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ABSTRACT: Use of a rhodium catalyst with (R)-(S)-BPPFA ligand allows efficient synthesis of sila[n]helicenes via dehydrogena-

tive silylation of CH bonds. By selecting the proper ligands, the current method provides the ability to prepare unsymmetrical 

sila[n]helicene derivatives without any oxidants. The resulting sila[6]helicene is a rare example of a five-membered ring-fused 

[6]helicene, which was isolated as a single pure enantiomer without substituents on the terminal benzene rings. 

Silicon-containing -conjugated molecules show promise as 

materials useful in the areas of electro- and photolumines-

cence.
1
 The incorporated silicon atom has a significant impact 

on the energy levels of the frontier orbital, and that of the 

LUMO is effectively stabilized by the interaction between the 

low lying * orbital of two exocyclic -bonds of the silicon 

atom and the * orbital of the conjugated -system of the 

backbone. Catalytic dehydrogenative silylation of CH bonds 

is a straightforward, atom-efficient, and sustainable route to-

ward these silicon-containing -conjugated molecules.
2-5

 Since 

our first report in 2010 on the synthesis of silafluorenes,
3a

 rho-

dium-catalyzed dehydrogenative silylation has been developed 

for the synthesis of various silicon-containing -conjugated 

molecules, such as silicon-bridged p-terphenyl,
3a

 spirosilabi-

fluorenes,
3b,3j

 benzosilolometallocenes,
3e-g

 dihydroben-

zosilole,
3i
 and phenazasilines

3d
 (Figure 1). To further demon-

strate the utility of this silylative cyclization, development of a 

robust catalyst system with improved reaction efficiency is 

highly desirable for the synthesis of more challenging silicon-

containing -systems.  The present paper describes the synthe-

sis of sila[n]helicenes (n = 4, 5 and 6) with uniquely merged 

-conjugated systems of helicene and silole. This study also 

demonstrates that the amino group-substituted (R)-(S)-BPPFA 

((R)-N,N-dimethyl-1-[(S)-1',2-bis(diphenylphosphino)ferro- 

cenyl]ethylamine) ligand is highly effective for the rhodium-

catalyzed dehydrogenative silylation of CH bonds.
 

Helicene possesses a unique screw-shaped -system con-

sisting of all ortho-annelated aromatic rings.
6
 In addition to a 

unique function as an optoelectronic material, these com-

pounds can be utilized as ligands and organocatalysts.
6c

 De-

spite their promising potential for functional materials, few 

 
Figure 1. Silicon-containing -conjugated molecules synthesized 

by dehydrogenative silylation of CH bonds 

 

examples of helicenes with fused-silacycles have been report-

ed.
7
 Sila[n]helicenes (n = 5 or 7) have been synthesized by 

reaction of dilithiobiaryls with dichlorosilane,
7a-d

 rhodium- or 

iridium-catalyzed [2+2+2] cycloaddition of silicon-tethered 

polyynes,
7e,g

 and platinum-catalyzed arylative cyclization of 2-

alkynylbiaryls with a dibenzosilole backbone.
7f

 While these 

methods provide a route to sila[n]helicenes, their utility can be 

limited by requiring complicated precursors containing the 

proper reactive functional groups. Thus far, no syntheses of 

sila[n]helicenes with an unsymmetrical structure have been 

reported. Development of flexible and convenient synthetic 

methods for sila[n]helicenes could allow customization of 

their properties, and dehydrogenative silylation with the acti-

vation of ubiquitous CH bonds is thought to allow a more 

straightforward approach. 

  We previously reported that Wilkinson’s catalyst , 

RhCl(PPh3)3, is effective for the silylative cyclization of 2-(2- 



 

hydrosilylphenyl)naphthalene 1a to benzosilafluorene 2a in 

the presence of 3,3-dimethyl-1-butene as a hydrogen acceptor 

(Scheme 1(a)).
3a

 However, the corresponding cyclization of its 

isomer 1b under the same reaction conditions resulted in for-

mation of the expected sila[4]helicene 2b in low yield 

(Scheme 1(b)).
8
 This reactivity difference was rationalized by 

the steric repulsion between the two hydrogen atoms in the 

terminal benzene ring of helicene structures (see Figure S4 in 

Supporting Information (SI)). Considering our previous study 

on the promotion of dehydrogenative silylation with the proper 

choice of ligand,
3e,3i,3j

 the effect of ligands was investigated in 

the reaction of 1b with [RhCl(cod)]2 as the precatalyst. 
  

