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The origin of the electronic nematicity and its remarkable material dependence are famous longstanding
unsolved issues in Fe-based superconductors. To attack these issues, we focus on the in-plane anisotropy of
the resistivity: In the nematic state in FeSe, the relation ρx > ρy holds, where ρx(y) is the resistivity along the
longer (shorter) Fe-Fe axis. In contrast, the opposite anisotropy ρx < ρy is realized in other undoped Fe-based
superconductors. Such nontrivial material dependence is naturally explained in terms of the strongly orbital-
dependent inelastic quasiparticle scattering realized in the orbital-ordered state. The opposite anisotropy between
FeSe (ρx > ρy) and other undoped compounds (ρx < ρy) reflects the difference in the number of hole pockets.
We also explain the large in-plane anisotropy of the thermoelectric power in the nematic state.
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I. INTRODUCTION

The emergence of the electronic nematic states below the
structure transition temperature TS is one of the significant
universal features in Fe-based superconductors. However, the
realized electronic properties exhibit remarkable compound
dependencies. One example is the absence of magnetism in
FeSe and the presence of magnetism in the nematic states
(Néel temperature TN � TS) in other compounds. As possible
nematic order parameters, the spin-nematic order [1–5] and
the orbital order [6–10] have been studied intensively so
far. Recently, the present authors explained the nematicity
without magnetization in FeSe as the orbital order caused
by the Aslamazov-Larkin vertex correction [11]. The current
fundamental question is whether the origin of the nematicity
is universal or material dependent [11–14].

To answer this question, the strong in-plane anisotropy
of transport coefficients has been studied intensively as
a key electronic property in the nematic state [2,15–24].
In Ba(Fe1−xCox)2As2, Ba(As1−xPx)2 and EuFe2(As1−xPx)2,
large C2 anisotropy in the resistivity �ρ ≡ ρx − ρy < 0
appears in detwinned samples below TS, where ρμ is the
resistivity along the μ axis [15–17]. The relation �ρ < 0
is observed in the nonmagnetic nematic state for TS > T >

TN, and even for T � TS under the weak uniaxial stress.
Remarkably, the opposite anisotropy �ρ > 0 is realized in
FeSe [18,19]. According to these observations, one may expect
that the origin of nematicity in FeSe is special.

The anisotropic elastic scattering due to the impurity-
induced C2 local orbital order (orbital nematogen) [20,21]
and the magnetic nematogen [22,23], and the anisotropic
quasiparticle velocity [24] have been discussed. On the other
hand, the anisotropic inelastic scattering due to the C2 spin
fluctuations was discussed based on the spin-nematic scenario
[2]. In BaFe2As2, the anisotropy of resistivity is reduced but
remains finite at T ∼ TS even in the annealed samples [16].
This fact indicates that both elastic and inelastic scattering
contribute to the anisotropy in BaFe2As2. In contrast to Ba122
compounds, ρμ in FeSe exhibits sizable anisotropy even
in the clean limit samples, in which the elastic scattering

is negligible at T ∼ TS (=90 K). Therefore, the in-plane
resistivity anisotropy in FeSe below TS should originate from
the inelastic scattering. The opposite anisotropic relation
between FeSe (�ρ > 0) and other compounds (�ρ < 0)
provides us a crucial hint to understand the origin of the
nematicity in Fe-based superconductors.

In this paper, we study the in-plane anisotropy of re-
sistivity and thermoelectric power (TEP) below TS based
on the orbital-order scenario. Under the nematic orbital order,
the spin susceptibility becomes strongly orbital dependent,
so the total spin susceptibility possesses large C2 anisotropy
[25]. Then, the inelastic scattering rate on band b, γ b

k , possesses
strong in-plane anisotropy due to the orbital-dependent spin
fluctuations. For this reason, the characteristic anisotropy of
the transport coefficients in the nematic states are naturally
understood. In particular, the anisotropy �ρ > 0 characteristic
in FeSe originates from the singleness of the hole pocket. This
study leads to the conclusion that the orbital nematicity is
universal in various Fe-based superconductors.

The nematic orbital order below TS is given by the vertex
correction (VC), which represents the many-body effects
beyond the random phase approximation (RPA) [6,7,11,26].
Based on this self-consistent vertex correction (SC-VC) theory,
we can explain the strong orbital fluctuations, which are
measured by the softening of C66 and Raman study [27], and
the sign-reversing orbital polarization in k space below TS in
FeSe [28]. This attractive orbital-order scenario is confirmed
by the present study for various Fe-based superconductors.

