO₂/SiO₂ ratio of 10/1 to evaluate the effect of heating temperature. The mZrO₂/SiO₂-coated PSZ treated at different mZrO₂/SiO₂ weight ratio (20/1, 10/1, 8/3, or 6/5) was also prepared at a heating temperature of 1,500°C, to evaluate the effect of mZrO₂/SiO₂ dispersion composition.

Mechanical strength measurements
The mechanical strength of samples was measured by a biaxial flexural strength test (n=5), which was performed using the piston-on-three ball technique15) in a universal testing machine (Autograph AG-X, Shimadzu, Kyoto, Japan). Three 3.2-mm-diameter stainless steel balls that were equidistant from each other were placed on a circle (diameter, 10 mm). The disk was placed centrally on the steel balls. The sandblasted side was faced on the steel balls, where a load piston (diameter, 1.2 mm) was applied from the opposite side of the sandblasted surface (crosshead speed, 1.0 mm/min), to apply a tensile stress on the sandblasted side. The fracture load for each specimen was recorded and the biaxial flexural strength was calculated using the following equation:

\[S = \frac{-0.2387P(X-Y)}{d^2} \]

where \(S \) is the biaxial flexural strength (MPa); \(P \) is the fracture load (N); and \(d \) is the specimen disk thickness at the fracture origin (mm). \(X \) and \(Y \) were determined as follows:

\[X = (1+u) \ln \left(\frac{r_2}{r_3} \right)^2 + \left[\frac{1-u}{2} \right] \left(\frac{r_2}{r_3} \right)^2 \]

\[Y = (1+u) \left[1 + \ln \left(\frac{r_1}{r_3} \right)^2 \right] + (1-u) \left(\frac{r_1}{r_3} \right)^2 \]
Fig. 2 Effects of heat temperature on (a) mechanical strength and (b) crystal phase of samples.

The sandblasted PSZ disks were coated with mZrO₂/SiO₂ (10/1, w/w) and heat treated at different temperatures. Different italic letters on the bars in the graph (a) indicate statistically significant difference from Steel-Dwass test ($p<0.05$, $n=5$).
monoclinic phase (derived from the coated layer) and the cubic phase (derived from the PSZ substrate); the peak attributed to the monoclinic phase became sharper as the treatment temperature increased, suggesting the crystal growth (and sintering) of mZrO₂ (Fig. 2b).

Effect of dispersion composition
Next, to understand the effect of the mZrO₂/SiO₂ dispersion composition on the PSZ coatings, the biaxial flexural strength test was conducted at a constant heating temperature of 1,500°C. The results indicated that the mechanical strength did not significantly change at the highest (20/1) and the lowest (6/5) mZrO₂/SiO₂ weight ratio, whereas those increased at the mZrO₂/SiO₂ weight ratios of 10/1 and 8/3, compared with the as-sintered PSZ. The maximal mechanical strength was 725 MPa (Fig. 3a). In addition, XRD analysis was conducted. The results indicated a reduced presence of the monoclinic phase and an increase in the presence of both the cubic and tetragonal phases of the crystals, with increasing SiO₂ ratio (Fig. 3b). Of note, the ZrSiOₓ phase was not detected in any of the XRD patterns at any of the mZrO₂/SiO₂ ratios in this study.

Observations of surfaces using different modification methods
To understand the surface properties caused by the surface treatment, SEM observations were conducted.

Fig. 3 Effects of dispersion composition on (a) mechanical strength and (b) crystal phase of samples.
The sandblasted PSZ disks were coated with mZrO₂/SiO₂ and heat treated at 1,500°C. Different italic letters on the bars in the graph (a) indicate statistically significant difference from Steel-Dwass test (p<0.05, n=5).

Fig. 4 SEM images of (a) as-sintered, (b) ground, (c) sandblasted and (d–f) mZrO₂/SiO₂ (10/1, w/w) coated PSZ after heating at different temperatures (°C): (d) 1,000, (d) 1,300, and (f) 1,500.
The results indicated that the as-sintered-, ground-, and sandblasted-surfaces featured no cracks on the samples’ surfaces; however, some tiny cracks, which were formed by drying the mZrO₂/SiO₂ dispersion on the PSZ, remained on the surface that was heated at 1,000°C. The surface of the sample heated at 1,300°C was covered with granule-like newly formed crystals, and the cracks were filled with amorphous phase. The size of granule-like crystals increased for the samples heated at 1,500°C. Apparently, tiny crystals fused to form larger ones (Fig. 4).

