














than the cytoplasmic PAS domain, which has a 1�-2�-4�-3�
folding pattern (58).

Previous studies have suggested that the sensor domain of
KinD has an extra ligand between the �-helix and �-strands,
and the ligand binding site may accommodate small mole-
cules related to metabolism such as pyruvate or propionate
(48). In the electron density map of Tll0287, we indeed found
an extra density at the similar position between the �-helix
and �-strands (Fig. 8), which is in the concave pocket shown
in Fig. 4. It seems that the extra density is surrounded by the
guanidine group of Arg87 and the carboxyl group of Asp105

and Thr179.
To identify the possible ligand corresponding to the extra

density, we used the Arp/wARP program (60) for prediction of
the extra ligand, which suggested that the extra ligand may be
2-oxoglutaric acid, although its abundance may be low in the
thylakoid lumen. On the other hand, MALDI-TOF/MS mea-

surements of the Tll0287 sample after trypsin digestion
showed extra masses of 617, 74, and 118 Da (data not shown).
The former two correspond to the masses of heme c and
chlorine, respectively, whereas the mass of 118 Da has no
corresponding molecules and may therefore be derived from
the extra ligand. This mass is similar to those of homoserine,
valeric acid such as norvaline, or betaine, which was used as
an additive in the purification buffer. Although our current
results do not allow the identification of the extra ligand,
they suggest that Tll0287 has a PDC-like domain with an
extra ligand.

The PAS-like domain found in the Tll0287 structure suggests
that this protein may have a function in signal transduction or
in response to some environmental factors. In relation to this,
it is interesting to note that the expression level of psbA2 is
reported to increase under microaerobic conditions (14 –16),
and the EPR data in Fig. 5 show that under conditions in which

Figure 7. Structural alignment of the Tll0287 protein with 11 homologous proteins. Eleven representative proteins are selected from supplemental Table
S1 that show structural similarities with Tll0287, excluding their similar molecules. Inserted segments relative to the Tll0287 protein structure are hidden. The
upper part shows the alignment of the amino acid sequence, and the lower part shows the secondary structure assignments performed by DSSP (65, 66). H,
helix; E, strand; L, coil.
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O2 was not produced, the expression level of Tll0287 increased
in the WT*2 strain, at least transiently.

A second approach searching for structural similarities was
done by using the Phyre2 server (61), which revealed a good
structural similarity with GSU0935, a methyl-accepting che-
motaxis protein from Geobacter sulfurreducens (PDB code
3B42) (62) (Fig. 6d). This b-type heme protein also shows a
PAS-type fold but exhibits axial ligations (His-water and His-
Met) different from that of Tll0287 with a high-spin configura-
tion in the oxidized state. The overexpressed non-membrane
part of GSU0935 was crystallized as a dimer (62). Interestingly,
as shown in Fig. 6d, the heme part of one monomer of GSU0935
fits very well with the heme part of Tll0287, and the two �-heli-
ces of the opposite monomer fit very well with two of the �-heli-
ces, �1 and �2 of Tll0287, although they do not have counter-
parts in the first monomer. Such similarities may suggest that,
in vivo, Tll0287 is present as a dimer with a structure similar to
the dimer of GSU0935.

These structurally similar proteins have a transmembrane
region and active site in the C terminus after the PAS do-
main (48, 62), whereas Tll0287 has no region after the PAS
domain. Instead, Tll0287 has a heme c inserted. It is possible
that the heme c may sense some environmental conditions
such as the oxygen level or redox state of the cell that may
therefore induce structural changes of the heme. This struc-
tural change may be transmitted and/or enlarged through
the PAS-like domain.

Tll0287 homologs, genomic context, and phylogeny

Homology sequences of Tll0287 were searched with BLAST
for cyanobacteria, as well as non-cyanobacterial prokaryotes.
Genes with substantial sequence homologies (BLAST search
expectation values exceeding e-50, which is a corrected value
of the probability that an event occurs by chance), in partic-
ular with the C-terminal CXXCH motif, were detected in sev-
eral cyanobacteria but also outside the cyanobacterial phylum
(supplemental Fig. S2). Although some of these non-cyanobac-
terial genes coded for larger, two-domain proteins that likely

