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ABSTRACT 

Recently, we proposed a reference-modified density functional theory (RMDFT) to calculate 

solvation free energy (SFE), in which a hard-sphere fluid was introduced as the reference 

system instead of an ideal molecular gas. Through the RMDFT, using an optimal diameter for 

the hard-sphere reference system, the values of the SFE calculated at room temperature and 

normal pressure were in good agreement with those for more than 500 small organic 

molecules in water as determined by experiments. In this study, we present an application of 

the RMDFT for calculating the temperature and pressure dependences of the SFE for solute 

molecules in water. We demonstrate that the RMDFT has high predictive ability for the 
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temperature and pressure dependences of the SFE for small solute molecules in water when 

the optimal reference hard-sphere diameter determined for each thermodynamic condition is 

used. We also apply the RMDFT to investigate the temperature and pressure dependences of 

the thermodynamic stability of an artificial small protein, chignolin, and discuss the 

mechanism of high-temperature and high-pressure unfolding of the protein.  

	

Introduction	

The solvation free energy (SFE) is critical in understanding the thermodynamic stability of 

systems involving protein folding, protein-ligand binding, and the phase partitioning of 

chemicals. A free-energy perturbation method and a thermodynamic integration method [1,2] 

based on molecular dynamics (MD) simulations are both widely applied to SFE calculation. 

These calculations of the SFE are theoretically exact [3-6], but are highly computationally 

demanding, because MD simulations must be performed for many intermediate states in the 

process of growing a solute molecule in solution. To avoid calculations with high 

computational costs, many theoretical developments for the efficient calculation of the SFE, 

e.g., the implicit solvent model [7-11], integral equation theory [12-23], density functional theory 

(DFT) [24-27], and an energy representation method based on MD simulation [28-31], have been 

proposed. Although these methods offer the efficient prediction of the SFE, the accuracy of 

most methods in computing the SFE has been assessed only in cases at room temperature and 

normal pressure. Only a few methods [10,11,23] have been tested regarding the effect of temperature 

on the SFE. However, the solubility of small hydrophobic molecules is known to decrease 

dramatically with increases in temperature of ~100 K [32].  

 Recently, we proposed a reference-modified density functional theory (RMDFT) to 

systematically develop a free-energy density functional model [33,34]. In this RMDFT, in order to 

derive the SFE functional of a solute molecule in water, a hard-sphere (HS) fluid was 
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introduced as the reference system instead of an ideal polyatomic molecular gas. The latter is 

commonly employed as the reference system in the interaction-site-model DFT of polyatomic 

molecular liquids [35-39]. The SFE functional derived from the RMDFT approach with the hard-

sphere reference system improved the overestimation of the SFE originating from the 

hypernetted-chain (HNC) approximation. For a set of neutral amino acid side-chain analogues, 

as well as 504 small organic molecules, the values of the SFE calculated by the RMDFT 

agreed well with those obtained by experiments [33,34]. In comparison to the MD simulation-

based methods for SFE calculation, the RMDFT approach has the major advantage of high 

computational efficiency, permitting determination of the SFE value within a few minutes for 

both small molecules and large complex molecules such as proteins. 

In the present study, we assess the predictive ability of the RMDFT for the 

temperature and pressure dependences of the SFE for small solute molecules in water. In our 

previous work [33,34], we found that the value of SFE obtained by the RMDFT was sensitive to 

the diameter of the HS reference system. Thus, we determined the optimal diameter of the HS 

reference system for water at room temperature and normal pressure; the SFE values given by 

the RMDFT were therefore in good agreement with those determined experimentally for three 

typical hydrophobic solutes of methane, propane, and isobutane [33,34]. Similar to the case at 

room temperature and normal pressure, by using either experimental data or MD simulation 

data for the SFE of a certain small molecule in water, here we determine the optimal 

diameters of the HS reference system at several temperatures and normal pressure and also at 

several pressures and room temperature. Next, to assess the applicability of the RMDFT using 

the determined HS diameters, we apply the RMDFT to the other solute molecules and 

compare the results calculated by the RMDFT with the corresponding experimental and MD-

simulation data.  
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 This report is organized as follows. In the second section, a brief review of the 

RMDFT is provided. In the third section, the calculation details including the SFE calculation 

and the determination of temperature and pressure dependences of the optimal HS diameter 

are described. In the fourth section, the calculated temperature dependence of the SFE for 

xenon in water and pressure dependences for methane and benzene molecule in water are 

compared with those determined by experiments or MD simulations. In addition, the 

temperature and pressure dependences of the SFE determined by the RMDFT for the artificial 

small protein chignolin are presented. Finally, a summary of this study is given. 

 

Theory		

In this section, we briefly review the RMDFT as well as the final equations for the SFE of a 

polyatomic solute molecule in water. In classical density functional theory (DFT), the grand 

potential under an arbitrary external field is expressed as a functional of the density 

distribution function of liquids under the external field. If the external fields acting on each 

site of water molecules  arise from a polyatomic solute molecule immersed in water, 

the solvation free energy —defined as the difference in the free energies between the 

solvated state in solution and the un-solvated state without the solute—is given by the 

difference in the grand potential between the inhomogeneous system under the external field 

and the homogeneous system, i.e., . The superscript “PR” in 

 indicates the Percus relation [40], which provides an exact relation between the site–site 

pair correlation functions for solute and solvent and the one-body site density distribution 

functions for solvent under the external field  [38]. 

The hypernetted-chain (HNC) approximation has been demonstrated to significantly 

overestimate the SFE of solute molecules not only in molecular liquids such as water [33,34] but 

Uλ
PR{ }

ΔGsolv

ΔGsolv =Ω Uλ
PR{ }⎡⎣ ⎤⎦ −Ω 0[ ]

Uλ
PR{ }

Uλ
PR{ }
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also in simple liquids such as the Lennard-Jones (LJ) liquid [41]. The SFE based on the HNC 

approximation can also be derived from the DFT. We adapt the DFT as follows. First, we 

assume that the density distribution function under an arbitrary external field is reproduced by 

the density distribution function provided by an ideal-gas (IG) reference system under an 

effective external field for the IG. Second, we apply the second-order density-functional 

Taylor series expansion approximation to the excess part of the intrinsic free energy 

functional, which is defined as the difference from that given by the IG reference system. 