Surface heated at 1,500°C, for different mZrO₂/SiO₂ ratios
Altogether, the mZrO₂/SiO₂-coated samples heated at 1,500°C exhibited improved mechanical strength; in addition, the mechanical strength of the samples also depended on the mZrO₂/SiO₂ ratio. To further understand the dependence of surface properties on coating at different mZrO₂/SiO₂ ratios, elemental analysis was conducted using EDS. The surface of the mZrO₂/SiO₂=20/1(w/w) sample exhibited an “island-sea structure”, with the islands consisting of densely packed granule-like crystals, while the sea was dried (i.e., the PSZ substrate surface was exposed). With increasing SiO₂ content, the space between granule-like crystals in the island regions became larger. Interestingly, elemental mapping of Si and Zr indicated the specific distribution of each element on the sample’s surface. Here, ZrO₂ was located mainly in the island regions, while SiO₂ was located mainly in the sea surrounding the island regions on the surface (Fig. 5). Note that the gaps between the island ZrO₂ regions were not filled with SiO₂ at mZrO₂/SiO₂=20/1(w/w), whereas the gaps filled with SiO₂ at or below mZrO₂/SiO₂=10/1(w/w).

Translucency of samples after surface treatment
To confirm the effect of surface treatment on the translucency of zirconia samples, translucency parameters were compared. The results of this analysis indicated that the samples’ surfaces did not change their translucency after treating the samples (Fig. 6).

Fig. 5 (a–d) SEM images, (e–h) Zr and Si elemental mapping and (i–l) ESD spectra of samples coated with mZrO₂/SiO₂ and heat treated at 1,500°C.

Fig. 6 Digital photographs of (a) control and (b) the mZrO₂/SiO₂ (10/1, w/w)-coated sample after heating at 1,500°C, showing the translucency. (c) Quantitative results of translucency parameters. N.S. in the graph (c) indicates no significant difference from Welch’s t test (p>0.05, n=5).
DISCUSSION

The mechanical properties of highly translucent PSZ require improvement; however, improvement of mechanical properties often negatively affects the materials’ translucency. In general, it is known that temperatures above 1,000°C are sufficient for graging of zirconia ceramics (850–950°C)18). This glazing also contributes to the re-crystallization of zirconia surface19,20). Thus, our hypothesis was that adjustment of the glazing (coating) material can improve the mechanical properties of PSZ through the re-crystallization process. For this purpose, we decided to use mZrO2 as a main coating material. Although mZrO2 largely affects the mechanical strength of the base substrate, its surface binding affinity is relatively weak. Therefore, SiO2 was added to the coating solution as a binder. Thus, in the present study we investigated the influence of surface treatment by mZrO2/SiO2 dispersion on the surface topography, crystallography, and mechanical properties of highly translucent PSZ. Although Venkatesh et al. reported the mixing of nanosized ZrO2 in a glazing material21), the crystal phase of nanosized ZrO2 is unclear; the content of ZrO2 is low (up to 13.4 wt%: cf. The best mZrO2 content was 73–91 wt% in this study); and the mechanical properties of glazed zirconia were not reported.

In this study, to understand the effect of heating temperature, the mZrO2/SiO2-coated PSZ treated at different heating temperatures (1,000, 1,300, or 1,500°C) were firstly evaluated at a constant mZrO2/SiO2 ratio of 10/1. From the results, we found that higher heating temperature tended to increase the mechanical strength of PSZ. Therefore, to understand the effect of mZrO2/SiO2 dispersion composition, the mZrO2/SiO2-coated PSZ treated at different mZrO2/SiO2 weight ratio (20/1, 10/1, 8/3, or 6/5) were evaluated at a maximum heating temperature of 1,500°C. Of note, the heating temperature above 1,550°C, which is sintering temperature of presintered PSZ in this study, was not applied because there is a risk of shrinkage or deformation of PSZ.