II. FORMULATION

We set the x and y axes parallel to the nearest Fe-Fe bonds,
and denote the orbital d3z2−r2 , dxz, dyz, dxy , and dx2−y2 as
l = 1, 2, 3, 4, and 5, respectively. We employ the eight-orbital
d-p Hubbard model [11,28] based on the first-principles
calculation

HM (r) = H 0
M + rHU

M + H orb
M (M = LaFeAsO, FeSe), (1)

where H 0
M is the eight-orbital tight-binding model, and

HU
M is the first-principles screened Coulomb potential for
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d orbitals in Ref. [29]. The factor r(<1) is the parameter
introduced to adjust the spin fluctuation strength. H orb

M =∑
k,l=2,3 �El(k)nl(k) is given by the k-dependent orbital-

polarization energy �El(k) and the electron density for
l orbital nl(k). �El(k) becomes 0 for T � TS. In the
LaFeAsO model, we employ the constant orbital polar-
ization �Exz(k) = −�E and �Eyz(k) = �E . In the FeSe
model, we employ the sign-reversing orbital polarization
�Exz(yz)(k) obtained in the previous microscopic study [28],
which is consistent with angle-resolved photoemission spec-
troscopy (ARPES) measurements [30]. Here, the relation
�Exz(kx,ky) = −�Eyz(ky,kx) holds, and the maximum or-
bital polarization is given by �E = �Eyz(X) = −�Exz(Y).
See Appendix A for details.

In the presence of �El(k), we calculate the spin (orbital)
susceptibilities χ̂ s(c)(q) = χ̂ irr(q)/[1 − �̂s(c)χ̂ irr(q)] using
the RPA, where χ irr

ll′,mm′ (q) = − T
N

∑
k G0

l,m(k + q)G0
m′,l′(k)

is the irreducible susceptibility in the orbital basis, and �̂s(c)

is the bare Coulomb interaction [31]. Ĝ0 is the Green’s
function matrix without the self-energy. We denote k = (k,εn)
with fermion Matsubara frequency εn = (2n + 1)πT , and
q = (q,ωn) with boson Matsubara frequency ωn = 2nπT . The
spin Stoner factor αs is defined as the maximum eigenvalue of
�̂s χ̂ irr(q). At T = TN, αs = 1 is satisfied. We also calculate the
self-energy matrix �̂(k) = T

N

∑
q V̂ �(q)Ĝ(k − q), where Ĝ is

the Green’s function matrix, and V̂ � is the interaction matrix
for the self-energy [7,26,28]. We employ the RPA for V̂ � ,
and calculate Ĝ = [(Ĝ0)−1 − �̂]−1 and �̂ self-consistently.
Details of the formulation are described in the Appendix A.
Qualitatively similar results are obtained from the fully
self-consistent approximation by including the self-energy
in V̂ � . Hereafter, we take N = Nx × Ny = 128 × 128 k
meshes, 1024 Matsubara frequencies, and T = 20 meV unless
otherwise noted.

III. RESULTS AND DISCUSSION

We start with the LaFeAsO model. Its band structure
is similar to that of Eu122 and Ba122. Figure 1(a) shows
the Fermi surfaces (FSs) for �E = 0, where the hole-FSs
are denoted as h-FS1-3, and the electron-FSs are denoted
as e-FS1,2. Figure 1(b) shows the deformed FSs for �E =
30meV. Here, the orbital splitting 2�E is comparable to
the ARPES measurement in BaFe2As2 [32,33] for T � TN.
We put r = 0.334, in which αs is 0.898 for �E = 0. Then,
αs increases to 0.990 when �E = 50 meV. Figure 1(c)
shows the spin susceptibility for �E = 30 meV, in which
the relation χs