Thus, the large overestimation of the SFE caused by the HNC approximation suggests slow 

convergence in this density-functional Taylor series expansion and necessary inclusion of the 

higher-order terms. Unlike the HNC approximation, we choose a HS fluid, instead of the IG, 

as the reference system for the solvent. Next, we assume that the density distribution function 

is reproduced by the HS reference system under an effective external field. We showed 

previously that the RMDFT yielded sufficiently rapid convergence in the density-functional 

Taylor series expansion of the newly introduced excess part of the intrinsic free energy 

functional [33,42]. That excess part is redefined as the difference from the HS reference system in 

order to remove the component that leads to slow convergence [42]. 

Now, we consider an inhomogeneous solvent consisting of rigid water molecules 

having P interaction sites under the external field  where . According 

to the DFT based on the interaction-site model [35-39], the grand potential under the external field, 

, where  is the grand canonical partition function 

and  is Boltzmann’s constant multiplied by the absolute temperature, , is given by 

 .    (1) 

Here, the sum of the site chemical potentials, , in eq. (1) is equal to the chemical potential 

for the polyatomic molecular fluid, 

Uλ
PR{ }  λ = 1,  2, 3, !, P

Ω Uλ
PR{ }⎡⎣ ⎤⎦ = − 1 β( )lnΞ Uλ

PR{ }⎡⎣ ⎤⎦ Ξ Uλ
PR{ }⎡⎣ ⎤⎦

1 β kBT

Ω Uλ
PR{ }⎡⎣ ⎤⎦ = F nλ{ }⎡⎣ ⎤⎦ + dr1

a∫
a=1

P

∑ na r1
a Uλ

PR{ }( ) Ua
PR r1

a( )− µa⎡⎣ ⎤⎦
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 .           (2) 

 in eq. (1) is the intrinsic free-energy functional. The excess part of  is 

introduced as the difference from a multicomponent HS reference system: 

,        (3) 

where Eq. (4) is substituted into  .  

 .        (4) 

Equation (4) is the most important assumption in the RMDFT, giving the definition of the 

effective external field acting on each component of the HS reference system. By applying a 

second-order density-functional Taylor series expansion to , we obtain the final 

equation for the SFE: 

   (5) 

where  is the number density of solvent molecules and  

 ,       (6) 

 ,       (7) 

 ,          (8) 

 ,       (9) 

µ = µa
a=1

P

∑

F nλ{ }⎡⎣ ⎤⎦ F nλ{ }⎡⎣ ⎤⎦

Fex nλ{ }⎡⎣ ⎤⎦ = F nλ{ }⎡⎣ ⎤⎦ − FHS nλ{ }⎡⎣ ⎤⎦

FHS nλ
HS{ }⎡⎣ ⎤⎦

nα
HS r Uλ

HS{ }( ) = nα r Uλ
PR{ }( )  α = 1,  2, !, P( )

Fex nλ{ }⎡⎣ ⎤⎦

ΔGsolv =Ω Uλ
PR{ }⎡⎣ ⎤⎦ −Ω 0[ ]

= − 1
β

dr1
a∫

a=1

P

∑ na r1
a Uλ

PR{ }( )− n0⎡
⎣

⎤
⎦ + ΔFHS

ex nλ{ }⎡⎣ ⎤⎦

− dr1
a∫

a=1

P

∑
δFHS

ex nλ{ }⎡⎣ ⎤⎦
δna r1

a Uλ
PR{ }( ) na r1

a Uλ
PR{ }( )− µa

exHSn0
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+ n0
β

dr1
a∫ dr1

b

b=1

P

∑
a=1

P

∑ Cab
ex r1

a − r1
b( ) nb r1b Uλ

PR{ }( )− n0⎡
⎣

⎤
⎦

+ 1
2β

dr1
a∫ dr1

b

b=1

P

∑
a=1

P

∑ Cab
ex r1

a − r1
b( ) na r1a Uλ

PR{ }( )− n0⎡
⎣

⎤
⎦ nb r1

b Uλ
PR{ }( )− n0⎡

⎣
⎤
⎦

n0

ΔFHS
ex nλ{ }⎡⎣ ⎤⎦ = FHS

ex nλ{ }⎡⎣ ⎤⎦ − ΔFHS
ex n0{ }⎡⎣ ⎤⎦

FHS
ex nλ{ }⎡⎣ ⎤⎦ = FHS nλ{ }⎡⎣ ⎤⎦ − FIG nλ{ }⎡⎣ ⎤⎦

µα
exHS = µα

HS − µα
IG

Cαβ
ex r − ′r( ) = Cαβ r − ′r( )−Cαβ

HS r − ′r( )



 7 

 ,       (10) 

 ,      (11) 

and 

 .      (12) 

In eq. (7),  is an intrinsic free energy functional for a multicomponent IG system.  

 and  in eq. (8) are the chemical potentials of component  for the multicomponent 

HS and IG systems, respectively.  in eq. (9) is a direct correlation function for the 

multicomponent HS reference system, while  in eq. (10) is a direct correlation 

function defined by the reference-interaction-site model (RISM) or site–site Ornstein–Zernike 

(OZ) equation [43-45] given by 

 .   (13) 

 in eq. (11) is an intramolecular direct correlation function, as discussed by 

Chandler et al. [35]  in eq. (12) is the intramolecular correlation function, where  

 is the Dirac delta function,  is the Kronecker delta, and  in eq. (12) is the 

intramolecular bonding function  with the bond length between 

sites  and  in the water molecule of . In eq. (13), , , and  are 

the Fourier transforms of the pair correlation function , the direct correlation function 

, and the intramolecular correlation function , respectively.  

In the standard point-charge models of water such as the three-point transferable 

intermolecular potential (TIP3P) [46] and extended simple point-charge (SPC/E) model [47], the 

two sites for the hydrogen atoms are embedded in the LJ particle representing the oxygen 
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atom. In these water models, a one-component HS system is usable as the reference system 

for water. In this case, equation (5) is reduced to 

 (14) 

with 

.    (15) 

where O indicates the oxygen site. , ,  in eq. (14), 

and  in eq. (15) correspond to those of the reference HS fluid having a HS 

diameter  and the number density same as . Since we can use an arbitrary excess 

intrinsic free-energy functional model for the reference system in the RMDFT, several options 

for the excess intrinsic free-energy function model used for the reference HS fluid is available 

[48-51]. 

 

Calculation	method	

Computational	details	

In this study, we apply an effective-density approximation (EDA) [51] to prepare the excess 

intrinsic free-energy functional for the HS reference system, , which is needed in eq. 

