ONLINE SUPPLEMENT

Supplementary Tables and Figures

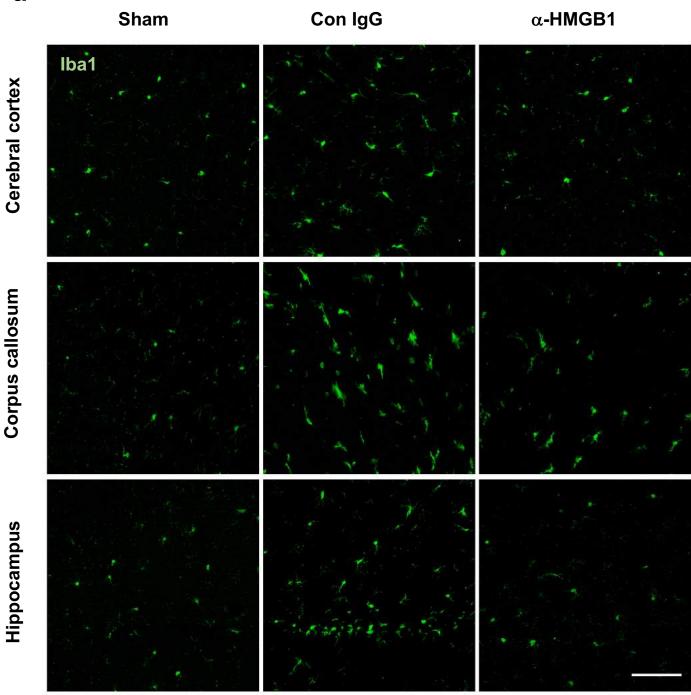
Anti-high mobility group box-1 (HMGB1) antibody inhibits hemorrhageinduced brain injury and improved neurological deficits in rats

Dengli Wang¹, Keyue Liu¹, Hidenori Wake¹, Kiyoshi Teshigawara¹, Shuji Mori² and Masahiro Nishibori¹*

¹Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan ²Shujitsu University, School of Pharmacy, Okayama, Japan

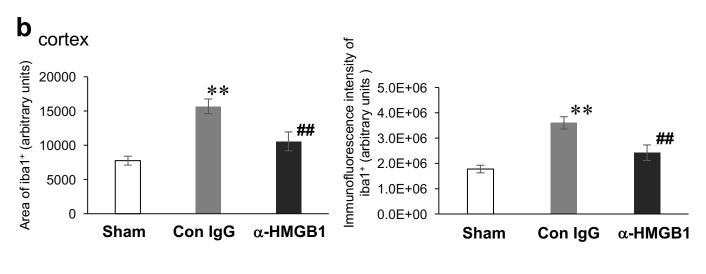
Correspondence to

Masahiro Nishibori, MD, PhD.

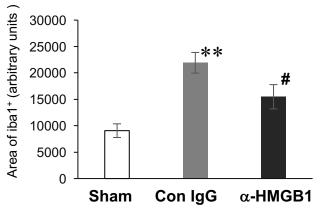

Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. Tel/FAX: +81-86- 235-7140.