33,33(π,0) � χs
22,22(0,π ) gives the prominent

C2 anisotropic spin susceptibility χs(q) ≡ ∑
l,m χs

ll,mm(q).
Such strong orbital-dependent χs causes the orbital-dependent
quasiparticle damping γ b

k (= −Im�b(k, + i0)) as shown in
Fig. 1(e). The cold spot is defined as the position on the FS
with minimum value of γ b

k . Since the spin fluctuations mainly
develop in the dyz orbital for �E > 0, the cold spots are located
on the FS composed of the dxz orbital. In Fig. 1(b), we show
only the cold spots on the h-FS1,2 since they are significant for
the C2 transport phenomena. The anisotropy in the transport
coefficients is determined by the positions of the cold spots.
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FIG. 1. (a) The holelike FSs (h-FS1-3) and the electronlike FSs
(e-FS1,2) in the LaFeAsO model for �E = 0 and (b) those for
�E = 30 meV, where θ denotes the azimuthal angle on a FS (θ = 0
corresponds to the kx direction). The colors correspond to 2 (green),
3 (red), and 4 (blue), respectively. (c) q dependencies of χs

22,22(q) and
χs

33,33(q) for �E = 30meV (αs = 0.967). (d) θ dependencies of γ b
k

on the FSs for �E = 0 and (e) those for �E = 30meV. Cold spots
on the h-FS1,2 are marked by blue circles in (b) and (e).

However, the positions of cold spots and hot spots have not
been confirmed by experiments.

Next, we move to the FeSe model. We introduce the mass
enhancement factor z−1

xy = 1.6 by following Refs. [11,28]. In
Figs. 2(a) and 2(b), the FSs for �E = 0 meV and the FSs for
�E = 30 meV are shown, respectively. The h-FS1 and h-FS3
are absent in the present FeSe model [34]. We put r = 0.218,
where αs is 0.846 for �E = 0 meV. Then, αs increases to
0.870 when �E = 50 meV. As shown in Fig. 2(c), the spin
susceptibilities for �E = 30 meV have the orbital-dependent
C2 anisotropy. Figures 2(d) and 2(e) show the momentum
dependencies of γ b

k on the FSs for �E = 0 meV and those for
�E = 30 meV, respectively. In Figs. 2(b) and 2(e), we show
the cold spots on the h-FS2, which are important for the C2

transport phenomena.
Next, we study the resistivity ρ due to the strongly

anisotropic inelastic scattering. Using the linear response
theory, the conductivity σμ along the μ(=x,y) direction is
obtained by

σμ = e2

N

∑
k,b

∫ ∞

−∞

dω

π

(
−∂f (ω)

∂ω

)∣∣vμ

b,kG
b
k(ω + i0)

∣∣2
, (2)

where −e is the charge of an electron, and f (ω) is the

Fermi distribution function. vμ

b,k = ∂εb
k

∂kμ
is the velocity along the

μ direction, where εb
k is the dispersion of band b. Gb

k(ω + i0)
denotes the retarded Green’s function. In this study, we neglect
the VC for the current, since its effect is small for ρ and the
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FIG. 2. (a) FSs of the FeSe model for �E = 0 and
(b) those for �E = 30 meV. Here, the h-FS1 and h-FS3 are absent.
(c) q dependencies of χs

22,22(q) and χs
33,33(q) for �E = 30 meV

(αs = 0.867). (d) θ dependencies of γ b
k on the FSs for �E = 0 and

(e) those for �E = 30 meV. The cold spots on the h-FS2 are marked
by blue circles.

TEP [35–38]. The detailed study of the current VC is important
for future research.

Figure 3(a) shows the resistivity ρμ = 1/σμ obtained for
�Exz = −50–0 meV in the LaFeAsO model at T = 20 meV.
We also show the T dependence of ρμ in the LaFeAsO model
in Fig. 3(b) by assuming the T dependence of �E as the mean-
field-like behavior �E = �0

E tanh(1.74
√

TS/T − 1). Here,
we put �0

E = 50 meV and TS = 20 meV. Then, we obtain
TN = 16 meV from the condition αs = 1. The obtained in-
plane anisotropy �ρ < 0 below TS is consistent with the
experimental results in Ba122 [15,16] and Eu122 [17]. In
contrast, in Figs. 3(c) and 3(d), the opposite in-plane anisotropy
�ρ > 0 is obtained in the FeSe model. The behavior of �ρ

and the average resistivity are consistent with the experiments
in FeSe [18,19].

Here, we explain why the obtained in-plane anisotropy
of resistivity is opposite between the FeSe model and the
LaFeAsO model. In both systems, the anisotropy of ρ mainly
stems from the hole pockets h-FS1,2, of which the schematic
figures are shown in Fig. 3(e). Since the Fermi velocity on the
cold spots on the h-FS1 (h-FS2) is parallel to kx axis (ky axis),
the h-FS1 (h-FS2) contributes to the relation �ρ < 0 (�ρ >

0). In the LaFeAsO model, the relation �ρ < 0 is realized
since the area of the cold spot on the h-FS1 around θ ∼ 0 is
very wide as shown in Figs. 1(b) and 1(e). In contrast, in the
FeSe model, the opposite relation �ρ > 0 is realized by the
cold spots on the h-FS2 since the h-FS1 is absent.