(14). The RMDFT calculation of the SFE using the EDA functional obtained from the EDA as 

 is relatively easy, because the EDA functional is much simpler than the functional 
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model provided by the fundamental measure theory (FMT) [48] or the modified versions of it [49,50]. 

In our previous study, the EDA functional was demonstrated to predict  well for various 

small solute molecules in water [33,34]. Equation (14), rewritten using the EDA functional, is 

shown in the Supporting Information (SI). 

To determine the site-density distribution functions  in eq. (14), we apply 

the three-dimensional reference-interaction-site-model (3D-RISM) theory [45,52]. We employ a 

partially linearized HNC (PLHNC) equation [52], called the Kovalenko–Hirata (KH) equation [45], 

as the closure relations for both the 1D-RISM equation for bulk water and the 3D-RISM 

equation for solute–solvent systems. The details of the 1D-RISM and 3D-RISM calculations 

are shown in the SI. To model water in these RISM calculations, we use the TIP3P model 

with an additional LJ parameter for the hydrogen sites (dH = 0.4 Å and ) 

[46,53]. We employ the optimized potentials for liquid simulations using all atoms (OPLS-AA) 

parameter for both methane and benzene, and use the LJ parameter for xenon (dXe = 3.975 Å 

and ) from the literature [32]. The solute–solvent cross parameters are deduced 

from the Lorentz–Berthelot mixing rules,  and , commonly 

introduced as the solute–solvent combination rule in the RISM calculations. The number 

densities of water used in the calculations at several temperatures along the isobar of 1 bar 

and at several pressures along the isotherm of 298 K (Tables 1 and 2) are obtained from the 

experimental data [54] and the MD simulation results [55,56], respectively. For comparison with 

the computational results for  obtained by the RMDFT, we also calculate the values of 

 using the Singer–Chandler-like (SC-like) 3D-RISM-KH function [45,52]. The 3D-RISM 

integral equations are solved using a grid of 2563 points in a cubic cell with a size of 64 Å3, as 

in our previous study [33,34]. The grid spacing of 0.25 Å is sufficient to calculate  for 

chignolin without significant numerical errors. 

ΔGsolv

nα r Uλ
PR{ }( )

εH = 0.046 kcal/mol

ε Xe kB = 214.7

dij = dii + djj( ) 2 ε ij = ε iiε jj

ΔGsolv

ΔGsolv

ΔGsolv
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In our previous study, we determined the optimal diameter of the HS reference system 

as dHS = 2.88 Å at room temperature and under normal pressure (T = 298 K, P = 1 bar); the 

 values obtained by the RMDFT were in good agreement with the experimental values 

of  for three small hydrophobic solutes of methane, propane, and isobutane [33,34] (see Fig. 

2 in the references [33,34]). In these calculations, we used 0.01 Å and 4096 as the grid spacing and 

the number of grids, respectively, to solve the 1D-RISM and EDA integral equations. 

However, in the present study, we employ 0.00125 Å and 32768 as the grid spacing and 

number of grids, respectively, for the 1D-RISM and EDA calculations, because a detailed 

adjustment of the HS diameter dHS is required to determine dHS for each thermodynamic state. If 

we use the fine grid spacing of 0.00125 Å in the EDA calculation for the reference HS fluid, 

we find a slight shortening of dHS by 0.005 Å at the normal condition (298 K and 1 bar). The dHS 

dependences of  for these three solutes obtained by the RMDFT calculation with the 

fine grid spacing of 0.00125 Å are compared in the SI with those obtained by the RMDFT 

with the grid spacing of 0.01 Å. Based on these results, we determine dHS = 2.8750 Å as 

optimal at the normal condition.  

	

Temperature	and	pressure	dependences	of	the	optimal	diameter	of	the	HS	reference	

system	

In the present study, we determine the appropriate dHS values at several temperatures along the 

isobar of 1 bar and at several pressures along the isotherm of 298 K to ensure that the values 

of  obtained by the RMDFT are in good agreement with those determined by either 

experiments or MD simulations. For the temperature dependence along the 1-bar isobar, we 

employ the experimental values of  for methane [57] at each temperature T listed in Table 

1 as the reference data. Even at the normal condition (298 K and 1 bar), the values of  

for methane obtained by the RMDFT with the newly determined optimal HS diameter  dHS = 

ΔGsolv

ΔGsolv

ΔGsolv

ΔGsolv

ΔGsolv

ΔGsolv
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2.8750 Å deviate by ~0.3 kcal/mol from the experimental data. Thus, we focus on the 

temperature dependence of the difference of  between the standard state (T = 298 K and 

P = 1 bar) and each temperature, i.e., , to determine the 

temperature dependence of the optimal HS diameter dHS. The asterisk after any physical 

quantity indicates the difference of that quantity from the standard thermodynamic state at 

room temperature and normal pressure. To assess the applicability of the RMDFT to the 

temperature dependence of , we also apply the RMDFT with the optimal HS diameters 

to the calculation of  for xenon, and then compare the computed values of  to the 

experimental data.  

 Similar to determining the temperature dependence of dHS along the 1-bar isobar, we 

also determine the pressure dependence of dHS along the isotherm of 298 K by fitting the 

values of  that are obtained by the RMDFT for a water 

molecule in water to that by MD simulations [58]. The excess chemical potential of water, i.e., 

, the number density of water  obtained from MD simulations [55,56], and the 

determined dHS are listed in Table 2.  

 

  

ΔGsolv

ΔGsolv
* = ΔGsolv − ΔGsolv 298 K( )

ΔGsolv

ΔGsolv ΔGsolv

ΔGsolv
* = ΔGsolv − ΔGsolv 1 bar( )

ΔGsolv n0
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Table 1. The solvation free energy  experimentally determined for methane in water [57], 

experimental number density of water  [54], and optimal diameter of the HS reference 

system dHS, at several temperatures along the isobar of 1 bar. These  and  values are 

used to determine dHS. 