correspond to two-component sensors, others encoded mono-
topic cytochromes with sizes similar to that of Tll0287 (see
phylogenetic tree in supplemental Fig. S3A). To glean insight
into their functions, we compared the genomic context of all
these Tll0287- and Tll0287-like genes. The following observa-
tions emerge: (a) no common features are obvious between
cyanobacterial and non-cyanobacterial cases, and (b) in cyano-
bacteria, Tll0287-homologous genes occur almost exclusively
in close genomic association with a gene coding for sulfide:
quinone-oxidoreductase (SQR). The only exception to this rule
is Arthrospira platensis, in which the Tll0287 homolog and the
SQR genes are distantly positioned in the genome. It is note-
worthy that the majority of these SQR genes are annotated as
NDH-2 (type 2 NADH-dehydrogenase), but the phylogenetic
analysis (supplemental Fig. S3B) clearly shows that they all clus-
ter together with bona fide SQR from Oscillatoria limnetica
(63) and not with NDH-2. Remarkably, the tree of SQR
sequences retrieved from the cyanobacterial clade falls into two
distinct subclades: one contains species in which SQR but not
Tll0287-homologous genes are present, whereas in the second
subclade, SQR genes co-occur with Tll0287 homologs. Two
distinct scenarios can be proposed based on this pattern of co-
occurrence: (a) the sulfide dehydrogenase in the clade where
“SQR” and Tll0287 homologs co-occur is actually a sulfide:cy-
tochrome-oxidoreductase rather than a sulfide:quinone-oxi-
doreductase, and the Tll0287 gene product would in fact corre-
spond to the cytochrome subunit of an H2S-oxidizing enzyme,
reminiscent of so-called flavocytochrome c-sulfide dehydroge-
nase observed in a number of prokaryotes (64); and (b) the
association of Tll0287-homologous genes to sulfide metabo-
lism is more indirect and potentially even related to some kind
of sensory mechanism (it could be noted here that several of the
hemo proteins with His-Cys axial ligation are involved in the
sulfide metabolism). We presently consider the first possibility
as less likely because (a) no co-purification of Tll0287 and SQR
has been observed so far, and (b) the sequence motif involved in
forming the quinone-binding pocket in SQR (GQMTEE in

Figure 8. A possible extra ligand in Tll0287. a, the residues Arg87, Asp105, and Thr179 surrounding the concave pocket (shown in Fig. 4b) are depicted as stick
models. b, electron density map of a possible ligand corresponding to the ligand binding site in the structure of the sporulation kinase D sensor domain (48).
The blue mesh and red mesh represent mFo � DFc omit map (positive and negative, respectively) contoured at 3.5 � distributions, and the gray mesh represents
2mFo � DFc map contoured at 1.0 � distributions.
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Caenorhabditis elegans, deduced from the three-dimensional
structure of Aquifex aeolicus SQR; PDB code 3HYW) is highly
conserved in both subclades arguing for true SQR-type func-
tional characteristics of all enzymes in both clades. However, in
Synechocystis sp. PCC6803, it has been shown that sll5034
(analogous to tll0287) and the SQR (coded by sll5036) belong to
the same operon and are indeed co-transcribed with a higher
level of transcription in the dark, possibly equivalent to
microaerobic conditions (29). Such a higher level of expression
of Tll0287 in the dark was also observed in the WT*2 strain (Fig.
5), suggesting a role for this protein in sensing the environmen-
tal conditions. The actual functional significance of Tll0287-ho-
mologous genes in cyanobacteria therefore remains enigmatic,
but an involvement in H2S oxidation as studied in O. limnetica
(63) represents an intriguing lead. In this context, it is notewor-
thy that, with the sole exception of Pleurocapsa minor, we only
found Tll0287 homologs in members of the Oscillatoriaceae.

Experimental procedures

T. elongatus strain, cultivation of cells, and purification of the
Tll0287 protein

The T. elongatus strain used in this work was the WT*2 strain
in which a His tag was attached in the C terminus of CP43, and
both psbA1 and psbA3 were deleted so that only psbA2 was
expressed for the D1 subunit (22, 27). The WT*3 strain that
expresses the psbA3 gene only was made as described (23). The
cells were grown in 1-liter cultures of DTN medium with a
CO2-enriched atmosphere at 45 °C under continuous light
(Grolux, Sylvania). The cells were collected by centrifugation
(Beckman) with a JA10 rotor and were suspended in a buffer
containing 100 mM NaCl, 10 mM Tris, pH 8.5, and 0.03%
�-DDM, 1 mM benzamidine, 1 mM 
-aminocaproic acid, and
DNase I, and disrupted by a French press. The Tll0287 protein
was purified from the soluble proteins upon the breakage of the
cells, i.e. after the removal of the membrane fraction by centrif-
ugation based on the procedures described previously (27) with
some modifications. The supernatant was concentrated and
then loaded onto a gel filtration column (Sephadex 75, HiLoad
26/60). The buffer used for this column contained 100 mM