We verified that the e-FSs are not essential for the opposite
anisotropy of resistivity between FeSe and LaFeAsO. In
both models, the cold spots on the e-FSs are located on the
dxy orbital region, and the area of the cold spot on the e-FS1
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FIG. 3. (a) �Exz dependence of ρμ, and (b) T dependence of
ρμ in the LaFeAsO model. (c) �Exz(Y) dependence of ρμ, and
(d) T dependencies of ρμ and �ρ in the FeSe model. ρ =
1 corresponds to 250 μcm� for the interlayer distance 0.6 nm.
(e) Schematic figures of FSs with the cold spots around the �

point. (f) Carrier doping δn dependence of ρμ for αs = 0.990 and
�E = 50 meV in the LaFeAsO model.

is narrower than that on the e-FS2 due to the strong spin
fluctuations on the dyz orbital: see Figs. 1(e) and 2(e). For this
reason, the e-FSs contribute to the relation �ρ � 0 below TS.
In FeSe, both the h-FSs and the e-FSs contribute to the positive
�ρ. In LaFeAsO, �ρ is negative since the contribution from
the e-FSs are considerably small. Therefore, we conclude that
the opposite in-plane anisotropy of resistivity between FeSe
and LaFeAsO originates from the presence or absence of the
inner hole pocket.

In Fig. 3(f), we also show the carrier doping (δn) de-
pendencies of the in-plane anisotropy of ρ in the LaFeAsO
model for �E = 50 meV. For each δn, r is adjusted to satisfy
αs = 0.990 for �E = 50 meV. In the heavily hole-doped case
(δn < −0.12), �ρ is reversed to positive since the contribution
from the h-FS2 becomes large, consistently with previous
theoretical and experimental reports [2,39–41]. Details are
described in Appendix C.

The anisotropy ρx 	= ρy due to the C2 spin fluctuations has
been discussed in terms of the spin-nematic scenario [2,39].
In the present paper, we explained that the orbital dependence
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FIG. 4. (a) �Exz dependence of S̃μ ≡ Sμ − S0 in the LaFeAsO
model, and (b) carrier doping δn dependence of S̃μ for αs = 0.990
and �E = 50 meV in the LaFeAsO model.

of the spin fluctuations, which is ignored in the spin-nematic
theory, is essential to understand the characteristic difference
between FeSe and Ba122. In FeSe, the anisotropy of ρ should
originate from the inelastic scattering since the sample is very
clean. In Ba122, in contrast, the anisotropic elastic scattering
(nematogen) also gives sizable contribution as discussed in
Refs. [20–24].

Here, we briefly analyze the TEP S, which is given as
Sμ = 1

σμ

∑
b αb

μ, where

αb
μ = − e

T N

∑
k

∫ ∞

−∞

dω

π

(
−∂f (ω)

∂ω

)
ω

∣∣vμ

b,kG
b
k(ω + i0)

∣∣2

(3)

is the Peltier conductivity on band b. Figure 4(a) shows the
C2 anisotropy of the TEP induced by the orbital polarization
in the LaFeAsO model. Here, S̃μ is defined as S̃μ ≡ Sμ −
S0, where S0 is the TEP at �E = 0 meV. The value of S̃y

remarkably increases with the orbital polarization, which is
consistent with the experimental results in Eu122 [17]. This
result is mainly caused by the strong energy dependence of γ b

k
near the cold spots on the h-FS2: See Appendix B for details.
In Fig. 4(b), we show the δn dependence of S̃μ in the LaFeAsO
model for �E = 50 meV by adjusting r to satisfy αs = 0.990.
The anisotropy of S is reversed in heavily hole-doped case
(δn < −0.15).

In Appendix D, we also study the LaFeAsO model with
the orbital polarization only on the e-FSs, which is suggested
by the ARPES measurement in Ba122 [32]. The obtained
anisotropies of ρ and S are qualitatively the same as the
case of all FSs are polarized, since the structures of C2 spin
fluctuations and γ b

k are essentially unchanged. In Appendix E,
we study the effect of the spin-orbit interaction (SOI) [42] on
the transport properties in FeSe.

