Evaluation of Setup Errors at the Skin Surface Position for Whole Breast Radiotherapy of Breast Cancer Patients

Kanae Miyaharaa,b, Masahiro Kurodaa*, Yuuki Yoshimuraa,b, Hideki Aoyamac, Masataka Oitaa, Irfan Sugiantod, Hidenobu Matsuzakid, Hiroki Iharae, Norihisa Katayamae, Kuniki Katsuia, Susumu Kanazawaa, and Junichi Asaumid

aRadiological Technology, Graduate School of Health Sciences, Okayama University, bCentral Division of Radiology, Okayama University Hospital, Departments of dOral and Maxillofacial Radiology and eRadiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan, bRadiology Diagnosis, Okayama Saiseikai General Hospital, Okayama 700-8511, Japan

We used image-processing software to analyze the setup errors at the skin surface position of breast cancer patients (n = 66) who underwent post-operative whole breast irradiation at our hospital in 2014-2015. The sixty-six digital reconstructed radiographs (DRR) were created at the treatment planning for each patient. The lineacgraphies (n = 377) were taken after the patients' setup during radiotherapy. The lineacgraphies and DRR were superimposed at the skin surface position for each patient with the image-processing software. We measured the deviations of the isocenters for the nipple-lung (X) direction and cranio-caudal (Y) direction and the deviation of the rotation angle of the XY axes between the lineacgraphy and DRR on the superimposed images. The systematic error (μ, Σ) and random error (σ) were calculated from the X and Y deviations and rotation angle deviation. The μ of X, Y, and rotation angle were 0.01 mm, −1.2 mm, and 0.05°, respectively. The Σ of X, Y, and rotation angle were 1.8 mm, 1.5 mm, and 0.9°, respectively. The σ of X, Y, and rotation angle were 2.0 mm, 1.5 mm, and 1.0°, respectively. Our analyses thus revealed that evaluations using image-processing software at the skin surface position in routine breast radiotherapy result in sufficiently small setup errors.

Key words: breast cancer, radiotherapy, position verification, skin surface, image processing software

As part of the quality-assurance protocol in routine clinical treatments at Okayama University Hospital, the setup errors of the breast-conserving radiotherapy for breast cancer patients are examined. In the hospital's routine clinical radiotherapy, the position verification during radiotherapy is achieved by a visual comparison of the digital reconstructed radiograph (DRR) calculated at the treatment planning stage and the lineacgraphy taken during the treatment [1-6]. For breast radiotherapy, the central lung distance (CLD), cranio-caudal distance (CCD) [1,2] and inferior central margin (ICM) [3,4] have been used to evaluate the setup errors of the X and Y directions on two-dimensional images. However, the evaluation of the rotation of the XY axes is difficult with conventional verification methods, and there are few reports regarding the setup error of the rotation of XY axes on two-dimensional images [3].

In this study, we evaluated the setup errors by conducting a verification of the position at the skin surface instead of using the CLD, CCD and so on, since the

Conflict of Interest Disclosures: No potential conflict of interest relevant to this article was reported.
mammary glands are located directly under the skin. This verification method using the skin surface enabled us to evaluate the precise rotation error of the XY axes. The hitherto known verification method is usually done with a visual comparison, which leads to less-than-optimal objectivity. We therefore used image processing software for the verification to improve the accuracy of the evaluation.

Our aim is not to replace the usual verification methods with this new verification method using the skin surface for routine radiotherapy. The goal of the present study was simply to certify the accuracy of our daily clinical practice using this precise method, which is a burdensome and time-consuming research technique.

Materials and Methods

Patients and CT simulation. At Okayama University Hospital from September 2014 to April 2015, 66 breast cancer patients were treated post-operatively with whole breast radiotherapy. Each patient was scanned in the supine treatment position, with both arms extended in a support above the head and with an immobilization wedge under the knees. Free-breathing computed tomography (CT) acquisition was performed with an Asteion Super4 Edition multi-slice CT scanner (Toshiba Medical Systems, Tochigi, Japan) and reconstructed with 2-mm-thick slices. To obtain reproducible patient positioning, prior to the CT scanning, three cross lines indicating the CT center were marked on the patient's skin with a marker pen and protective tape. The three cross lines were in a transverse plane at the height of the xiphoid process of the patient's sternal bone: one on the sternum and one on each lateral side at the middle axillary line.