Scheme 1. Comparison of reactivity 

 

The study revealed that the use of electron-rich monoden-

tate phosphine ligands, such as PCy3 and P(4-MeOC6H4)3, 

furnished the expected 2b in low yield, whereas the electron-

deficient phosphine and phosphite ligands failed to promote 

the reaction efficiently (Table S1 in SI, entries 1-8). The use of 

bidentate phosphine ligands resulted in formation of 2b in 

moderate to good yield (entries 9-12). Although the typical C2-

symmetric diphosphines, including BINAP
3b,3j

 and SEGPHOS, 

were less effective, the yield increased to 96% when (R)-(S)-

BPPFA was used as a ligand even in the absence of a hydro-

gen acceptor (entries 13-17).
9
 Bulky and electron-rich (R)-

DTBM-SEGPHOS, which was the best ligand for the enanti-

oselective dehydrogenative silylation in our previous study,
3e,3i

 

produced 2b in lower yield (entry 15). In contrast, nitrogen-

based bidentate ligands, which were useful for a previous in-

termolecular dehydrogenative silylation of CH bonds,
10

 were 

less reactive and resulted in recovery of most of precursor 1b. 

The combination of other rhodium and iridium precursors, 

[Rh(OMe)(cod)]2, [IrCl(cod)]2, and [Ir(OMe)(cod)]2, with (R)-

(S)-BPPFA was also tested, but none of them were superior to 

[RhCl(cod)]2.
11,12

 

Several sila[n]helicenes (n = 4, 5 and 6) were obtained un-

der the current optimized reaction conditions (Figure 2). With 

(R)-(S)-BPPFA as a ligand, the reaction temperature could be 

decreased to 80 
o
C while still affording sila[4]helicene 2b in 

93% yield. Similarly, 1-(2-hydrosilylphenyl)naphthalene de-

rivatives were converted to the corresponding sila[4]helicenes 

2c and 2d in 95% and 90% yields, respectively. Sila[5]- and 

sila[6]helicenes 2e and 2f were also obtained, although a 

slightly higher temperature (135 
o
C) was required for the 

transformations due to the higher steric repulsion compared 

with that of sila[4]helicenes. The substituents on the silicon 

center were also variable, and diphenylsilane afforded the 

corresponding sila[6]helicene 2g in slightly lower yield com-

pared with the reaction of dimethylsilane 2f. 

Figure 2 Rhodium-catalyzed dehydrogenative silylation of 1 lead-

ing to sila[n]helicene derivative 2 

 

As shown in Table S1 in SI, the current silylative cycliza-

tion was greatly facilitated when using (R)-(S)-BPPFA as a 

ligand. To investigate this result, a control experiment using 3-

hydrosilyl-4-phenylphenanthrene 1e as a precursor was per-

formed (Table 1). Comparison of reactions using dppf and (R)-

(S)-BPPFA as ligands indicated that the presence of an alkyl-

amino group in the ligand structure promoted the reaction 

efficiently (entries 1 and 3). This is consistent with the in-

crease of yield in the reaction using dppf as a ligand with tri-

ethylamine as an additive (entry 2). A similar trend in reactivi-

ty was observed for silylative cyclization of hydrosilyl-2-

ferrocenylbenzene 3 (entries 4-6).
3e-g

 These results can be ex-

plained by the facilitation of cleavage and oxidative addition  

 
Table 1. Control experiment to clarify the effect of (R)-(S)-

BPPFA 

 



 

of CH bonds to the rhodium center by the amino group on 

(R)-(S)-BPPFA. 