Finally, we stress that the TEP is magnified by the mass-
enhancement factor z−1 as shown in Eq. (B2) in Appendix B.
The value of z−1 observed by experiments is z−1 ∼ 3-5 in
EuFe2As2 [43] and BaFe2As2 [44–46]. Using the experimental
z−1, we can understand Sy − Sx ∼ 20μV/K observed in
Eu122 near TN [17].

IV. CONCLUSION

We studied the anisotropy in the transport coefficients in the
nematic states to clarify the true nematic order parameter in
Fe-based superconductors [11,12]. Once the orbital order sets
in, the inelastic scattering rate γ b

k becomes very anisotropic
due to the prominent orbital-dependent spin fluctuations.
For this reason, the characteristic material-dependent C2

transport phenomena below TS are naturally explained based
on the realistic multiorbital Hubbard models. In particular,
the opposite anisotropy ρx > ρy in FeSe originates from the
singleness of the hole pocket. In addition, the thermoelectric
power shows sizable in-plane anisotropy due to the strong
energy dependence of γ b

k . This study leads to the conclusion
that the orbital order scenario, which is microscopically
supported by the SC-VC theory, is universal in various Fe-
based superconductors.
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APPENDIX A: DETAILS OF THE EIGHT-ORBITAL
MODELS AND FORMULATION

Here, we introduce the eight-orbital d-p models H 0
M (M =

FeSe, LaFeAsO) analyzed in the main text. We first derived
the first-principles tight-binding models using the WIEN2k
and WANNIER90 codes. For FeSe, in order to obtain the
experimentally observed Fermi surfaces (FSs), we introduce
the k-dependent shifts for orbital l, δEl(k), by introducing
the intra-orbital hopping parameters as explained in Ref. [11].
We shift the dxy-orbital band [dxz/yz-orbital band] at (�, M,
X) points by (−0.60, −0.25, +0.24) [(−0.24, 0, +0.12)], in
unit eV. In Figs. 5(a) and 5(b), we show the obtained band
dispersions for the LaFeAsO model and the FeSe model,
respectively.

Next, we explain the orbital polarization term H orb
M . For

the FeSe model used in the main text is given by the
symmetry-breaking self-energy method developed in previous
paper [28]. The obtained sign-reversing orbital polarization
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Y YX XΓΓ M M
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FIG. 5. Band dispersions for (a) the LaFeAsO model and (b) the
FeSe model. The colors correspond to 2 (green), 3 (red), and 4 (blue),
respectively.
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breaking self-energy method in the FeSe model [28].

is shown in Fig. 6. In this orbital polarization, the rela-
tion �Exz(�) − �Eyz(�) > 0 and �Exz(Y) − �Eyz(X) < 0
holds, consistently with the ARPES measurements [30].

Finally, we explain the multiorbital Coulomb interaction
HU

M . The bare Coulomb interaction for the spin channel is
given as

(�s)l1l2,l3l4 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ul1,l1 , l1 = l2 = l3 = l4

U ′
l1,l2

, l1 = l3 	= l2 = l4

Jl1,l3 , l1 = l2 	= l3 = l4

Jl1,l2 , l1 = l4 	= l2 = l3

0, otherwise.

(A1)

Also, the bare Coulomb interaction for the charge channel is

(�̂c)l1l2,l3l4 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Ul1,l1 , l1 = l2 = l3 = l4

U ′
l1,l2

− 2Jl1,l2 , l1 = l3 	= l2 = l4

−2U ′
l1,l3

+ Jl1,l3 , l1 = l2 	= l3 = l4

−Jl1,l2 , l1 = l4 	= l2 = l3

0. otherwise.

(A2)

Here, Ul,l , U ′
l,l′ and Jl,l′ are the first-principles Coulomb

interaction terms given in Ref. [29]. The interaction matrix
for the self-energy V̂ � is given as [7,26,28]

V̂ �(q) = 3
2 �̂s χ̂ s(q)�̂s + 1

2 �̂cχ̂ c(q)�̂c

− 1
4 (�̂c − �̂s)χ̂ irr(q)(�̂c − �̂s)

− 1
8 (�̂c + �̂s)χ̂ irr(q)(�̂c + �̂s). (A3)

Note that, in the present study, we ignore the damping
due to the orbital fluctuations caused by the VC. However,
the positions of cold spots are unchanged by the orbital
fluctuations since only χc

33,33 is enhanced by the VC [47].
Therefore, the anisotropy in the transport coefficients obtained
in this study is expected to be unchanged. This is our important
future issue.