 

Table 2. The solvation free energy  for a water molecule in water provided by MD 

simulation [58], the number density of water  determined by MD simulation [55,56], and the 

optimal diameter of the HS reference system dHS, at several pressures along the isotherm of 

298 K. These  and  values are used to determine dHS.  

P (bar)  (kcal/mol)  (Å−3) dHS (Å) 
1 -6.13 0.033357 2.87500  
2000 -5.32 0.035927 2.83250  
4000 -4.52 0.037795 2.80375  
6000 -3.87 0.039265 2.78375 
8000 -3.15 0.040483 2.76750  
	

	

Application	of	the	RMDFT	calculation	to	an	artificial	small	protein	chignolin	

To further apply the RMDFT to the temperature and pressure dependences of , we 

perform the RMDFT calculation of  on nine conformations of chignolin, a small 

artificial protein comprising 10 amino acids with the sequence GYDPETGTWG [59]. Previous 

studies have demonstrated that chignolin has native and misfolded states [60-64]. The native and 

misfolded structures are hairpin-like, with a common turn structure from Asp3 to Glu5, 

although these have different hydrogen bonding patterns. The nine conformations used in this 

ΔGsolv

n0

ΔGsolv n0

ΔGsolv

n0

ΔGsolv n0

ΔGsolv n0

ΔGsolv

ΔGsolv

T (K)  (kcal/mol)  (Å−3) dHS (Å) 
273 1.561 0.033422 2.88250  
298 1.982 0.033329 2.87500  
325 2.351 0.032994 2.87125  
350 2.598 0.032526 2.87000  
373 2.744 0.031924 2.87250  

ΔGsolv n0
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study were generated by performing an isobaric–isothermal (NPT) MD simulation in an 

aqueous solution for 6 µs at 298 K and 1 bar, where the Amber99SB parameter and the TIP3P 

model were employed for chignolin and water, respectively [61]. The nine conformations, 

including the native and misfolded conformations, are the same as those used in our previous 

study [33,34]. 

 

Results	and	discussion	

Temperature	dependences	of	the	solvation	free	energy	and	optimal	HS	diameter	

Figure 1 (a) shows a comparison between the experimental values of  for methane 

along the isobar of 1 bar [57] and the computational values of  obtained by the RMDFT 

using the dHS determined at each temperature. These values of  for methane 

monotonically increase as the temperature increases from 273 K to 373 K. The positive value 

of  and the positive temperature dependence are characteristic of hydrophobic 

hydration. The RMDFT reproduces the temperature dependence, but slightly underestimates 

the value of  at each temperature. The underestimation is attributed to the optimal HS 

diameter being determined as dHS = 2.875 Å at 298 K and 1 bar based on experimental data for 

methane as well as for propane and isobutane (see the SI). However, in Fig. 1 (b), we can 

confirm that the temperature dependences of the experimental and theoretical 

 agree well with each other. On the other hand, not only the 

values of  but also the temperature dependence of , as calculated by the SC-like 

RISM-KH function [45,52], deviate from the experimental values. This function overestimates the 

temperature variation of . To examine the electrostatic contribution to  for 

methane, we also calculated  for methane without any electric charge, i.e., the nonpolar 

contribution. Because the electrostatic contribution to  (–0.01607 kcal/mol at 298 K) is 

ΔGsolv

ΔGsolv

ΔGsolv

ΔGsolv

ΔGsolv

ΔGsolv
* = ΔGsolv − ΔGsolv 298 K( )

ΔGsolv ΔGsolv
*

ΔGsolv ΔGsolv

ΔGsolv

ΔGsolv
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very small,  and  without the electric charges almost overlap with the values 

shown in Figs. 1 (a) and (b), respectively. These results indicate that almost all of  for 

methane arises from the nonpolar contribution. In Fig. 1 (c), the temperature dependence of 

the optimal HS diameter dHS is non-monotonic with the minimum at the temperature of ~350 K. 

 

Figure 1. Temperature dependences of (a) the solvation free energy  for methane, (b) 

the difference of the  values between each temperature and 298 K, 

, and (c) the optimal HS diameter dHS determined at each 

temperature, along the 1-bar isobar. In (a) and (b), the experimental values for methane [57] are 

shown as solid circles. The theoretical values obtained by the RMDFT and the SC-like RISM-

KH function [45,52] are shown as open squares and blue solid triangles, respectively.   
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To confirm the validity of the determined dHS values, we apply the RMDFT to xenon in 

water. Figure 2 (a) shows the values of  for xenon along the 1-bar isobar from the 

experiments [57] and by the RMDFT using the dHS values listed in Table 1. The temperature 

dependence of  is also shown in Fig. 2(b), with a similar 

tendency to that in Fig. 1. The RMDFT slightly underestimates the values of  for xenon. 

However, the SC function [45,52] yields = 9.4 kcal/mol at 298 K, which is a significant 

overestimation.  for xenon is experimentally known to be smaller than  for 

methane at a given temperature (see Fig. 1(a) and Fig. 2(a)), although xenon is larger than 

methane. The RMDFT provides the correct tendency, while the SC function [45,52], for instance at 

298 K, gives a positive of 9.4 kcal/mol for xenon and 9.0 kcal/mol for methane. The 

overestimation of  caused by this function, especially for large solutes, is attributed to 

the drawback of the HNC approximation for the cavity-formation free energy [17]. From Fig. 2 

(b), we confirm that the values of  obtained by the RMDFT agree well with those from 

the experiments, while those of the SC function deviate from the experimental values. These 

results demonstrate that the RMDFT with the dHS value can accurately predict the temperature 

dependence of  for small hydrophobic solutes. 
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Figure 2. Temperature dependences of (a) the solvation free energy  for xenon and (b) 

the difference of the  values between each temperature and 298 K, , along the 1-

bar isobar. In (a) and (b), the experimental values for xenon [57] are shown as solid circles. The 

theoretical values obtained by the RMDFT with dHS and by the SC function [45,52] are shown as 

open squares and blue solid triangles, respectively.  

	

Pressure	dependences	of	the	solvation	free	energy	and	optimal	HS	diameter 

Figure 3 (a) shows the values of  for a water molecule in water along the isotherm of 

298 K, as obtained by the MD simulation with the TIP4P model of water [58], RMDFT with dHS, 

and SC function [45,52]. The value of  for water monotonically increases with increasing 

pressure. The pressure derivative of  at constant temperature corresponds to the excess 

partial molar volume (PMV) of the solute. The RMDFT with dHS underestimates  for 

water, but reproduces the pressure dependence of well, as 

shown in Fig. 3 (b). This result indicates that the excess PMV of water is reproduced with 

high precision. Meanwhile, the SC function [45,52] overestimates both the values of   and 
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the pressure derivative of . In Fig. 3 (c), we find that dHS for water monotonically 

decreases with increasing pressure. 