Treatment plans. A single isocentric field setup was used for whole breast radiotherapy with two tangential non-parallel opposing beams. The treatments were delivered with the ONCR-K (Toshiba Medical Systems) equipped with an electronic portal image device (EPID).

Position setting and verification. The daily patient positioning consisted of the alignment of the three cross lines indicating the CT center with the treatment-room lasers, followed by an isocenter shift. The patient position was verified by a comparison of the megavoltage image of lineacgraphy and the DRR for the beam from the medial side of 2 tangential non-parallel opposing beams. The lineacgraphies were taken after the patient's setup essentially at the first and second days of radiotherapy, and thereafter once a week. A total of 337 lineacgraphies were taken during radiotherapy.

Correction of positioning errors. When the positioning error of isocenter exceeded 1 cm based on a visual comparison of the lineacgraphy and the DRR, the patient was repeatedly re-positioned until the error became within 1 cm. After the re-positioning, lineacgraphy was performed and recorded to assess the setup error.

Assessment of the setup errors.

1. Superimposition of the lineacgraphy and DRR

Each DRR and lineacgraphy image was imported onto different layers using the image processing software Photoshop Elements (ver. 13.0, Adobe Systems, San Jose, CA, USA), and their scales were matched by scaling. The skin surface line was drawn manually on each layer of the DRR (Fig.1A) and lineacgraphy (Fig.1B) images for the range to cover the irradiation field. The superimposition of the lineacgraphy and DRR images (Fig.1C) was done manually by rotating and shifting the images to match the three skin surface lines.

2. Measurement of the setup errors

The superimposed images were imported to the image processing software ImageJ (ver. 1.44p, U.S. National Institutes of Health, Bethesda, MD, USA). The deviations of the isocenter of the lineacgraphy from that of the DRR was measured for the nipple-lung (X) direction and craniocaudal (Y) direction and the rotation angle of the XY axes (Fig.1D). The ‘plus’ direction was defined as the nipple side of the X-axis, the head side of the Y-axis, and the forward-bending side of the rotation angle.

3. Evaluation of the setup errors

We evaluated the systematic error, the random error, and the total vector error. ‘Systematic error’ is an error that is systematically generated in a certain direction due to several specific causes. This error can be corrected by measures such as image-guided radiotherapy. Generally, 2 types of systematic errors (μ, Σ) have been used to evaluate setup errors. Systematic error (Σ) is usually used for the analysis of many samples. ‘Random error’ is an accidental error that occurred due to an unknown cause. Although it can be made small to some extent by some measures, it is difficult to remove.

In the present patient series, the systematic error
was calculated as follows. First, the average value \((m_1, m_2, \ldots, m_n)\) of the deviations between the DRR and lineacgraphy was calculated for the X-axis, Y-axis and angle, respectively, for each patient \((1, 2, \ldots, n)\). The systematic error \((\mu)\) was defined as the average of each patient’s deviation \((m_1, m_2, \ldots, m_n)\) for the X-axis, Y-axis and angle, respectively, with the following equation:

\[
\text{Systematic error (}\mu\text{)} = \text{mean (}m_1, m_2, \ldots, m_n) \tag{1}
\]

The systematic error \((\Sigma)\) was defined as the standard deviation (SD) of each patient’s deviation \((m_1, m_2, \ldots, m_n)\) for the X-axis, Y-axis and angle, respectively, as follows:

\[
\text{Systematic error (}\Sigma\text{)} = \text{SD (}m_1, m_2, \ldots, m_n) \tag{2}
\]

Student’s \(t\)-test was used to determine the significance of differences in the systematic error \((\mu)\). F-test was used to determine the significance of differences in the systematic error \((\Sigma)\). The differences were considered significant when \(p \leq 0.05\).