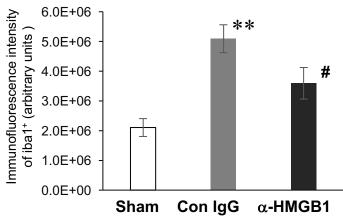
E-mail: mbori@md.okayama-u.ac.jp

Supplementary table S1: Primer Sequences Used in quantitative RT-PCR

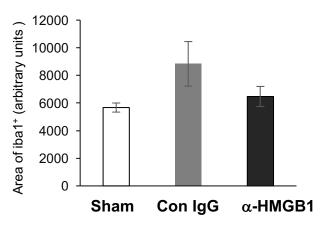

Gene	
iNOS	5'-GCATCCCAAGTACGAGTGGT-3'
	5'-GAAGTCTCGGACTCCAATCTC-3'
TNF-a	5'-GCCCAGACCCTCACACTC-3'
	5'-CCACTCCAGCTGCTCCTCT-3'
MMP-2	5'-GCACCGTCGCCCATCA-3'
	5'-GTCTCGATGGTGTTCTGGTCAA-3'
MMP-9	5'-GAGGATCCGCAGTCCAAGAA-3'
	5'-GCACCGTCTGGCCTGTGTA-3'
COX-2	5'-TGTATGCTACCATCTGGCTTCGG-3'
	5'-GTTTGGAACAGTCGCTCGTCATC-3'
IL-6	5'-CAAAGCCAGAGTCATTCAGAGC-3'
	5'-GGAGAGCATTGGAAGTTGGG-3'
VEGF-121	5'-CTCACCAAAGCCAGCACATA-3'
	5'-GCCTTGGCTTGTCACATT-3'
IL-8R	5'-CATCCTGCCTCAGACCTATGG-3'
	5'-AAGACGAGGACCACAGCAAAG-3'
GAPDH	5'-AGCCCAGAACATCATCCCTG-3'
	5'-CACCACCTTCTTGATGTCATC-3'
IL-1β	5'-CACCTTCTTTTCCTTCATCTTTG-3'
	5'-GTCGTTGCTTGTCTCCTTGTA-3'
AT-1R	5'-ACCAGGTCAAGTGGATTTCG-3'
	5'-ATCACCACCAAGCTGTTTCC-3'
PAR-1	5'-GTTGGATAGTGGGCCGTAGA-3'
	5'-TTAGCTGATAGGCCGTGCTT-3'
α-1R	5'-GAATGTCCTGCGAATCCAGT-3
	5'-GATTGGTCCTTTGGCACTGT-3'
V1R	5'-GGTCGTCTTGGGTACATGCT-3'
	5'-TCTTCACAGTGCGGATCTTG-3'
TxA2	5'-AGGAGCCTGAATGTTTGGTG-3'
	5'-TGAGACAGACGCGGACTATG-3'
eNOS	5'-TGACCCTCACCGATACAACA-3'
	5'-CTGGCCTTCTGCTCATTTTC-3'
IL-10	5'-CCTCTGGATACAGCTGCGAC-3'
	5'-CATTCATGGCCTTGTAGACACC-3'
HMGB1	5'-TTGTCCACACACCCTGCATA-3'
	5'-AATTGATCACTCCTTGCTTTGCT-3'
TLR2	5'-GACTCAAGAGCATCGGCTGG-3'
	5'-CAGAATGGCCTTCCCTTGAGA-3'
TLR4	5'-CTCACAACTTCAGTGGCTGG-3'
	5'-GGGTTTCCTGTCAGTACCAAGG-3'
RAGE	5'-CTGAGGTAGGGCATGAGGATG-3'
	5'-GCCTGCAGCTTGTCCTTCAT-3'

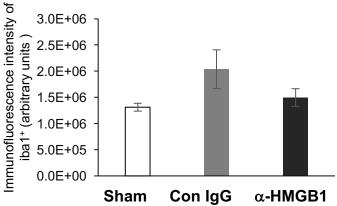
a

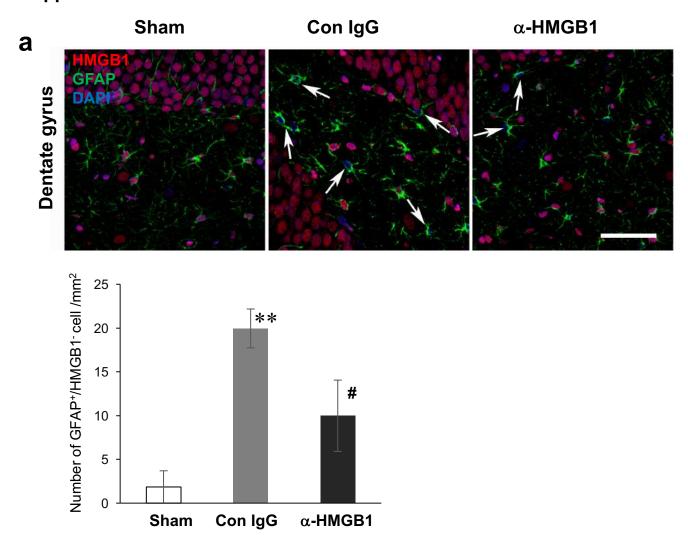


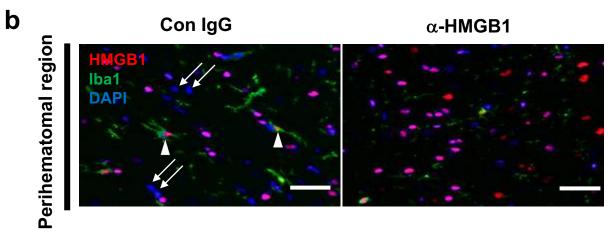

Supplementary Fig. S1a: The expression of Iba1 in the cerebral cortex, corpus callosum and hippocampus 24 h after ICH. The Iba1-immunoreactive cells were observed in the cerebral cortex, corpus callosum, striatum (perihematomal region) and hippocampus 24 h after ICH. A representative image from 3-6 rats is shown in each group. The scale bar represents 100 μm.