 

 

Figure 3. Pressure dependences of (a) the solvation free energy  for a water molecule 

in water, (b) the difference of  from 1 bar, , and (c) dHS along the isotherm of 298 

K. In (a) and (b), the values of  provided by the MD simulation [58] are shown as solid 

circles. The theoretical values obtained by the RMDFT and by the SC function [45,52] are shown 

as open squares and blue solid triangles, respectively. In (a), the red open diamond indicates 

an experimental value for the excess chemical potential of water [58]. 
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To confirm the validity of the obtained dHS values, we apply the RMDFT to calculate 

 for methane and benzene in water along the isotherm of 298 K. In Fig. 4 (a), the 

RMDFT slightly underestimates the values of  for methane compared to the 

experimental data [65], while the values of  obtained by the 

RMDFT agree well with the experimental values as seen in Fig. 4 (b). However, the SC 

function overestimates both the values of  and the pressure derivative of . In Fig. 

4 (c), we find that the RMDFT slightly underestimates the values of  for benzene 

compared to those obtained by the MD simulation [58]. The value of  by the RMDFT is 

relatively closer to that by the experiment for benzene under 1 bar [58], as indicated as an red 

open diamond in Fig. 4 (c). In Fig. 4 (d), we observe that the RMDFT with dHS reproduces the 

values of  for benzene, while the SC function overestimates both the values of  

(e.g., 17 kcal/mol at 1 bar) and the pressure derivative of . These results demonstrate 

that the RMDFT with dHS can reproduce the pressure dependence of  for small solute 

molecules with high precision.  
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Figure 4. Pressure dependences of the solvation free energy  for (a) methane and (c) 

benzene; pressure dependences of the difference in  between each pressure and 1 bar, 

, for (b) methane and (d) benzene, along the isotherm of 298 K. The solid circles in (a) 

and (b) indicate the experimental values for methane [65] and the solid circles in (c) and (d) 

indicate the values obtained by the MD simulation for benzene [58]. The open squares and blue 

solid triangles indicate the theoretical values obtained by the RMDFT and SC function [45,52], 

respectively. In (c), the red open diamond indicates the experimental value for the excess 

chemical potential of benzene in water [58].  

	

Solvent	 effects	 on	 the	 stability	 of	 chignolin	 at	 room	 temperature	 and	 normal	

pressure	

To further apply the RMDFT to the temperature and pressure effects on , we calculate 

 for nine conformations of chignolin [59], as used in our previous study (Conf. 1 to 9 in 

this study respectively correspond to Conf. A to I in our previous study [33,34]). The solvation free 

energy , the structure energy , and the effective energy given by , 

for the nine conformations are shown in Figs. 5 (a), (b), and (c), respectively. Here, the 

effective energy  is introduced to examine the change in the relative stability of chignolin 

with each conformation in water. It is noted that changes in the effective energy  due to 

conformation changes are different from changes in the free energy; thus, we cannot discuss 

the absolute value of the appearance probability of each conformation based on the value of 

. However, we believe that we can use  to discuss changes in the relative stability 

among the different conformations caused by changes in temperature and pressure. In Fig. 5 

(a), the electrostatic contribution, , where  is the nonpolar 

contribution calculated without all the electric charges on chignolin, is also shown. The nine 
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conformations are numbered in decreasing order of  (Fig. 5 (a)), which also roughly 

corresponds to the increasing order of the structure energy  of chignolin, shown in Fig. 5 

(b). Based on the root mean square deviation (RMSD) from the native structure (Conf. 1) in 

water as determined by nuclear magnetic resonance (NMR) (PDB ID code 1UAO), we find 

that Confs. 1 and 3 correspond to the native and misfolded structure, respectively. In terms of 

the radius of gyration  (Fig. 5 (d)), Confs. 8 and 9 are extended structures. 

From Fig. 5 (a), we find that the extended structures have low SFE; the main 

contribution to  for Conf. i is attributable to the electrostatic contribution . Thus, 

the unfolded conformations are stabilized in water by the electrostatic interactions between 

the protein and water. Figure 5 (b) shows that the structure energy of chignolin  overall 

increases as the conformation number increases, except that  for the misfolded 

conformation of Conf. 3 is lower than  for Conf. 2. Therefore, the compactness of the 

native Conf. 1 can be attributed to its structure energy . Figure 5 (c) shows that the 

effective energy  tends to increase with increasing conformation number. Confs. 1 and 3 

have comparable stabilities with effective energies lower than those of the other 

conformations. The balance between  and  yields the relative stability of each 

conformation in water at room temperature and normal pressure. In fact, although the increase 

in  and the decrease in  as the conformation transforms from native to extended states 

are largely canceled out, the increase in  tends to overcome the decrease in , and thus 

the effective energy  for the native Conf. 1 becomes lower that for the unfolding 

conformations [66]. Such a balance also relates to the relative stability of the native and 

misfolded structures (Confs. 1 and 3, respectively):  for Conf. 1 is lower than that for Conf. 

3, whereas  for Conf. 3 is lower than that for Conf. 1. Therefore, Confs. 1 and 3 have 
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nearly equal stabilities. As found in comparing Confs. 1 and 3, different mechanisms for the 

stabilization of the protein in water are suggested (in preparation by Maruyama and 

Mitsutake). 

Figure 5 (e) shows the excess PMV, , determined using the Kirkwood integral of 

the density distribution function with respect to the oxygen site of water: 

 .        (16) 

Here, the density distribution function  in eq. (16) is calculated using the 3D-

RISM integral equation. The nonpolar contribution to  is provided by eq. (16), where 

 is calculated using the 3D-RISM equation omitting all the electric charges on 

chignolin. We find that the electrostatic interaction between the protein and water reduces , 

especially in extended conformations such as Confs. 8 and 9. Figure 5 (f) is discussed in 

detail later on.  
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Figure 5. (a) The solvation free energy  and the electrostatic contribution , (b) the 

structure energy , (c) the effective energy given by , (d) the radius of 

gyration Rg, (e) the excess partial molar volume  and the nonpolar contribution, and (f) a 

comparison between the values of  calculated using two different methods described 

below, for the nine conformations of chignolin at 298 K and 1 bar. In Fig. 5 (e),  obtained 

by eq. (16) is shown together with the nonpolar contribution to , wherein the solvent 

density distribution function in eq. (16) is obtained by the 3D-RIDM calculation omitting all 

the electrostatic charges of chignolin. In Fig. 5 (f),   obtained by the Kirkwood integral of 

eq. (16) (shown in Fig. 5(e)) is compared with  determined as the coefficient  in 

 (eq. (19)). The error bars in Fig. 5 (f) indicate the standard 
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deviations upon the fitting by eq. (19) to the pressure dependence of . In these figures, 

Conf. 1 is the native structure and the conformation number increases in decreasing order of 

. 

