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ABSTRACT. A small-angle X-ray scattering has been used to probe protein-protein interaction in 

solution. Conventional methods need to input modeled potentials with variable/invariable parameters to 

reproduce the experimental structure factor. In the present study, a model-free method for extracting the 

excess part of effective interaction potential between protein molecules in solutions over an introduced 

hard-sphere potential by using experimental data of small-angle X-ray scattering is presented on the 
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basis of liquid-state integral equation theory. The reliability of the model-free method is tested by the 

application to experimentally derived structure factors for dense lysozyme solutions with different 

solution conditions [Javid et al., Phys. Rev. Lett. 99, 028101 (2007), Schroer et al., Phys. Rev. Lett. 106, 

178102 (2011)]. The structure factors calculated from the model-free method agree well with the 

experimental ones. The model-free method provides the following picture of the lysozyme solution: 

there are the stabilization of contact-pair configurations, large activation barrier against their formations, 

and screened Coulomb repulsion between the charged proteins. In addition, the model-free method will 

be useful to verify whether or not a model for colloidal system is acceptable to describing protein-

protein interaction. 

 

1. Introduction 

The small-angle scattering of X-rays and neutrons from proteins in solution can provide useful 

information about the structure of the single protein and the effective interaction potential as well as 

spatial correlations between protein molecules [1,2]. The former is encoded in the form factor P(q) and 

the latters in the structure factor S(q). These functions are of great interest to the structural biology; the 

form factor P(q) is used to develop three-dimensional structural model of proteins [1,2], whereas the 

structure factor S(q) inform efforts to crystallize proteins by providing insight into their spatial 

configuration in solutions [3–17]. The interpretation of small-angle scattering data from solutions of the 

well studied protein lysozyme had been controversial: whether or not equilibrium clusters of protein 

molecules are formed in condensed protein solutions [8,13].  

The spatial distribution and intermolecular interaction of proteins in solutions provide important 

information for understanding and predicting protein functions in vivo as well as all practical processes 

involving proteins. There are various schemes which make use of different models for the 

intermolecular interaction potentials V(r) and of different liquid-state theories to calculate the structure 
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factor S(q) [5,7,11-15,17,18]. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory successfully 

describes the microstructure and equilibrium phase behavior of charged colloid systems over a wide 

phase space. Protein-protein interaction potential V(r) can also be modeled by a simple DLVO-type 

potential as a sum of the contribution from the hard-sphere repulsion vHS(r), the screened Coulomb 

potential vC(r), and a Yukawa-type attractive potential vA(r) that is originated from van der Waals 

dispersion forces. However, in comparison with colloidal particles, since the size of proteins is 

nanometer length scale, effects of hydrogen bonding, hydrophobic hydration, and specific ion binding 

become important on protein-protein interactions. Therefore, the short-range attractive interaction given 

by the Yukawa-type function vA(r) should be modified by those effects in protein solutions. In practice, 

the repulsive potential is uniquely determined by employing the screened Coulomb potential vC(r), given 

by given by Verwey and Overbeek [19] 

,       (1) 

where Z is the net charge on the protein, e the elementary charge,  the dielectric permittivity of the 

vacuum,  the dielectric constant of the medium, and dHS is protein’s diameter.�  is the reciprocal 

Debye-Hückel screening length (= ), where I is the ionic strength, kB is the 

Boltzmann constant, and T is the thermodynamic temperature in kelvins. On the other hand, the 

parameters JA and dA that are contained in the following Yukawa-type attractive potential vA(r) can be 

used to fit the calculated S(q) to the experimental small-angle scattering data, [20]  

.         (2) 

In general the assumption of a specific model potential can work well in some cases [7] but it might 

provide an artificial interaction potential if the model potential would not have enough the degree of 

freedom in the potential form. For instance, the DLVO model could provide good description of V(r) if 

the contribution of vC(r) to V(r) is dominant, but the DLVO model would not be sufficient if the Yukawa-

vC(r) =
Z 2e2

4πε0ε r (1+ 0.5κdHS)
2
exp[−κ (r − dHS)]

r

ε0

ε r κ

2e2 ε0( ) I ε rkBT( )⎡⎣ ⎤⎦
1 2

vA r( ) = −JA dHS r( )e− r−dHS( ) dA
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type function vA(r) can not reproduce the other contributions to V(r) except for vC(r). 