Strikingly, by this treatment, the mechanical strength of the treated samples increased up to 725 MPa. This value is almost 1.7 times higher than that of the original sample. The strength increased until the mZrO2/SiO2 ratio was 10/1; however, the strength decreased when the SiO2 content was higher than this ratio. This probably occurred because the mZrO2 amount was the key factor underlying the improvement of the samples’ mechanical properties. In addition, the higher content of SiO2 seemed to decrease the presence of the mZrO2 in its crystal structure, suggesting that (1) the tetragonal to monoclinal transformation upon cooling was prevented by SiO2, and that (2) Y3+ near the PSZ substrate surface migrated into the coating layer at high temperatures. As for (1), mZrO2 in the coating layer would transform into the tetragonal phase according to the phase transformation temperature (at ~1,200°C22,23), for high-temperature treatment at 1,300 and 1,500°C, whereas the monoclinic phase would not transform at 1,000°C. The tetragonal phase formed in the coating layer for temperatures above 1,300°C re-transformed upon cooling (at ~927°C24) into the monoclinic phase, with volume expansion that cause compression stress in the coating layer. However, it is known that the tetragonal phase can be stabilized without stabilizing ions such as Y3+, when the crystal size is sufficiently small (e.g., 20 nm25 and 45 nm26). Judging from the crystal size of ZrO2 in the coating, the SiO2 matrix prevented the crystal growth (or sintering) of mZrO2 nanoparticles; hence, the tetragonal phase was still observed for high SiO2 ratios. As for (2), a reaction between Y2O3 and SiO2 could occur above 1,000°C27, and the detached Y2O3 from PSZ probably moved into the coating layer through the SiO2 matrix to the stabilized tetragonal phase of ZrO2 in the coating layer.

To understand the mechanisms of these phenomena, we conducted surface investigations using SEM and EDS. One of the important findings was that granule-like crystals were formed and grew on the surfaces of the mZrO2/SiO2-coated substrates. Interestingly, these granules packed together, and formed island-like patterns on the substrates’ surfaces. These densely packed granules were observed up to the ratio of 8/3; however, the space between the granules in the islands became lager as the SiO2 ratio increased beyond 8/3. Thus, the optimal mixing ratio of ZrO2 and SiO2 was estimated.

The major clinical problem with the use of zirconia-based ceramics is the difficulty in achieving suitable bonding to luting agents28-30) or veneering/glazing ceramics31,32). The presence of SiO2 on the coating layer would be preferable to achieve suitable bonding to luting agents/primer containing silane coupling agents and also to silica based veneering/glazing ceramics. Therefore, the mZrO2/SiO2 coating method described here would be applicable for the superficies the zirconia crowns before veneering/glazing and also for the inside of the crowns in a dental laboratory process.

In recent years, many studies were conducted aiming to improve the mechanical strength of highly translucent PSZ2-10. Although our method improved the mechanical strength significantly, the resulting samples were still quite weak, compared with the strength of conventional Y-TZP molar crowns, ~1,200 MPa. Therefore, further improvement of the technique should be considered.

CONCLUSION

The mechanical strength of highly translucent PSZ improved by 170% for the best condition, which was achieved by coating the samples with mZrO2/SiO2 dispersion followed by heat treatment. This technique is a promising method for improving the mechanical properties of highly translucent PSZ.

REFERENCES

1) Luthardt RG, Holzhüter M, Sandkuhl O, Herold V, Schnapp JD, Kuhlisch E, et al. Reliability and properties of ground
11) Promakhov V, Kulkov N. Thermal expansion of oxide systems
10) Toyama DY, Alves LMM, Ramos GF, Campos TMB, de
15) Wille S, Zumstrull P, Kaidas V, Jessen LK, Kern M. Low
14) Murase Y, Kato E. Preparation of zirconia whiskers from
12) Hayashi H, Saitou T, Maruyama N, Inaba H. Thermal