	

Temperature	effects	on	change	in	 	by	the	unfolding	of	chignolin 

Figure 6 (a) shows the temperature dependences of the solvation free energy , the 

nonpolar contribution , and the electrostatic contribution , for chignolin 

with the native Conf. 1 along the isobar of 1 bar. The nonpolar contribution  is 

positive and the absolute value of  is smaller than that of the electrostatic 

contribution . Furthermore, we find that the increase in  with 

increasing temperature is significantly larger than the increase in  for a large 

amphipathic molecule such as chignolin. We also calculate the excess solvation enthalpy and 

entropy from the following equations:[67] 

,      (17a) 

,        (17b) 

where  is the thermal expansion coefficient of water at 1 bar. By applying these equations 

to the nonpolar contribution  and electrostatic contribution , we can obtain the 

corresponding excess solvation enthalpies  and  (Fig. 6 (b)) and entropies  and 

 (Fig. 6 (c)). In Fig. 6 (b), we find that  increases as temperature increases, and 

that the increase in  contributes to the increase in  with increasing 

temperature. The electrostatic contribution , defined by , has a 

positive slope with respect to temperature. Therefore,  contributes to the increase in 
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 with the increase in temperature. In Fig. 6 (c), we find that  has negative 

values and a positive slope with temperature, that is, the excess solvation entropy term, 

, in , decreases with temperature. However, the 

electrostatic part  (defined by ) increases with temperature, as does 

.  

Figure 6 (d) shows the values of the effective energy  for each conformation at 298 

K and 373 K. The values of  for the unfolded conformations are higher than that for 

the native Conf. 1 and the differences of  between Conf. 1 and these unfolded 

conformations remain significantly large even at 373 K, although the differences are smaller 

at 373 K than at 298 K. Thus, the relative stability of the unfolded conformations to that of 

Conf. 1 increases as temperature increases. It is well known that the free energy for the 

unfolded state is more stabilized by the conformation entropy of the protein than that for the 

native state is [68]; thus, even for differences in the effective energy values between the native 

and denatured conformations of tens of kBT, most of those differences are canceled out in the 

free energy by the conformation entropy [68]. A model for the conformation entropy of 

polypeptides [69] was proposed as follows: 

,         (18) 

where Nr is the number of residues in the polypeptides. For ten amino acid residues, as for 

chignolin,  is estimated as −38.97. The differences of  between the native 

and unfolded conformations—~30–80—are mostly compensated by the conformation entropy 

contribution of −38.97. However, none of the unfolded conformations investigated in the 

present study, except for Conf. 5, has a sum of  and  less than that for Conf. 

1, even at 373 K, although some other conformations may have such sums. These arguments 
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imply that, even if the difference of the effective energy between Conf. 1 and the arbitrary 

denatured Conf. i, i.e., , is positive, an appropriate decrease in 

 by increasing the temperature yields a negative value for the free energy 

difference between the native and denatured states, , where  and 

 are the free energy values for the native state and the denatured state, respectively.  

As for chignolin, the temperature dependence of the molar fraction of the native state fN was 

extensively examined by Honda et al. [59]. Based on their experimental results, we estimate 

 using . The values of fN at 298 K and 373 K are 

obtained as 0.6 and 0.1, respectively; thus, we can determine  to be 0.4 at 298 K and 

−2.2 at 373 K. Therefore, the increase in temperature from 298 K to 373 K causes the relative 

thermodynamic stabilization of the denatured state compared to the native state by 

approximately −2.6 (= −0.4 – 2.2) in the free energy difference  (see schematic free 

energy profiles based on the experimental data, shown in the SI). Thus, to obtain insight into 

the mechanism of high-temperature protein unfolding, it is useful to examine whether changes 

in  by increasing the temperature stabilize the unfolded conformations to a degree 

comparable to the stabilization provided by the free energy change  in unfolding. 
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Figure 6. (a) Temperature dependences of the SFE for chignolin with the native structure 

(Conf. 1) , the nonpolar contribution  calculated without all the electric 

charges on chignolin, and the electrostatic contribution defined by 

, along the isobar of 1 bar. (b) Temperature dependences of 

the corresponding excess solvation enthalpies, , , and , and of (c) 

the corresponding excess solvation entropies, , , and . (d) The effective 

energy  for each conformation at temperatures of 298 K and 373 

K. 
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effective energy  due to conformational change from Confs. 1 to i, except that to 

the misfolded conformation (Conf. 3), is monotonically decreased as the temperature 

increases, indicating that these unfolded conformations are relatively stabilized by increasing 

temperature. The decrease in  of approximately −5 to −15 with temperatures 

increasing from 298 K to 373 K contributes to the high-temperature denaturation of chignolin. 

The exceptional behavior observed for the misfolded conformation (Conf. 3) is discussed later.  

In Figs. 7 (b) and (c), each contribution to  caused by the structure energy, 

, and by the SFE, , is shown as a function of temperature, 

respectively. The change in the structure energy from Confs. 1 to i, , is large and 

positive; thus,  as well as  divided by  should decrease with increasing 

temperature (Fig. 7 (b)). However, the change in the SFE from Confs. 1 to i  and 

 both increase with increasing temperature (Fig. 7 (c)). The increase in 

 indicates that the solvent effect stabilizes Conf. 1 relative to the unfolded 

conformations at higher temperatures, thereby suppressing high-temperature unfolding. The 

decrease in  and the increase in  are mostly canceled by each other; 

the decrease in  slightly overcomes the increase in . Therefore, the 

stabilization of the unfolded conformations relative to Conf. 1 is increased by the increase in 

temperature. These observations suggest that, in addition to the larger stabilization for the 

unfolded conformations than for the native Conf. 1 from the conformation entropy, the 

decrease in  by increasing temperature, i.e., the thermal fluctuation effect on 

protein conformation, is important in stabilizing denatured conformations at high 

temperatures.  
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As for the misfolded conformation,  for Conf. 3 remains slightly lower than that for 

Conf. 1 even at 373 K (see Fig. 6 (d)). The value of  only for Conf. 3 increases 

as temperature increases (see Fig. 7 (a)), indicating that the relative stability of Conf. 3 to 

Conf. 1 is increased by increasing temperature. In the previous paragraph, we noted that  

and  were mostly canceled out, except the former contributed slightly more to . 