In the study presented here, a model-free method for investigating protein interactions as well as 

radial distribution function of proteins in solutions are presented. This method is based on a liquid-state 

integral equation theory using experimental S(q) as the input instead of the introduction of a specific 

potential model. In order to check the reliability of the model-free method, we applied this method to 

experimental S(q) data of dense lysozyme solutions that were taken from the literatures [12,15]. 

Interestingly, the literature [15] reported that pressure dependence of the protein-protein interaction 

potential is nonlinear. We also analyzed the experimental S(q) by our method, and discussed the 

physicochemical pictures.  

 

2. Theory 

In this section, we present an integral equation approach to solve an inverse problem of the effective 

interaction potential between protein molecules V(r) in solutions by using experimental structure factor 

Sexp(q) as the input. The excess part of V(r) over hard-sphere interaction potential vHS(r) that is introduced 

as a reference system is defined by 

.          (3) 

The radial distribution function of proteins g(r) or the pair correlation function between protein 

molecules h(r)= g(r)-1 is related to the direct correlation function c(r) via the Fourier transform of the 

Ornstein-Zernike (OZ) equation as follows: 

,          (4) 

where n0 is the number density of protein,  and  are the Fourier transform of h(r) and c(r), 

respectively. We define the excess part of the direct correlation function, cex(r), as follows: 

,           (5) 

where cHS(r) is a direct correlation function for the reference hard-sphere system interacting via vHS(r) at 

vex r( ) ≡V r( )− vHS r( )

ĥ q( ) = ĉ q( )+ n0ĉ q( ) ĥ q( )

ĥ q( ) ĉ q( )

cex r( ) ≡ c r( )− cHS r( )
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the same number density n0. Here we introduce the following assumption for the excess part of the 

effective interaction potential between protein molecules: 

,           (6) 

where kB is the Boltzmann constant and T is temperature. This relation is formally same as the relation 

introduced in the random phase approximation (RPA). The assumption is asymptotically correct for the 

long-range behavior of vex(r). The reliability of applying the assumption for all distances including short 

distances such as contact-pair distances between protein molecules should be determined by whether or 

not the model-free method with Eq. (6) can reproduce experimental structure factors. In addition to the 

RPA-type relation, the following closure relation is also introduced: 

 ,        (7) 

where  and B(r) is a bridge function that is regarded as a correction for the hyper-

netted chain (HNC) approximation where B(r) is zero. In this study, the following Verlet-modified 

bridge function is employed as B(r) [21, 22]: 

,          (8) 

It is well known that the HNC approximation systematically overestimates the value of S(q) at small q-

values [23]. In general, the bridge function mainly provides a correction on the overestimate of S(q) at 

small q-values for the HNC approximation but does not affect short-range structures very much.  

Finally, substitution of equations (3), (5), and (6) into Eq. (7) and the use of Eq. (4) gives the 

following closure relation that we can use to solve the inverse problem of V(r) using experimental 

structure factor as the input: 

 ,        (9) 

where dHS is the diameter of hard-sphere fluid with , e.g. protein’s diameter here, and 

−vex r( ) kBT = cex r( )

h r( ) = exp −V r( ) kBT + γ r( ) + B r( )⎡⎣ ⎤⎦ −1

γ r( ) = h r( )− c r( )

B r( ) = γ 2 r( )
2 1+ 4 5( )γ r( )⎡⎣ ⎤⎦

h r( ) = exp γ s r( ) + B r( )⎡⎣ ⎤⎦ −1

−1

⎧
⎨
⎪

⎩⎪

r > dHS
r ≤ dHS

vHS r( )
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 is provided by the inverse Fourier transform of 