The optical properties of the resulting sila[n]helicenes 2b, 

2e, and 2f were investigated by UV-Vis absorption and fluo-

rescence spectroscopy (Figure 3). The compounds showed a 

maximum peak around 290-300 nm along with a broad shoul-

der peak in the region of 330-360 nm in dichloromethane. The 

absorption maximum was red-shifted in the order of silafluo-

rene (286 nm), 2b, 2e, and 2f, which clearly indicates a de-

creased HOMO-LUMO energy gap due to effective expansion 

of -conjugation (see Figure 4 for calculated molecular orbit-

als). Blue luminescence was observed for dichloromethane 

solutions of these sila[n]helicenes upon excitation at 290 nm. 

These values are summarized in Table 2 along with the fluo-

rescence quantum yield (), and torsion angles () estimated 

from the optimized structure calculated using a DFT (density 

functional theory) method (Figures 4(c) and S2 in SI).  The 

relatively high fluorescence quantum yield for the silole deriv-

atives was reflected by the rigidity of the helicene backbone. 
  

 
Figure 3. UV-Vis absorption (solid line) and fluorescence 

(dashed line) spectra of sila[n]helicenes 2b (green), 2e (red), and 

2f (blue) in CH2Cl2 (1 × 10-5 M) at 25 oC. 

 

Table 2. Optical data and torsion angles for sila[n]helicenes 

 

  

Figure 4. (a) HOMO, (b) LUMO orbitals, and (c) front view of 

the optimized structure of 2f calculated by DFT 

The optimized structure calculated by DFT clearly indicated 

that sila[6]helicenes 2f and 2g had large overlapping terminal 

benzene rings (Figure 4(c)). As expected, a single enantiomer 

of sila[6]helicene 2f was obtained by optical resolution using 

HPLC with a chiral stationary phase at 25 
o
C. The optical rota-

tion ([]D
25

) of enantio-enriched (M)-2f was 1625 (c = 0.09, 

CHCl3).
13

 The racemization rate constant k, which obeyed 

first-order kinetics, was determined at different temperatures 

(Table S3 and Figure S5 in SI). The activation energy for rac-

emization E was estimated from the k values to be 28.2 

kcal/mol, which was lower than that reported for all benzene-

[6]helicene by 5-10 kcal/mol (Figure S6).
14

 Note that 2f is a 

rare example of a five-membered ring-fused [6]helicene with-

out any substitutions, which was isolated as a single pure en-

antiomer. Syntheses and optical resolutions of pyrrole or thio-

phene-fused [6]helicenes have been previously reported, but 

the molecules contained substituents on the terminal benzene 

rings that prevented rapid racemization.
15

 The results of the 

DFT study indicate that the choice of bridging atom signifi-

cantly affects the torsion angles, and a silicon atom induces a 

larger overlap of the two terminal benzene rings, which in-

creases the resistance to racemization (Table 3). Due to the 

high fluorescence quantum yield compared with that of all 

benzene-[6]helicene,
16

 2f can be expected as a novel chiral 

host molecule applicable to luminescent materials.
6
 

Table 3. Optimized torsion angles for [6]helicene derivativesa 

   
Since optically active 1f was obtained using HPLC with a 

chiral stationary phase at 25 
o
C, stereospecific cyclization of 

1f was attempted.
17,18

 Treatment of axially chiral atropisomer 

(R)-1f (99% ee) with a catalytic amount of [RhCl(cod)]2 and 

(R)-(S)-BPPFA at 100 
o
C for 8 h gave (M)-2f in 21% yield 

(78% ee) with 47% recovery of 1f (92% ee) (Scheme 2).
13,19

 

This result implies that transfer from axial to helical chirality 

leading to 2f was achieved during the silylative cyclization of 

1f, and that the loss of ee occurred after the catalytic reaction 

due to the competitive racemization of both 1f and 2f.
20,21 

Scheme 2. Transfer from axial to helical chirality by stereospecif-

ic cyclization of 1f 

 

In conclusion, a novel catalytic synthesis of sila[n]helicene 

derivatives with an unsymmetical structure was developed via 

activation of both SiH and CH bonds. Due to promotion of 

the reaction by (R)-(S)-BPPFA, the current dehydrogenative 

silylation proceeded under neutral conditions without any oxi-

dants. The resulting sila[6]helicene was a rare example of the 

five-membered ring-fused [6]helicene, which was isolated as a 

pure single enantiomer without substituents on the terminal 

benzene rings. The stereochemical information relay from 

axial to helical was also attempted. 