All conformations except for Conf. 3 have this tendency, i.e., , even for 

increasing temperature. However, in the case of Conf. 3,  overcomes at all 

temperatures; that is, . Even though  for Conf. 1 is lower than that for Conf. 

3, Conf. 3 is slightly more stabilized than Conf. 1; this is because the solvation effect on the 

stabilization of Conf. 3 is larger than that of Conf. 1 at all temperatures. 

To investigate why  increases with increasing temperature, we divide the 

quantity into the nonpolar contribution  and the electrostatic contribution 

, defined by . Hydrophobic 

interactions between small solutes such as methane become stronger by increasing the 

temperature [for instance, Ref. [70]]. The increase in the nonpolar contribution  

shown in Fig. 7 (d) can be interpreted based on the temperature dependence of hydrophobic 

interactions. However, the electrostatic contribution  shown in Fig. 7 (e) 

yields a contribution to the increase in  of approximately ten times that from the 

nonpolar contribution . The larger increase in  can be 

interpreted as follows: the increase in the electrostatic contribution  with 

increasing temperature is generally larger than that in the nonpolar contribution , as 
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seen in Fig. 6 (a), and the unfolded conformations have larger electrostatic contributions 

 than the native Conf. 1 does because they have larger solvent-accessible surface 

areas, thus resulting in larger increases in  than in .  

 

 

Figure 7. Temperature dependences of (a) the difference of the effective energy between the 

native Conf. 1 and Conf. i, , (b) the difference of 

the structure energy between Confs. 1 and i, , (c) the difference of the SFE 

between Confs. 1 and i, , (d) the nonpolar contribution to , 

, and (e) the electrostatic contribution to , , along 
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the isobar of 1 bar. In these figures, the asterisk added to the physical quantities indicates that 

these quantities are shown as the difference between the quantity at each temperature and that 

at 298 K, e.g., , etc. 

 

Pressure	effects	on	change	in	 	by	the	unfolding	of	chignolin 

Figure 8 (a) shows the pressure dependences of the SFE for Conf. 1, , the nonpolar 

contribution, , and the electrostatic contribution, , along the isotherm of 

298 K. The nonpolar contribution  is positive and increases with increasing 

pressure, whereas the electrostatic contribution  has a large negative value and 

conversely decreases with increasing pressure. The excess PMV  is determined by the 

pressure dependence of  using 

         (19) 

where p0 = 1 bar. The coefficient  gives  at 1 bar. The values of  obtained by eq. 

(19) and by the Kirkwood integral (eq. (16)) are shown in Fig. 5 (f). The values of  

obtained by eq. (19) are almost comparable with those obtained by eq. (16) except for the 

extended conformations (Confs. 8 and 9), while the difference between them is attributed to 

the lack of the bridge function correction on the Kirkwood integral (eq. (16)). The density 

distribution function of water obtained by the 3D-RISM/KH integral equation—which is 

needed in eq. (16)—includes no bridge function correction. The increase or decrease in  

obtained by eq. (19) upon increasing the conformation number almost agrees with that by eq. 

(16), except for the change between Confs. 7 and 8.  by eq. (19) gradually decreases with 

increasing conformation number; this indicates that the unfolded conformations are relatively 

stabilized by increasing pressure.  
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Figure 8 (b) shows the values of  for each conformation at pressures of 1 bar and 

8000 bar. The values of  for the unfolded conformations are higher than that for 

Conf. 1 and the differences of  from Conf. 1 are ~50–80, even at 8000 bar. As 

discussed in the temperature dependence of  (Fig. 6 (d)), the large positive values of 

the difference in the effective energy between the native and denatured conformations 

 are mostly compensated by the conformation-entropy contribution. Therefore, we 

focus on whether the change in  with increasing pressure yields a decrease in 

 comparable with an experimentally determined change in the free energy 

 due to the unfolding of chignolin. Based on the experimental results by Honda et al. 

[59],  at 298 K is estimated at ~0.4. This result shows that the free energy of the 

denatured state is higher than that of the native state by ~0.4 kBT. Therefore, at least 0.4 kBT is 

required to render the denatured state more stable than the native state at room temperature 

and normal pressure (298 K and 1 bar) (see the SI). Assuming that the fraction for the native 

state at 298 K and 8000 bar is, e.g., fN = 0.3, we can estimate  as 

−0.85. Therefore, the relative stabilization in the free energy for the denatured state by 

increasing the pressure is estimated at approximately −1.25 (= −0.4 – 0.85) in units of kBT. We 

use this value as a reference one of the free energy change upon the high-pressure 

denaturation of chignolin.  
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Figure 8. (a) Pressure dependences of the SFE for chignolin with the native Conf. 1 , 

the nonpolar contribution , and the electrostatic contribution  along the 

isotherm of 298 K. (b) The effective energy for each conformation defined by 

at pressures of 1 bar and 8000 bar. 
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is caused by , the solvent effect. The change in the relative stability for group B 

by approximately −2 to −4 kBT, as seen in Fig. 9 (a), may be the driving force of the pressure-

induced denaturation. The pressure derivative of  at constant temperature provides 

changes in the excess PMV by changes in conformation from Confs. 1 to i, . 

Therefore, groups A and B have positive and negative values of , respectively. If the 

pressure is increased to 8000 bar or higher, Conf. 1 changes into conformations of group B.  

To clarify the mechanism of the relative stabilization for group B at high pressures, we divide 

 into the nonpolar contribution  and the electrostatic contribution 

. The nonpolar contribution  shown in Fig. 9 (b) monotonically 

increases as pressure increases except for Confs. 3 and 7, while the electrostatic contribution 

 for all the unfolded conformations decreases with increasing pressure (see 

Fig. 9 (c)). In Fig. 9 (b), the conformations with the highest two and lowest two values of 

 are Confs. 4 and 6 and Confs. 3 and 7, respectively, and the former and latter 

are destabilized and stabilized with increasing pressure, respectively, as seen in Fig. 9 (a).   