          (10) 

with 

,         (11) 

where  for  is obtained from the experimental data of  via 

, while  for  is obtained from the Fourier transform of  

provided by Eq. (9). The partial displacement in  for  with the experimental  

means that the experimental  is used as the input of the integral equation instead of information 

about unknown interaction potential between protein molecules. The value of qh should be chosen so 

that the calculated  for  from the closure relation of Eq. (9) smoothly continues to the 

experimental  at  within the experimentally available q-values. Since  does not 

explicitly appear in Eq. (9), we can obtain  without any model potential from a self-consistent 

 via Eq. (6) by iteratively solving the integral equation until the Fourier transform of  

calculated from Eq. (9) is well converged. The detail of the calculation procedure is shown in the 

appendix. The hard sphere diameter dHS in  was chosen as a minimum contact distance between 

protein molecules. It is noted that  shown as the theoretical results in figures are the one obtained 

from the Fourier transform of  that is calculated from the closure relation of Eq. (9) without the 

partial displacement with . 

 

3. Computational details 

In order to investigate the reliability of the model-free method with the integral equation, we applied 

the method to lysozyme 10 wt% solutions at 25 ºC and 1bar in 20mM citrate buffer at pH 4.6 [12] and 

γ s r( ) = h r( )− cHS r( )

γ̂ s q( ) = ĉ q( ) 1− n0ĉ q( )⎡⎣ ⎤⎦ − ĉHS q( )

ĉ q( ) = ˆ′h q( )− γ̂ s q( )− ĉex q( )⎡⎣ ⎤⎦

ˆ′h q( ) q ≤ qh Sexp q( )

ĥexp q( ) = Sexp q( )−1⎡⎣ ⎤⎦ n0 ˆ′h q( ) q > qh h r( )

ˆ′h q( ) q ≤ qh ĥexp q( )

Sexp q( )

h q( ) q > qh

hexp q( ) qh vex r( )

vex r( )

cex r( ) h r( )

vHS r( )

S q( )

h r( )

ĥexp q( )
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in 25mM bis-Tris buffer at pH 7 [15]. The maximum q-value for which the experimental Sexp(q) values 

are available is qh=1.8 nm-1 for the citrate buffer solution and qh=4.0 nm-1 for the bis-Tris buffer solution, 

respectively. The data of S(q)s shown in Fig. 1(b) of Ref. 15 is probably a theoretical fitting to 

experimental Sexp(q). However, we do not care about it because the main purpose of the use of these data 

is for applying the model-free method. In the manuscript, we refer the structure factors that are shown in 

Fig. 2(b) of Ref. 12 and in Fig. 1(b) of Ref. 15 as the experimental data I and II, respectively. In the 

experimental data I, since there was no small-angle values of Sexp(q) at q-values less than 0.2 nm-1, we 

prepared the small-angle values of Sexp(q) using an extrapolation with a Lorenz-type function in the 

present analyses. In this study, the integral equation was solved with 4096 grid points, in which the 

maximum value of the radial distance was 100 nm. In all the theoretical calculations, 2.7 nm is 

employed as dHS in  according to the length of the shorter axis when lysozyme is regarded as an 

ellipsoid. The number density of protein n0 is 4.2 ´ 10-6 Å-3 when the protein concentration is 10 wt % (= 

0.10 g/mL = 7.0 mM). 

 

3. Results 

Figure 1 shows comparison between the reported experimental data [12, 15] and the present 

theoretical results for S(q) in 10 wt % lysozyme solution. The theoretical results agree well with the 

experimental Sexp(q) data I and II, respectively. Especially, both the low-q and high-q peaks in S(q) for 

Exp. data II can be reproduced by the model-free method. In comparison with Exp. data II, the model-

free method provides the smaller peak at the high-q region for Exp. data I. It is noted that the theoretical 

S(q) that is calculated from the Fourier transform of h(r) given by Eq. (9) is deviated from the 

experimental Sexp(q) even though Sexp(q) is used as the input. The deviation should be attributed to the 

assumption of Eq. (6). 