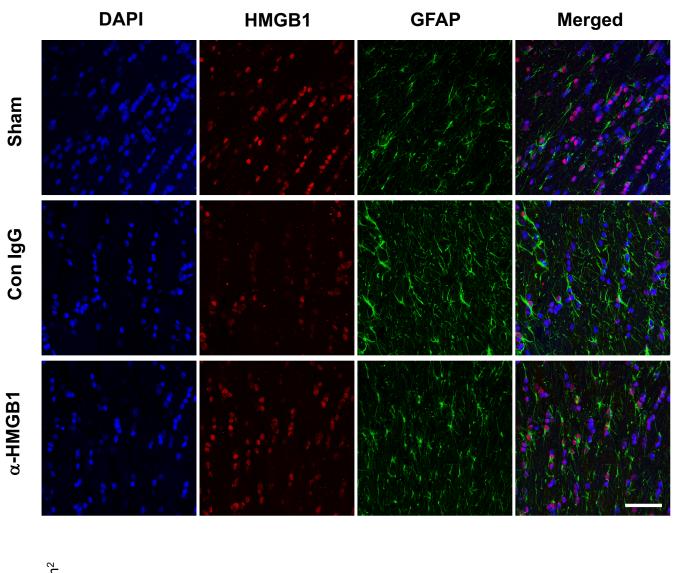
Suppl. S1b

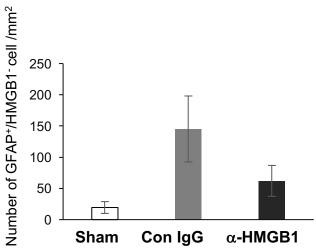


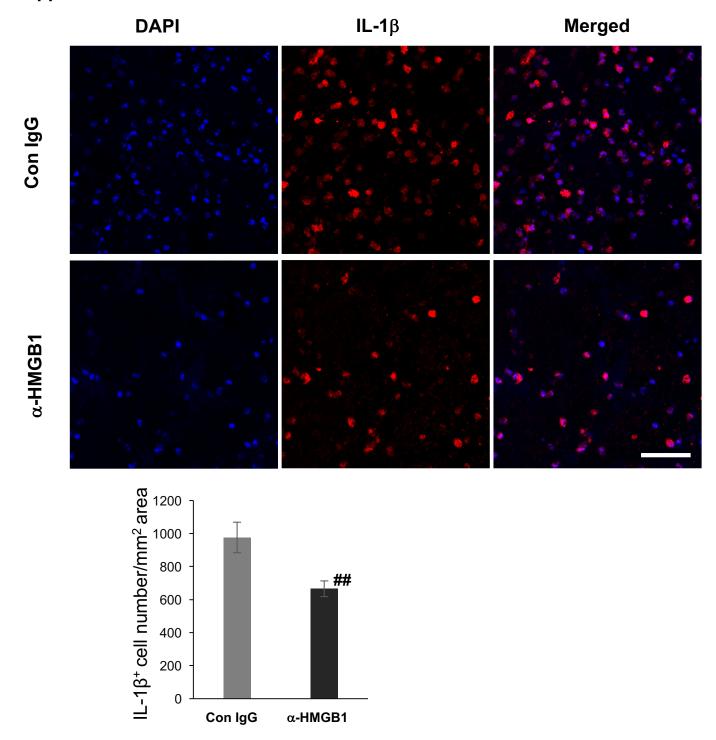

Corpus callosum


Hippocampus

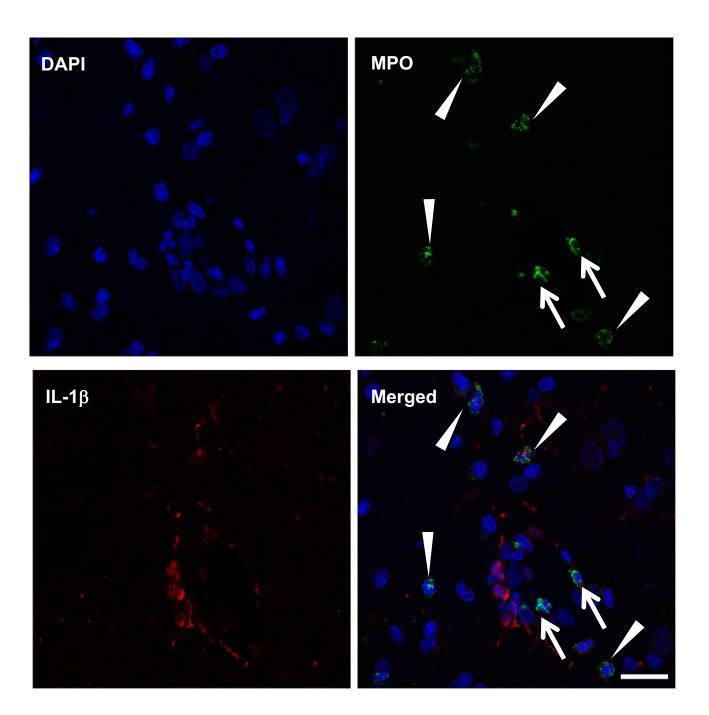


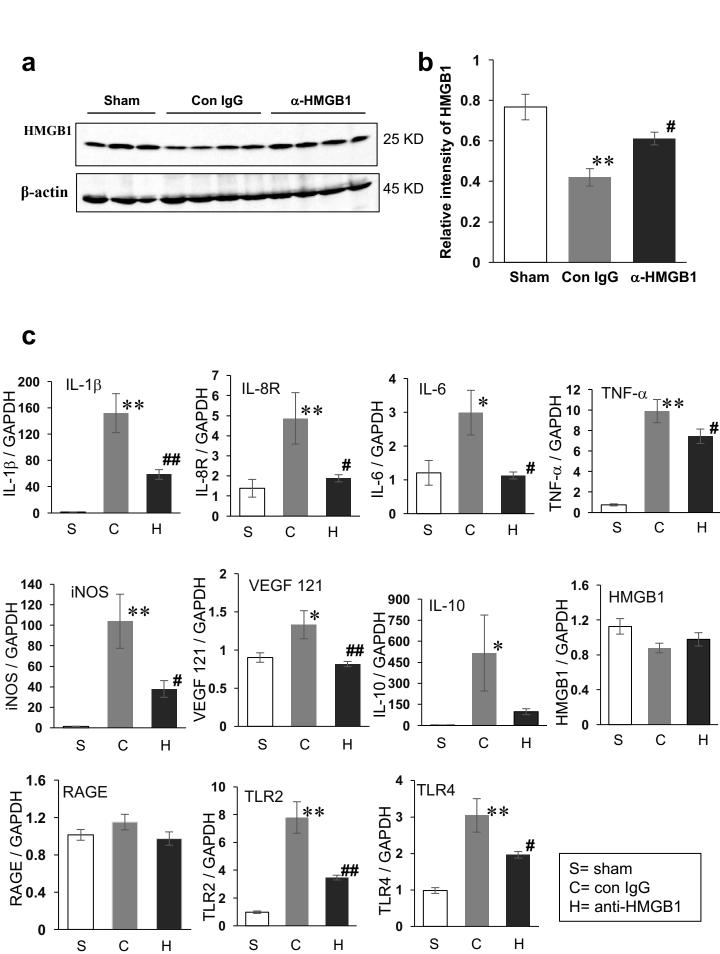

Supplementary Fig. S1b: Quantification of immunoreactive area and immunofluorescence intensity for Iba1. The immunoreactive area for Iba1 and immunofluorescence intensity at a constant size were measured in each rat and the results are expressed as the means \pm SEM of 4-6 rats. $F_{(2,11)}$ =4.996, p=0.029; $F_{(2,11)}$ =5.426, p=0.023 for cortex. $F_{(2,13)}$ =12.607, p<0.001; $F_{(2,13)}$ =12.448, p<0.001for corpus callosum. $F_{(2,10)}$ =1.819, p=0.212; $F_{(2,10)}$ =1.811, p=0.213 for hippocampus. **p < 0.01 compared with the sham groups. *p < 0.01, *p < 0.05 compared with the control IgG-treated group.