AUTHOR INFORMATION 



 

Corresponding Author 
*E-mail: masahito.murai@okayama-u.ac.jp 

ACKNOWLEDGMENT  

This work was financially supported by a Grant-in-Aid for Young 

Scientists (B) (No. 26870389) from MEXT, Japan, and the Ad-

vanced Catalytic Transformation program for Carbon utilization  

project of the Japan Science and Technology Agency. The authors 

gratefully thank Prof. Akihiro Orita (Okayama University of Sci-

ence) for the measurement of the absolute quantum yield. 

REFERENCES 

(1) (a) Brook, M. A. Silicon in Organic, Organometallic, and Poly-

mer Chemistry, Wiley: New York, 2000. (b) The Chemistry of Or-

ganic Silicon Compounds, Vol. 1; Patai, S.; Rappoport, Z. Eds., 

Wiley: Chichester, U.K., 1989. (c) Yamaguchi, S.; Tamao, K. Chem. 

Lett. 2005, 34, 2. (d) Fukazawa, A.; Yamaguchi, S. Chem. Asian J. 

2009, 4, 1386. (e) Mortensen, M.; Husmann, R.; Veri, E.; Bolm, C. 

Chem. Soc. Rev. 2009, 38, 1002. (f) Franz, A. K.; Wilson, S. O. J. 

Med. Chem. 2013, 56, 388. 

(2) For reviews, see: (a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 

115, 8946. (b) Yang, Y.; Wang, C. Sci. China: Chem. 2015, 58, 

1266. (c) Sharma, R.; Kumar, R.; Kumar, I.; Singh, B.; Sharma, U. 

Synthesis 2015, 47, 2347. (d) Xu, Z.; Huang, W.-S.; Zhang, J.; Xu, 

L.-W. Synthesis 2015, 47, 3645. 

(3) (a) Ureshino, T.; Yoshida, T.; Kuninobu, Y.; Takai, K. J. Am. 

Chem. Soc. 2010, 132, 14324. (b) Kuninobu, Y.; Yamauchi, K.; 

Tamura, N.; Seiki, T.; Takai, K. Angew. Chem. Int. Ed. 2013, 52, 

1520. (c) Xiao, Q.; Meng, X.; Kanai, M.; Kuninobu, Y. Angew. 

Chem. Int. Ed. 2014, 53, 3168. (d) Li, H.; Wang, Y.; Yuan, K.; Tao, 

Y. Chen, R.; Zheng, C.; Zhou, X.; Li, J.; Huang, W. Chem. Com-

mun. 2014, 50, 15760. (e) Murai, M.; Matsumoto, K.; Takeuchi, Y.; 

Takai, K. Org. Lett. 2015, 17, 3102. (f) Zhang, Q.-W.; An, K.; Liu, 

L.-C.; Yue, Y.; He, W. Angew. Chem. Int. Ed. 2015, 54, 6918. (g) 

Shibata, T.; Shizuno, T.; Sasaki, T. Chem. Commun. 2015, 51, 7802. 

(h) Lee, T.; Wilson, T. W.; Berg, R.; Ryberg, P.; Hartwig, J. F. J. 

Am. Chem. Soc. 2015, 137, 6742. (i) Murai, M.; Takeshima, H.; 

Morita, H.; Kuninobu, Y.; Takai, K. J. Org. Chem. 2015, 80, 5407. 

(j) Murai, M.; Takeuchi, Y.; Yamauchi, K.; Kuninobu, Y.; Takai, K. 

ChemA Eur. J. 2016, 22, 6048. 

(4) For the dehydrogenative silylation of CH bonds leading to 9-

silafluorenes via the generation of silylcation or silylradical species, 

see: (a) Furukawa, S.; Kobayashi, J.; Kawashima, T. J. Am. Chem. 