Figures 2(a) and 2(b) show theoretical results of the radial distribution functions of proteins g(r) and 

the effective interaction potentials between protein molecules V(r), respectively. A significant first peak 

vHS r( )
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that indicates the contact-pair configurations is observed in g(r) for Exp. data II, while a smaller first 

peak in g(r) whose height is less than 1 is provided for Exp. data I. These observations strongly suggest 

that the experimental data at the high-q region affects the microscopic structures in the small length 

scale comparable with the size of protein. Except for the first maximum, the asymptotic behavior of g(r) 

for those Exp. data at the distances larger than the first maximum qualitatively agrees each other: both 

g(r)s increase from values less than 1 with the increase in the distance.  

In Fig. 2(b), we can see again that the relative stabilization of the contact-pair configurations for Exp. 

data II at the distances around 3.4 nm, whose value is slightly larger than dHS=2.7 nm. A large first peak 

in V(r) comparable with the same order of kBT is also found for Exp. data II. The activation barrier 

against the formation of the contact-pair configurations plays the crucial role on the stability of 

metastable states of dense protein solutions.   

In Fig. 3, pressure dependence of experimental Sexp(q) for lysozyme 10 wt% solution at 25 ˚C in bis-

Tris buffer [15] is shown. The calculated S(q)s from the model-free method are shown in the inset. The 

values of S(q) for q between 1 and 2 nm-1 once increase with the increase in pressure from 1 bar to 1.5 

kbar, and then decrease with the further increase in pressure from 1.5 kbar to 3.5 kbar. On the other hand, 

the values of S(q) for q less than 1 nm-1 first decrease with the increase in pressure and then increase with 

the further increase in pressure from 1.5 kbar to 3.5 kbar. We can see in the inset that the similar 

pressure dependence of S(q) is reproduced by the model-free method.  

 Figures 4(a) and 4(b) show pressure dependence of the radial distribution functions of proteins g(r) 

and the effective interaction potentials between protein molecules V(r)/kBT, respectively. In both g(r) and 

V(r)/kBT, the long-range behaviors at the distances larger than 4 nm are not significantly affected by the 

increase in pressure at least less than 3.5kbar. The result could be interpreted by a small pressure effect 

on the long-range Coulomb repulsion between charged protein molecules. On the other hand the 

increase in pressure strongly effects the stabilization of the contact-pair configurations of proteins. The 

contact-pair configurations are destabilized by an increase in pressure from 1 bar to 1.5 kbar and then 
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gradually stabilized by the farther increase in pressure from 1.5 kbar to 3.5 kbar. In contrast to the 

smaller pressure effects on the long-range Coulomb interactions, the pressure dependence of the 

contact-pair stabilization can be attributed to pressure dependence of hydrophobic interactions. The 

increase in V(r)/kBT at the contact-pair distances with the increase in pressure up to 1.5 kbar is 

qualitatively agreed with the result that has been reported by Ortore et al. [14].  

In Fig. 5, the minimum energy value of V(r)/kBT at the first minimum and the distance at the first 

minimum of V(r)/kBT are respectively shown on the left and right axis as the function of pressure. The 

first minimum energy value of V(r)/kBT increases from negative to positive with the increase in pressure 

from 1 bar to 1.5 kbar and then decreases from positive to negative again with the farther increase in 

pressure. At the same time, the first minimum distance in V(r)/kBT first increases and then decreases as 

pressure increases. The non-linear pressure dependence of the energy value at the first minimum of 

V(r)/kBT qualitatively agrees well with results obtained from theoretical analysis with the DLVO model 

potential for the same experimental Sexp(q)s.  