APPENDIX B: ORIGIN OF THE LARGE IN-PLANE
ANISOTROPY OF S IN THE LsFeAsO MODEL

In the following, we explain the reason why the in-plane
anisotropy of S becomes large with increasing �E in the
LaFeAsO model. αb

μ introduced in Eq. (3) in the main text
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FIG. 7. (a) k dependence of αb=2
y (k) around h-FS2 in the

LaFeAsO model for �E = 50meV. (b) k dependencies of εb∗
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b = 1 and 2 in the top panel, αb=2
y (k) and 1/γ b=2
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as functions of k along the green arrow in (a).

is rewritten as

αb
μ = − e

T

∫
FS

dkb
‖

(2π )2

∫
dεb∗

k

|vb,k|
(

−∂f

∂ε

)
ε=εb∗

k

εb∗
k

∣∣vμ

b,k

∣∣2

γ b
k

(B1)

≈ −eπ2T

3

∫
FS

dkb
‖

(2π )2

1

zb
k|vb,k|

∂

∂kb
⊥

( ∣∣vμ

b,k

∣∣2

|vb,k|γ b
k

)
, (B2)

where kb
‖ and kb

⊥ denote k along the FS and k perpendicular to
the FS on band b, respectively. εb∗

k is the renormalized quasi-
particle energy given by εb∗

k = zb
k[εb

k + Re�b(k,0 + i0) − μ],
and γ b

k = −Im�b(k,εb∗
k + i0) is the quasiparticle damping

without renormalization. The mass renormalization factor zb
k

is given by zb
k = [1 − ∂Re�b(k,ω+i0)

∂ω
|ω=0]

−1
. According to

Eq. (B1), αb
μ is sensitively influenced by the εb∗

k dependence
of 1/γ b

k , and 1/γ b
k is strongly energy-dependent in correlated

electron systems. For instance, αb
μ ∼ 0 is obtained when 1/γ b

k

is symmetric with respect to εb∗
k → −εb∗

k since εb∗
k (− ∂f

∂ε
)
ε=εb∗

k

is an odd function of εb∗
k .

Here, we introduce αb
μ(k) as

αb
μ(k) = − e

T

∫ ∞

−∞

dω

π

(
−∂f (ω)

∂ω

)
ω

∣∣vμ

b,kG
b
k(ω + i0)

∣∣2
.

(B3)

Then, the Peltier conductivity for band b is αb
μ = 1

N

∑
k αb

μ(k).
In Fig. 7(a), we show the obtained k dependence of αb=2

y (k) on
band2 including the h-FS2 around the � point in the LaFeAsO
model for �E = 50meV. αb=2

y (k) has large value around the
cold spots, and the area for positive αb=2

y (k) is much wider
than the area for negative αb=2

y (k). This result originates from
the highly asymmetric k dependence of 1/γ b=2

k near the Fermi
momentum. In Fig. 7(b), we show εb∗

k for b = 1 (h-FS1) and
b = 2 (h-FS2) in the upper panel, and 1/γ b=2

k and αb=2
y (k) on

the band2 in the lower panel, as functions of k along the green
arrow illustrated in Fig. 7(a). We see that the positive value
of αb=2

y (k) is much larger than the negative value of αb=2
y (k)
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in magnitude. In addition, both αb=2
y (k) and 1/γ b=2

k take the
maxima at k = k∗. Thus, the large positive S̃y originates from
the strong asymmetry of 1/γ b

k near the Fermi surface [36].
The asymmetry of 1/γ b

k is caused by the orbital dependence
of γ b

k . In the orbital basis, we explain in the main text that the
quasiparticle damping for the dyz orbital is much larger than
that for the dxz orbital (γyz � γxz) since the spin fluctuations
develop mainly on the dyz orbital. As shown by the colors on
the band dispersion in Fig. 7(b), dxz orbital is dominant for
k ≈ k∗, and weight of dyz orbital increases as k approaches
to the � point. Thus, the asymmetric energy dependence of
1/γ b

k stems from the suppression by γyz. On the other hand,
Sx slightly decreases with increasing �E mainly due to the
contribution from the cold spots on the e-FSs.