Soc. 2009, 131, 14192. (b) Furukawa, S.; Kobayashi, J.; Kawashi-

ma, T. Dalton Trans. 2010, 39, 9329. (c) Curless, L. D.; Ingleson, 

M. J. Organometallics 2014, 33, 7241. (d) Leifert, D.; Studer, A. 

Org. Lett. 2015, 17, 386. (e) Xu, L.; Zhang, S.; Li, P. Org. Chem. 

Front. 2015, 2, 459. 

(5) For recent works on dehydrogenative functionalization, including 

phosphination, borylation, and germylation of CH bonds, see: (a) 

Kuninobu, Y.; Yoshida, T.; Takai, K. J. Org. Chem. 2011, 76, 7370. 

(b) Kuninobu, Y.; Iwanaga, T.; Omura, T.; Takai, K. Angew. Chem. 

Int. Ed. 2013, 52, 4431. (c) Murai, M.; Matsumoto, K.; Okada, R.; 

Takai, K. Org. Lett. 2014, 16, 6492. (d) Murai, M.; Omura, T.; Ku-

ninobu, Y.; Takai, K. Chem. Commun. 2015, 51, 4583. For our re-

cent contributions on the synthesis of functionalized -systems, see: 

(e) Murai, M.; Maekawa, H.; Hamao, S.; Kubozono, Y.; Roy, D.; 

Takai, K. Org. Lett. 2015, 17, 708. (f) Murai, M.; Yanagawa, M.; 

Nakamura, M.; Takai, K. Asian J. Org. Chem. 2016, 5, 629.  

(6) For reviews, see: (a) Shen, Y.; Chen, C.-F. Chem. Rev. 2011, 112, 

1463. (b) Gingras, M. Chem. Soc. Rev. 2013, 42, 1051. (c) Saleh, 

N.; Shen, C.; Crassous, J. Chem. Sci. 2014, 5, 3680. (d) Tanaka, K.; 

Kimura, Y.; Murayama, K. Bull. Chem. Soc. Jpn. 2015, 88, 375. 

(7) (a) Hoshi, T.; Nakamura, T.; Suzuki, T.; Ando, M.; Hagiwara, H. 

Organometallics 2000, 19, 3170. (b) Hoshi, T.; Nakamura, T.; Su-

zuki, T.; Ando, M.; Hagiwara, H. Organometallics 2000, 19, 4483. 

(c) Yasuike, S.; Iida, T.; Okajima, S.; Yamaguchi, K.; Seki, H.; Ku-

rita, J. Tetrahedron 2001, 57, 10047. (d) Schafer, A. G.; Wieting, J. 

M.; Mattson, A. E. Org. Lett. 2011, 13, 5228. (e) Shibata, T.; 

Uchiyama, T.; Yoshinami, Y.; Takayasu, S.; Tsuchikama, K.; Endo, 

K. Chem. Commun. 2012, 48, 1311. (f) Oyama, H.; Nakano, K.; 

Harada, T.; Kuroda, R.; Naito, M.; Nobusawa, K.; Nozaki, K. Org. 

Lett. 2013, 15, 2104. (g) Murayama, K.; Oike, Y.; Furumi, S.; 

Takeuchi, M.; Noguchi, K.; Tanaka, K. Eur. J. Org. Chem. 2015, 

1409. 

(8) 1,1,3,3-Tetramethyl-1,3-di(2-(1-naphthyl)phenyl)disiloxane (4) was 

obtained as a side product probably due to the competitive oxida-

tion by the dissolved oxygen in dioxane. The structure of this prod-

uct corresponded to that synthesized by reaction of 1-(2-lithio-   

phenyl)naphthalene with 1,3-dichloro-1,1,3,3-tetramethyldisiloxane. 

(9) Dehydrogenative functionalization without any hydrogen acceptors 

(oxidants) is rare.  For reviews, see: (a) Kuhl, N.; Hopkinson, M. 

N.; Wencel-Delord, J.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 

10236. (b) Mo, J.; Wang, L.; Liu, Y.; Cui, X. Synthesis 2015, 47, 

439.  The efficiency of the current silylative cyclization was not 

improved by addition of hydrogen acceptors, such as 3,3-dimethyl-

1-butene, norbornene, cyclohexene, and methyl acrylate, in contrast 

to the results of our previous study (ref. 3a). 