2) Jeong SM, Ludwig K, Kern M. Investigation of the fracture
resistance of three types of zirconia posts in all-ceramic post-
3) Chevalier J, Gremmillard L, Virkar AV, Clarke DR. The
tetragonal-monoclinic transformation in zirconia: lessons
1920.
4) Pereira GK, Silvestri T, Camargo R, Rippe MP, Amaral M,
Kleverlaan CJ, et al. Mechanical behavior of a Y-TZP ceramic
for monolithic restorations: effect of grinding and low-
63: 70-77.
5) Matsui K, Yamakawa T, Uehara M, Enomoto N, Hojo J.
Mechanism of alumina-enhanced sintering of fine zirconia
powder: Influence of alumina concentration on the initial
6) Mao L, Kaizer MR, Zhao M, Guo B, Song YF, Zhang Y.
Graded ultra-translucent zirconia (5Y-PSZ) for strength and
7) Inokoshi M, Shimizu H, Nozaki K, Takagaki T, Yoshihara
K, Nagaoa N, et al. Crystallographic and morphological
analysis of sandblasted highly translucent dental zirconia.
Dent Mater 2018; 34: 508-518.
8) Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van
Meerbeek B, et al. Strength, toughness and aging stability
of highly-translucent Y-TZP ceramics for dental restorations.
9) Nakamura T, Nakano Y, Usami H, Wakabayashi K, Ohnishi
H, Sekino T, et al. Translucency and low-temperature
degradation of silica-doped zirconia: A pilot study. Dent
10) Toyama DY, Alves LMM, Ramos GF, Campos TMB, de
zirconia bilayers: Strength and interfacial bonding. J Mech
Behav Biomed Mater 2019; 89: 143-149.
11) Promakhov V, Kulkov N. Thermal expansion of oxide systems
on the basis of ZrO2. J Silic Based Compos Mater 2014; 66:
81-83.
12) Hayashi H, Saitou T, Maruyama N, Inaba H. Thermal
expansion coefficient of yttria stabilized zirconia for various
change of monoclinic zirconia polycrystalline thin films by
14) Murase Y, Kato E. Preparation of zirconia whiskers from
zirconium hydroxide in sulfuric acid solutions under
hydrothermal conditions at 200°C. J Am Ceram Soc 2001; 84:
2705-2706.
15) Wille S, Zumstrull P, Kaidas V, Jessen LK, Kern M. Low
temperature degradation of single layers of multilayered
zirconia in comparison to conventional unshaded zirconia:
Phase transformation and flexural strength. J Mech Behav
Biomed Mater 2018; 77: 171-175.
16) Pecho OE, Ghinea R, Ionescu AM, Cardona Jde L, Paravina
RD, Pérez Mdel M. Color and translucency of zirconia
40: e34-40.
17) Johnston WM, Ma T, Kienle BH. Translucency parameter
of colorants for maxillofacial prostheses. Int J Prosthodont
1995; 8: 79-86.
18) Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi
19) Hoydalsvik K, Barnardo T, Winter R, Haas S, Tatchev D,
Hoell A. Yttria-zirconia coatings studied by grazing-incidence
small-angle X-ray scattering during in situ heating. Phys
20) Ryan DPO, Fais LMG, Antonio SG, Hatanaka GR, Candido
LM, Pinelli LAP. Y-TZP zirconia regeneration firing:
Microstructural and crystallographic changes after grinding.
21) Venkatesh G, Thenmuhil D, Vidyavathy SM, Vinothan R.
Effect of addition of nano zirconia in ceramic glazes. Adv
22) Kuwabara A, Tohei T, Yamamoto T, Tanaka I. Ab initio
lattice dynamics and phase transformations of ZrO2. Phys
23) Patil RN, Subbarao EC. Axial thermal expansion of ZrO2
and HfO2 in the range room temperature to 1400°C. J Appl
24) Subbarao EC, Maiti HS, Srivastava KK. Martensitic
transformation in zirconia. Phys Status Solidi 1974; 21:
9-40.
25) Wu NL, Wu TF. Thermodynamic stability of tetragonal
of nanocrystallite morphology on the metastable tetragonal
27) Ahlawat R, Aghamkar P. Influence of annealing temperature
on Y2O3-SiO2 nanocomposite prepared by sol-gel process. Acta
Phys Pol A 2014; 126: 736-739.
28) Thompson JY, Stoner BR, Piascik JR, Smith R. Adhesion/
cementation to zirconia and other non-silicate ceramics:
where are we now? Dent Mater 2011; 27: 71-82.
29) Tzanakakis E-GC, Tzoutzas IG, Koidis PT. Is there a potential
for durable adhesion to zirconia restorations? A systematic
Resin adhesion strengths to zirconia ceramics after primer
treatments on the shear bond strength of veneering ceramic.