Finally, we note that S0, which is TEP at �E = 0meV,
is sensitive to details of the model, because of the large
cancellation between positive αb from the h-FSs and negative
αb from the e-FSs. In fact, S0 ∼ −10μV/K in the present
d-p model, whereas S0 ∼ 0meV in the five d-orbital LaFeAsO
model analyzed in Ref. [7]. Nonetheless, the relations S̃y > 0
and S̃x < 0 in Fig. 4(a) are robust and model-independent.

APPENDIX C: CARRIER DOPING DEPENDENCE OF THE
IN-PLANE ANISOTROPIES IN ρ AND S IN THE LsFeAsO

MODEL

Here, we study the carrier doping δn dependence of the
in-plane anisotropies in ρ and S. In the hole-doped compounds
Ba1−xKxFe2As2, ρx is slightly larger than ρy [40,41], which
is opposite to the relation �ρ < 0 observed in the non-doped
and the electron-doped Ba122. In Fig. 3(f) in the main text,
we show the δn dependence of ρμ for �E = 50meV in
the LaFeAsO model. αs is set as 0.990. The obtained sign
reversal in the hole-doped region (δn < −0.12) is consistent
with experimental results in the hole-doped Ba1−xKxFe2As2

[40,41]. In the hole-doped LaFeAsO model, the FSs and the
cold spots are shown in Fig. 8(a). The relation �ρ > 0 is
mainly originates from the h-FS2, since the anisotropy of γ on
the h-FS2 is larger than that on the h-FS1 as shown in Fig. 8(b).

In Fig. 4(b) in the main text, we also show the δn depen-
dences of S̃μ for �E = 50meV in the LaFeAsO model. αs is
set as 0.990. We obtain the reverse of the in-plane anisotropy
(Sx > Sy) in heavily hole-doped case (δn < −0.15). This
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opposite relation Sx < Sy . The former contribution becomes
larger than the latter contribution in hole-doped case (δn <

−0.15). We note that the contribution from the e-FSs is
unimportant for the anisotropies of ρ and S, since the area
of cold spot on the e-FS1 is very narrow and γ b

k on the e-FS2
is almost isotropic as shown in Fig. 8(b).

APPENDIX D: ORBITAL POLARIZATION ONLY ON THE
ELECTRON FSs IN THE LaFeAsO MODEL

In the main text, we employed the constant orbital po-
larization �Exz(k) = −�E , �Eyz(k) = �E in the LaFeAsO
model. In order to verify the validity of the results obtained
in the main text, here we introduce the orbital polarization
�Exz(k) = −�Eyz(k) = −�E only around the X, Y points
whereas �Exz(�) = �Eyz(�) = 0. Such k-dependent orbital
polarization has been reported by the ARPES measurement
in BaFe2As2 [32]. In Fig. 9(a), we show the FSs for �E =
50 meV. For r = 0.334, the obtained ρμ and S̃μ as functions
of �Exz(Y) are shown in Figs. 9(b) and 9(c), respectively.
The obtained anisotropies of ρ and S are essentially similar to
those in Figs. 3(a) and 4(a) in the main text.

APPENDIX E: RESULTS INCLUDING THE EFFECT OF
THE SOI IN FeSe

In the main text, the spin-orbit interaction (SOI) is not taken
into account. Here, we study the effect of the SOI, which
is expressed as λ

∑
i l i · σ i . The matrix elements of l i are

given in Ref. [42] . In the presence of the SOI, we have to
study the 16-orbital model in the folded Brillouin zone (BZ)
picture since the unfolding is prohibited by the SOI. Since the
numerical calculation becomes heavy in the presence of the
SOI, we take smaller N = Nx × Ny = 64 × 64 k meshes and
512 Matsubara frequencies compared to the main text.

In Fig. 10(a), we show the FSs for FeSe in the folded BZ
(dotted line) for the SOI λ = 50 meV and �E = 30 meV. The
employed �Exz(yz)(k) is the same as that employed in the main
text. We put r = 0.225. In this case αs = 0.870 is satisfied for
�E = 50 meV. The obtained ρμ is shown in Fig. 10(b) as a
function of �xy(Y). The obtained result is qualitatively the
same as the results without the SOI shown in Fig. 3 in the
main text. In Fig. 10(c), we show the obtained S̃μ as a function
of �xy(Y). The obtained anisotropy of S is small because of
the nearly symmetric energy dependence of 1/γ b=2

k due to the
moderate spin fluctuations in FeSe.
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