(10) (a) Simmons, E. M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 

17092. (b) Kuznetsov, A.; Gevorgyan, V. Org. Lett. 2012, 14, 914. 

(c) Li, B.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 

6586. (d) Murai, M.; Takami, K.; Takai, K. Chem.-Eur. J. 2015, 21, 

4566. (e) Murai, M.; Takami, K.; Takeshima, H.; Takai, K. Org. 

Lett. 2015, 17, 1798. (f) Cheng, C.; Hartwig, J. F. J. Am. Chem. Soc. 

2015, 137, 592. 

(11) Effect of precatalysts with a catalytic amount of (R)-(S)-BPPFA at 

135 
o
C in 1,4-dioxane for 24 h: [Rh(OMe)(cod)]2 89%, [IrCl(cod)]2 

24%, and [Ir(OMe)(cod)]2 19% of 2b was obtained, respectively. 

(12) Effect of solvents (0.50 M) with a catalytic amount of [RhCl(cod)]2 

and (R)-(S)-BPPFA at 80 
o
C for 24 h: toluene 84%, 1,2-

dichloroethane 82%, MeCN 4%, THF 79%, and DMF 0% of 2b 

was obtained, respectively. 

(13) The absolute stereochemistry of 2f was assigned by comparison of 

experimentally obtained optical rotation with that reported for si-

la[7]helicene in ref 7f. 

(14) Martin, R. H.; Marchant, M.-J. Tetrahedron Lett. 1972, 13, 3707. 

(15) (a) Moussa, S.; Aloui, F.; Hassine, B. B. Tetrahedron Lett. 2012, 

53, 5824. (b) Pischel, I.; Grimme, S.; Kotila, S.; Nieger, M.; Vögtle, 

F. Tetrahedron: Asymmetry 1996, 7, 109. (c) Kötzner, L.; Webber, 

M. J.; Martínez, A.; De Fusco, C.; List, B. Angew. Chem. Int. Ed. 

2014, 53, 5202. 

(16) Vander Donckt, E.; Nasielski, J.; Greenleaf, J. R.; Birks, J. B. 

Chem. Phys. Lett. 1968, 2, 409. 

(17) The structure and absolute configuration of 1f were unambiguously 

determined by single crystal X-ray crystallography. See Figure S3 

and Table S2 in SI for details. 

(18) Stereospecific transformation from axial to helical chirality for the 

synthesis of chiral helicenes is rare. See: (a) Miyasaka, M.; Rajca, 

A.; Pink, M.; Rajca, S. J. Am. Chem. Soc. 2005, 127, 13806. (b) 

Nakano, K.; Hidehira, Y.; Takahashi, K.; Hiyama, T.; Nozaki, K. 

Angew. Chem. Int. Ed. 2005, 44, 7136. 

(19) The same reaction at 100 
o
C for 24 h gave 2f in 30% yield (56% 

ee) with the recovery of 1f in 20% yield (74% ee), and at 135 
o
C for 

12 h gave 2f in 31% yield (0% ee) with the recovery of 1f in 13% 

yield (64% ee).  

(20) Treatment of optically active sila[6]helicene 2f (99% ee) in diox-

ane at 135 
o
C for 12 h resulted in complete racemization (0% ee). 

Racemization of the precursor 1f (99% ee) was much slower under 

the same reaction conditions (1f was recovered with 64% ee). 

(21) The ee of the sila[6]helicenes 2f obtained from silylative cycliza-

tion of rac-1f with (R)-(S)-BPPFA, (R)-BINAP, and (R)-DTBM-

SEGPHOS at 100 
o
C for 24 h was less than 5%.  The cyclization of 

1e and rac-1g also gave a similar result due to the rapid racemiza-

tion of the resulting sila[n]helicenes at high temperature. An at-

tempted kinetic resolution of rac-1f with (R)-(S)-BPPFA at 100 
o
C 

for 8 h gave 2f in 16% yield (2% ee) together with recovery of 1f in 

42% yield (5% ee). 

 

mailto:masahito.murai@okayama-u.ac.jp