In Fig. 9 (c), the lowest two and highest two values of  are given by Confs. 8 

and 9 and Confs. 2 and 3, respectively. The former has a large value of Rg, while the latter has 

a small value of Rg (see Fig. 5 (d)). This observation indicates that the extended conformations 

with larger Rg—which are solvated by more water molecules—gain larger stabilization from 

the electrostatic contribution . Now we focus on Confs. 3 and 8, both of which 

yield decreases in , i.e., negative values of . The misfolded Conf. 3 is 

compact with a small Rg comparable to that of Conf. 1, and thus has a smaller electrostatic 
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contribution  than the other extended conformations, while the increase in the 

nonpolar contribution  with increasing pressure is significantly suppressed by 

the compactness of Conf. 3. As a result,  for Conf. 3 decreases with increasing 

pressure, even though the decreasing rate in  with the increase in pressure is 

small. Sufficiently compact denatured conformations, such as Conf. 3, were proposed by 

Harano and Kinoshita as the fundamental high-pressure conformations [71]. Meanwhile, Conf. 8 

is a typical extended conformation unlike Conf. 3; it has a large value of Rg and exhibits a 

large decrease in the electrostatic contribution  upon increasing pressure. 

Although the increase in the nonpolar contribution  for Conf. 8 is larger than 

that for Conf. 3, the larger decrease in the electrostatic contribution  for Conf. 

8 overcomes the increase in . As a result, the pressure-induced stabilization of 

the extended conformation is caused by electrostatic interactions and/or hydrogen bonds 

between the protein and water. The extended conformations, whose large solvent-accessible 

surface areas enhance the electrostatic contributions , are critical for the 

pressure-induced denaturation of proteins. Furthermore, as seen in Fig. 9 (a), the existence of 

unfolded conformations such as Confs. 2, 4, 5, and 6 with intermediate values of Rg—

destabilized by increasing pressure—suggests the existence of high transition states 

suppressing pressure-induced unfolding. 
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Figure 9. Pressure dependences of (a) the difference of the SFE between Confs. 1 and i 

, (b) the nonpolar contribution, , and (c) the electrostatic 

contribution, , along the isotherm of 298 K. It is noted that  is 

equivalent to , because  is constant at 

any pressure.  

	
Conclusion	

In this study, we presented an application of the reference-modified density functional theory 
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RMDFT was sensitive to the diameter of the HS in the reference system, we determined the 

temperature dependence of the HS diameter under 1 bar such that the SFE values of methane 

in water by the RMDFT quantitatively agreed with those obtained experimentally. Similarly, 

we determined the pressure dependence of the HS diameter along the isotherm of 298 K such 

that the SFE values of a water molecule in water by the RMDFT quantitatively agreed with 

those determined by MD simulations. To assess the reliability of the RMDFT for estimating 

the temperature and pressure dependences of the SFE, we demonstrated the following: the 

SFE values calculated by the RMDFT at several temperatures under 1 bar agreed well with 

those experimentally determined for xenon in water; those calculated at several pressures at 

298 K agreed with those experimentally determined for methane in water, as well as those 

obtained by MD simulations for a benzene molecule in water. 

 As a further application of the RMDFT to a large solute molecule, we investigated the 

temperature dependence of the SFE for chignolin, an artificial small protein [59], immersed in 

water with nine different conformations. The SFE for the native Conf. 1  

monotonically increased as the temperature increased along the isobar of 1 bar, as seen in the 

temperature dependence of the SFE for the hydrophobic solutes, methane and xenon.  

 was divided into the nonpolar contribution, , and the electrostatic 

contribution, . The former was calculated without all the electric charges on the 

protein and the latter was given by . The nonpolar 

contribution  had a positive small value and slightly increased with increasing 

temperature. The electrostatic contribution  had a large negative value, i.e., 

provided the main contribution to , and the increase in  with increasing 

temperature was larger than that in the nonpolar contribution . 
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The values of the effective energy divided by kBT, , for the 

unfolded conformations except for the misfolded Conf. 3 were all higher than that for Conf. 1 

even at the high temperature of 373 K. However, the differences of the effective energy 

between Confs. 1 and i divided by kBT, , monotonically 

decreased as temperature increased, except for Conf. 3. The decrease in  (or 

) with increasing temperature provided a sufficiently large contribution to decrease 

the free energy for the unfolded state by −2.6 kBT [59], estimated based on the experiment results 

(see the SI). The decomposition of  into the structure energy contribution 

 and the SFE contribution  indicated that the relative stability of the 

unfolded conformations at high temperatures was attributable to the decrease in , 

interpreted as the thermal fluctuation effect on the protein conformation. Interestingly,  

 provided greater stabilization to the native structure than to the unfolded 

conformations at high temperatures; thus, the solvent effect by  suppressed 

high-temperature unfolding.  

 We also investigated the pressure dependence of the SFE for chignolin with nine 

conformations along the isotherm of 298 K. The SFE for Conf. 1  was increased by 

increasing pressure, while the electrostatic contribution  was conversely decreased 

by increasing pressure. Thus, the increase in  was attributable to increasing the 

nonpolar contribution , whereas the predominant contribution to  arose 

from the electrostatic contribution . The pressure effect by  was 

important to the high-pressure denaturation of the protein, as discussed below.  
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Based on the pressure dependence of , we found two different typical 

conformations whose appearance probabilities increased at higher pressures. One was 

compact, comparable to the native structure. Thus, the decrease in the electrostatic 

contribution  with increasing pressure was not large because of the compact 

conformation with a small solvent-accessible surface area, while the increase in the nonpolar 

contribution  was sufficiently suppressed by the compactness of that 

conformation. The other had an expanded conformation with a large Rg. Thus, the decrease in 

the electrostatic contribution  with the increase in pressure was significantly 

larger than that for the former because of the electrostatic interactions between the protein and 

water under the larger solvent-accessible surface area, although the increase in the nonpolar 

contribution  was larger than that for the former because of a larger excluded 

volume effect. The former—which can suppress the increase in —may relate 

to the sufficiently compact denatured conformation, proposed by Harano and Kinoshita as the 

typical conformation appearing at high pressures [71]. The latter—which is stabilized by the 

decrease in the electrostatic contribution  caused by the large solvent-

accessible surface area—is also important to high-pressure unfolding. 

The mechanisms discussed in the present study on the high-temperature and high-

pressure unfolding of chignolin require further investigation by extensive conformation 

ensembles and by determining the free energy landscape under various thermodynamic 

conditions. The RMDFT can be a powerful tool to perform efficient high-precision SFE 

calculations, since time-consuming 3D-RISM calculations of the solvent density distribution 

functions have already been sufficiently accelerated by progress in graphic processing units [72]. 
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