The random error \([7-9]\) was calculated as follows. First, the standard deviation \((\sigma_1, \sigma_2, \ldots, \sigma_n)\) of the deviations between the DRR and lineacgraphy was calculated for the X-axis, Y-axis and angle, respectively, for each patient \((1, 2, \ldots, n)\). The random error was defined as the root mean square of each patient’s deviation \((\sigma_1, \sigma_2, \ldots, \sigma_n)\) for the X-axis, Y-axis and angle, respectively, as follows:

\[
\text{Random error} = \sqrt{\frac{\sigma_1^2 + \sigma_2^2 + \cdots + \sigma_n^2}{n}} \tag{3}
\]

The total vector error was defined as the linear distance of the deviation of the isocenter between the DRR and lineacgraphy for each verification. The total vector error was calculated as the square root of the sum of square of X and Y deviations as follows:

\[
\text{Total vector error} = \sqrt{X^2 + Y^2} \tag{4}
\]

Ethical approval. This retrospective study was approved by the Ethics Committee of the Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital (approval no. 1506-036). The requirement for patient consent was waived for this retrospective study.

Results

Systematic error (\(\mu\)) and systematic error (\(\Sigma\)). The systematic errors \((\mu)\) of the X, Y, and angle among the total of 66 breast cancer patients were 0.01 mm, −1.2 mm, and 0.05°, respectively (Fig. 2A). The systematic errors \((\Sigma)\) of the X, Y, and angle among the total patients were 1.8 mm, 1.5 mm, and 0.9°, respectively (Fig. 2C).

The examination by left breast and right breast indicated no obvious difference in the systematic error \((\mu)\) for the X-axis direction and the Y-axis direction (Fig.2A, C). The angle of the systematic error \((\mu)\) showed a significant difference between the left and right sides, but all of the \(\mu\) values of the angle were < 0.3°, which is considered clinically insignificant.

We compared the systematic error \((\mu\), Fig.2B) and the systematic error \((\Sigma\), Fig.2D) of the X-axis and Y-axis directions. The magnitude of the systematic error...
error (μ) of the Y-axis direction was significantly larger than that of the X-axis direction among the total, left, and right patients. However, the maximum of the systematic error (μ) was < 2 mm, which is considered clinically insignificant. No significant differences in the systematic error (Σ) were observed between X-axis and Y-axis directions among the total, left, and right patients.

Random error. The random errors of the X, Y, and angle among the total patients were 2.0 mm,
1.5 mm, and 1.0°, respectively, as shown in Fig. 3A. We compared the random error by the X- and Y-axis directions (Fig. 3B), and we observed that the magnitude of all of the random errors was < 2 mm, which is considered clinically insignificant, among the total, left, and right patients.

The total vector error. Fig. 4 provides the histogram of the total vector error of each treatment. The means of the total vector error were 3.0 mm, 2.9 mm, and 3.2 mm in the total, left, and right patients, respectively. There were few total vector errors over 10 mm.

Discussion

Our analyses of the cases of 66 breast cancer patients revealed that the systematic errors and random errors in breast cancer radiation therapy conducted at our hospital in daily practice were as small as ≤ 2 mm in both the X- and Y-axis directions, which seem clinically permissible. The setup errors identified in previous studies are summarized in the Table 1. Most of those studies used CCD [1, 2], ICM [3, 4], and CLD [1, 2] to evaluate the setup errors of the X and Y directions. The present study is the first to accurately evaluate setup errors by a verification of the position at the skin surface instead of using CCD, ICM or CLD. We used the skin surface because the mammary gland as the target is located directly under the skin. This verification method using the skin surface enabled us to evaluate the precise rotation error of the XY axes, which has rarely been reported [3]. We also used image processing software for the verification in order to improve the accuracy of the skin surface verification, which has been difficult to achieve by visual judgment. Our findings confirmed that the setup errors of the XY axes were either equal to or surpassing the previous studies’ results.