Suppl. S2



Supplementary Fig. S2: Double immunohistochemical staining for HMGB1 and GFAP in the dentate gyrus and immunofluorescence experiments of microglia activation expression **ICH** and HMGB1 in brain. Double the immunohistochemical staining for HMGB1 and GFAP in the dentate gyrus was performed 24 h after ICH. The white arrows indicate HMGB1-negative astrocytes. The scale bars represent 50 µm. The number of these cells was counted in each group and the results are expressed as the means \pm SEM of 3-5 rats. $F_{(2.10)}$ =7.168, p=0.012. **p < 0.01 compared with the sham groups. $^{\#}p < 0.05$ compared with the control IgG-treated group. b Activated microglia in the peri-hematomal region was detected by Iba1 staining. White arrowheads show Iba1-strong positive activated microglia. Arrows indicate the DAPI-positive but HMGB1-negative cells. The scale bar represents 50 µm.




Supplementary Fig. 3 The translocation of HMGB1 from astrocytes in the corpus callosum 24 h after ICH. Double immunohistochemical staining for HMGB1 and GFAP in the corpus callosum was performed 24 h after ICH. Most of the GFAP-positive astrocytes in the control IgG group were negative for HMGB1, whereas those in the anti-HMGB1 group retained HMGB1 in their nuclei. The scale bar represents 50 μ m. The ratio of HMGB1-negative astrocytes to total astrocytes in corpus callosum are expressed as the means \pm SEM of 4-5 rats. $F_{(2,11)}$ =2.988, p=0.092.

Supplementary Fig. S4 Effect of anti-HMGB1 on IL-1 β immunoreactivities within the hemorrhagic region at 24 h after ICH. IL-1 β immunoreactivities were detected within the hemorrhagic region at 24 h after ICH. The scale bars represent 50 μ m. The total cell number was counted in two groups and the results are expressed as the means \pm SEM of 5 rats. ##p < 0.01 compared to the control IgG group.

Supplementary Fig. S5: A representative image of a vessel in the perihematomal region. MPO⁺ cells existed inside and outside the blood vessel. IL- 1β ⁺ astrocytic processes surrounding and embracing the blood vessel. Arrows indicate the MPO⁺ cells inside the vessel. Arrowheads indicate MPO⁺ cells outside the vessel. The scale bar represents 20 μ m.

Supplementary Fig. S6 Evaluation of the effects of anti-HMGB1 mAb treatment with regard to the therapeutic time window. The treatment of anti-HMGB1 (1mg/kg) or control mAb was given at both 3 h and 6 h after ICH induction. a Cerebral bleeding areas with a volume of 3 x 3 x 3 mm³ (as indicated by the white square in Fig1a) were sampled at 24 h after ICH for western blotting to determine brain HMGB1 levels. The representative results of western blotting are shown. b Quantitative analyses of the western blotting results were performed using NIH Image J software. The results are expressed as the means \pm SEM of 3-4 rats. F(2,8)=14.589, p=0.002 **p < 0.01 compared with the sham group. #p < 0.05 compared with the control IgG-treated group. c mRNA expression was measured by quantitative real-time PCR in the ipsilateral (injured) striatum at 24 h after ICH. F value for each result was shown below as IL-1 β (F_(2.12)=18.557, p<0.001), IL-8R $(F_{(2,12)}=5.682, p=0.018), TNF-\alpha (F_{(2,12)}=37.675, p<0.001), iNOS (F_{(2,12)}=10.630, p=0.018)$ p=0.002), IL-6 ($F_{(2,12)}=5.713$, p=0.018), VEGF121 ($F_{(2,12)}=5.875$, p=0.017) RAGE $(F_{(2,12)}=1.6762, p=0.228), TLR2 (F_{(2,12)}=26.971, p<0.001), TLR4 (F_{(2,12)}=14.136,$ p<0.001), IL-10: $(F_{(2,12)}=3.204, p=0.077)$ HMGB1 $(F_{(2,12)}=2.795, p=0.101)$. The results are expressed as the means \pm SEM of 5 rats. *p < 0.05, **p < 0.01 compared with the sham groups. #p < 0.05, #p < 0.01 compared with the control IgG-treated group.