 

4. Discussion 

As seen in Fig. 1, the high-q data of Sexp(q) is available in Exp. data II, while the data of Sexp(q) at q-

values larger than 1.8 nm-1 is absence in Exp. data I. As the result, the model-free method reproduces a 

larger peak in S(q) at q-values around 2.3 nm-1 for Exp. data II but dose not provide a significant peak at 

this q-region for Exp. data I. At the same time, as seen in Fig. 2(a), the model-free method provides a 

large first maximum in g(r) for Exp. data II but dose not provide a significant first peak for Exp. data I. 

The large first maximum in g(r) for Exp. data II indicates the stabilization of contact-pair conformations 

of proteins. The comparison between theoretical results obtained from these different experimental 

Sexp(q) data clearly shows that the intermolecular microscopic structural information in the length scale 

comparable with the size of proteins is attributed to the high-q data of Sexp(q).  

It has been controversial whether or not equilibrium clusters of proteins are formed in dense lysozyme 
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solutions [8,13]. The effective interaction potential between protein molecules V(r) obtained for Exp. 

data II from the model-free method shows a large first minimum at the contact distances and a screened 

Coulomb repulsion [See Fig. 2(b)]. As seen in g(r) obtained for Exp. data II, the large first maximum 

indicating the stabilization of the contact-pair conformations and the gradual increase in g(r) from 

values less than 1 with an increase in the radial distance are observed in Fig. 2(a). The shape of g(r) 

looks like monomer-monomer g(r) in polymer melts. These observations suggest the formation of 

worm-like clusters consisting of proteins in dense lysozyme solutions. 

As seen in V(r) for Exp. data II in Fig. 2(b), the model-free method provides a large first positive 

maximum in V(r) that disturbs the formation of the contact-pair conformations. The activation energy 

barrier comparable with kBT against the contact-pair formation plays a crucial role on the stabilization of 

protein solutions. In our previous study using a liquid-state-density-functional theory, both the similar 

stabilization of the contact-pair configurations and the large activation barrier against their formation 

have been demonstrated by the potential of mean force between hydrophobic/solvophobic large solutes 

in water/Lennard-Jones (LJ) solvent [24]. If no van der Waals attractive interaction between solute and 

solvent was taken into account, the activation barrier against the formation of the contact-pair 

configurations completely disappeared, while the contact-pair configurations were more stabilized. 

These results suggest that the large activation barrier would be caused by the formation of 

hydration/solvation shell around large hydrophobic/solvophobic solutes. The model-free method can 

extract hydration effects on protein-protein interactions from the experimental Sexp(q) data.  

The model-free method also reproduces the non-linear pressure dependence of the structure factor. The 

stability of the contact-pair configurations is strongly affected by an increase in pressure, while the 

screened Coulomb repulsion is not significantly affected by the increase in pressure. The non-linear 

change in the relative stability of the contact-pair configurations can be attributed to pressure effects on 

hydrophobic hydration. 
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5. Conclusion 

In the present study, a model-free method for extracting the effective protein-protein interaction 

potential as well as the radial distribution function of proteins was proposed. This is the theoretical 

method based on a liquid-state integral equation where experimental structure factor Sexp(q) is used as the 

input instead of introducing a specific model interaction potential between protein molecules such as the 

DLVO potential. By using this method, we can solve an inverse problem of the effective interaction 

potential between protein molecules starting from experimental structure factor Sexp(q) without any 

assumption of the specific model potential except for the hard-sphere diameter of introduced reference 

hard-sphere system. We applied the model-free method to different experimental data of Sexp(q) for dense 

lysozyme solutions. The model-free method can reproduce the experimental Sexp(q) very well and 

provides an useful information about spatial correlations and effective interaction potential between 

protein molecules in the length scale comparable with the size of protein if the effective experimental 

data of Sexp(q) is available up to enough high-q region. The model-free method shows the stabilization of 

contact-pair configurations, large activation barrier against their formations, and screened Coulomb 

repulsion between charged protein molecules. The result suggests the formation of worm-like clusters 

consisting of proteins.    
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Appendix  

The values of  for  in Eq. (11) is fixed to be  during the 

iterative calculation for solving the integral equation, while the values of  for  in Eq. (11) 
are updated using the Fourier transform of  calculated from Eq. (2). The detailed procedure of the 
calculation is given as follows: 

An initial guess is provided by 

,          (A1) 

where  is the one obtained from the hard-sphere reference system, and 

,           (A2) 

,            (A3) 

and 

.           (A4)  

The following iterative calculation will be continued until the absolute difference between  and 

 becomes less than a threshold. 