The setup error of angle has also rarely been reported. Creutzberg [3] reported that the angle setup error was 1.4 ± 5.4°. In the present study, the setup error of the angle was 0.05 ± 0.90°, indicating that it was sufficiently permissible clinically.

The systematic error and random error are the world standards as evaluation parameters of accuracy for radiotherapy verification. However, in the calculation process of the systematic error for each patient, when the directions of the deviation of each treatment are opposite, the systematic error (μ) becomes less than the
mean of the distance of the deviation. In this study, we
evaluated the absolute value of the deviation at each
treatment, i.e., the total vector error. The average of the
total vector error among all 66 patients was small at
3.0 mm, which is considered clinically insignificant.

As a limitation of this study, a change in the exam-
ined breast’s shape during radiotherapy and a difference
between the detection abilities of the MV and kV
images might have affected the results. Either or both of
these issues might have occurred in our patients and
may thus have increased the setup errors. However, all
of the setup error values observed herein were suffi-
ciently small for routine breast radiotherapy.

In conclusion, the accurate verification using the
patient’s skin surface and image analysis software clari-
ﬁed that the setup errors of breast radiotherapy at our
hospital were equal to or surpassed the setup errors
reported previously.

Acknowledgments. We thank the radiation therapists responsible for
this treatment, including Hirofumi Uno and Seiji Tahara at the Central
Clinic, Division of Radiology of Okayama University Hospital.

References

1. van Tienhoven G, Lanson JH and Crabeels D: Accuracy in tan-
gential breast treatment set-up: A portal imaging study. Oncol
2. Lirette A, Pouliot J and Aubin M: The role of electronic portal
imaging in tangential breast irradiation: A prospective study.
3. Creutzberg CL, Atthof VGM, Huizinga H, Visser AG and
Levendag PC: Quality assurance using portal imaging: The accu-
rapy patient positioning in irradiation of breast cancer. Int J Oncol
4. Fein DA, McGee KP, Schultheiss TE, Fowble BL and Hanks GE:
Intra- and interfractional reproducibility of tangential breast fields:
A prospective on-line portal imaging study. Int J Oncol (1996) 34:
733–740.
5. Valdagni R: Early breast cancer irradiation after conservative sur-
gery: Quality control by portal localization ﬁlms. Oncol (1991) 22:
311–313.
6. Petillion S, Verhoeven K, Weltens C and van Den HF: Accuracy
of a new paired imaging technique for position correction in whole
7. Suzuki M, Hanju Y and Onishi H: Overview: Set-up margin and
internal margin; in Opinions: Stereotactic body radiation therapy,
Onishi H and Hiraoka M eds, 1st Ed, Chuigai-Igakusha, Tokyo
8. Stroom JC and Heijmen BJM: Geometrical uncertainties, radio-
therapy planning margins, and the ICRU-62 report. Radiother
9. Stroom JC, de Boer HCJ, Huizinga H and Visser AG: Inclusion
of geometrical uncertainties in radiotherapy treatment planning by
43: 905–919.

Table 1 Systematic errors (μ and Σ) and random error (σ) in the relevant previous studies

<table>
<thead>
<tr>
<th>No. of patients</th>
<th>Systematic error (μ) (mm)</th>
<th>Systematic error (Σ) (mm)</th>
<th>Random error (σ) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Van et al. (1991) [1]</td>
<td>12</td>
<td>−3.2</td>
<td>−1.3</td>
</tr>
<tr>
<td>Valdagni et al. (1991) [5]</td>
<td>medial image</td>
<td>20</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>lateral image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creutzberg et al. (1993) [3]</td>
<td>31</td>
<td>2.8</td>
<td>-</td>
</tr>
<tr>
<td>Lirette et al. (1995) [2]</td>
<td>20</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Fein et al. (1996) [4]</td>
<td>13</td>
<td>0.03</td>
<td>2.3</td>
</tr>
<tr>
<td>Petillion et al. (2015) [6]</td>
<td>20</td>
<td>-0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>This study</td>
<td>66</td>
<td>0.01</td>
<td>-1.2</td>
</tr>
</tbody>
</table>