1. .          (A5) 

2. .         (A6) 

3. .        (A7) 

4. , where  is the dumping parameter.    (A8) 

5. .           (A9) 

6. 
.       (A10)

 

7. If a difference between  and  less than the threshold, go to step 8 (outside the iteration 

loop), otherwise  and  for , then go back to step 1. 

8.  is calculated via . 

ˆ′h q( ) q ≤ qh ĥexp q( ) = Sexp q( )−1⎡⎣ ⎤⎦ n0
ˆ′h q( ) q > qh

h r( )

ˆ′h q( ) =
ĥexp q( )
ĥHS q( )

⎧
⎨
⎪

⎩⎪

q ≤ qh
q > qh

ĥHS q( )

γ̂ s
old q( ) = γ̂ s

new q( ) = 0

ĉ q( ) = ĉHS q( )

ĥold q( ) = ĥHS q( )

ĥnew q( )
ĥold q( )

ĉex q( ) = ĉ q( )− ĉHS q( )

ĉ q( ) = ˆ′h q( )− γ̂ s q( )− ĉex q( )⎡⎣ ⎤⎦

γ̂ s q( ) = ĉ q( ) 1− n0c q( )⎡⎣ ⎤⎦ − ĉHS q( )

γ̂ s q( ) = aγ̂ s q( ) + (1− a)γ̂ s
old q( ) a

γ̂ s
old q( ) = γ̂ s q( )

h r( ) = exp γ s r( ) + B r( )⎡⎣ ⎤⎦ −1

−1

⎧
⎨
⎪

⎩⎪

r > dHS
r ≤ dHS

ĥ q( ) ĥold q( )
ĥold q( ) = ĥ q( ) ˆ′h q( ) = ĥ q( ) q > qh

S q( ) S q( ) = 1+ n0ĥ q( )
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Figure 1. Comparison between experimental and calculated structure factors S(q) for lysozyme 10 wt % 

solutions at 25 ºC and 1 bar in 20mM citrate buffer at pH 4.6 and in 25 mM bis-Tris buffer at pH 7. The 

experimental Sexp(q) in the citrate buffer solution is obtained from Fig. 2(b) in Ref. [12]. The 

experimental Sexp(q) in the bis-Tris buffer solution is obtained from Fig. 1(b) in Ref. [15].  
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Figure 2. (a) Radial distribution functions of proteins g(r) and (b) effective interaction potentials 

between protein molecules V(r)/kBT corresponding to the calculated S(q) shown in Fig. 1. 
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Figure 3. Pressure dependence of experimental Sexp(q) for lysozyme 10 wt% solutions at 25 ˚C in bis-Tris 

buffer. These data are obtained from Fig. 1(b) in Ref. [15]. The inset shows calculated S(q) 

corresponding to these experimental Sexp(q). The red lines, 1 bar; blue lines, 1.5 kbar; and black lines, 3.5 

kbar.  
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Figure 4. Pressure dependence of (a) the radial distribution functions of proteins g(r) and (b) the 

effective interaction potentials between protein molecules V(r)/kBT. The red lines, 1 bar; blue lines, 1.5 

kbar; light blue, 2.5 kbar; and black lines, 3.5 kbar.  
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Figure 5. Pressure dependence of (left axis) a value of V(r)/kBT at the first minimum and (right axis) the 

distance at the first minimum of V(r)/kBT. The blue and red circles indicate the first minimum values of 

V(r)/kBT and the first minimum distance of V(r)/kBT, respectively. The blue and red lines show fitting 

curves with cubic spline to guide the eye.  
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