NaCl, 10 mM Tris, pH 8.5, and 0.03% �-DDM, and the flow rate
was 1 ml/min. The fraction of eluate containing Tll0287 (which
was judged based on the approximate molecular masses eluted
from the column and the reddish color of the heme together
with the measurement of the absorption spectra taken every 4
ml) was collected and further purified with a Mono Q column
(GE Healthcare) at pH 8.5 with a NaCl gradient in the presence
of 0.03% �-DDM and a flow rate of 0.5 ml/min. Finally, the
fraction eluted from the Mono Q column was diluted 3–5-fold
and purified by a Mono S column (GE Healthcare) at pH 8.5
with a NaCl gradient in the presence of 0.03% �-DDM and a
flow rate of 0.5 ml/min. In all cases, the fraction containing
Tll0287 was easily followed by the color of the heme. Under the
conditions used, Tll0287 was eluted from the Mono Q and
Mono S columns with a gradient of 100 –150 mM NaCl, but
other proteins that are either more tightly or more loosely
bound to the resins eluted differently from the two columns
which allowed us to separate them efficiently. It should be

noted that (a) the detergent was added in all of the purification
steps to prevent almost irreversible binding of the protein to the
resins and to hydrophobic surfaces because of the high hydro-
phobic character of Tll0287; and (b) hydrophobic resins like
phenyl-Sepharose cannot be used because the protein binds
almost irreversibly to such resins. Tll0287 was then concen-
trated using a Millipore Amicon Ultra-15 centrifugal filter de-
vices with a cutoff value of 10 kDa. By comparing the relative
contents of Tll0287 and soluble Cyt c-550 (i.e. the fraction of
Cyt c-550 not bound to PSII easily identifiable by its EPR signal
different from the PSII bound fraction) with EPR in whole cells
before breakage and the amounts of Tll0287 and cyt c-550 puri-
fied in parallel from the same batch of the cells, the protocol
described above allows the purification of a very large propor-
tion of Tll0287 present in the cells.

Crystallization and X-ray data collection

Initial crystallization conditions were screened with an auto-
matic dispensing machine (Mosquito, TTP Labtech) with over
800 commercially available screening conditions at a concen-
tration of 2 mg protein/ml. One of these conditions composed
of Na2HPO4, K2HPO4, (NH4)2HPO4, and Tris, pH 8.5, pro-
duced small crystals with a red color of Tll0287. These small
crystals were used as seeds to grow larger crystals under the
same condition for 2 weeks at 20 °C. The crystals obtained were
needle type, and they were cryo-protected using a solution con-
taining 0.7 M Na2HPO4, 0.7 M K2HPO4, 0.1 M (NH4)2HPO4, and
0.1 M Tris, pH 8.6, in either the presence or the absence of 25%
(w/v) glycerol in a stepwise fashion, and flash frozen under liq-
uid nitrogen gas. X-ray diffraction data were collected at Beam-
lines BL41XU and BL44XU of SPring-8 at a wavelength of 0.900
Å for a native data set and at 1.730 Å to measure the iron-
anomalous signal for single-wavelength anomalous dispersion
phasing at 100 K.

Structure determination

Diffraction data were indexed, integrated, and scaled by XDS
and XSCALE (67). The initial phases were obtained using
SHELX C/D/E (68). The iron site identified was provided to the
program SHARP/autoSHARP (69, 70) for density modification
and automatic model building, which results in a model having
155 residues. The rest of the model was manually built with the
program COOT (71, 72), and structural refinement was per-
formed with the program Phenix (73). Ramachandran plot was
calculated with the MolProbity (74). The statistics of data col-
lection and structural refinement were summarized in Table 1.
For prediction of the extra ligand in the Tll0287 protein, the
software Arp/wARP (60) was used. The mFo-DFC map and
2mFo-DFc map without introducing any ligands were calcu-
lated using FFT in the CCP4 suite (75).

Homology search

Search of sequences homologous to Tll0287 was carried out
with BLAST (76), and search of the three-dimensional struc-
tures similar to Tll0287 was performed by the DALI server (47).
Superposition and RMSD calculation were performed by the
LSQ Superpose function of Coot (71, 72) at the heme c ligand
for comparison with that of PsbV2, and the SSM Superpose
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function (77) for comparison with PAS-like domain proteins.
Protein structure homology was also investigated with the
Phyre2 server (61).

MALDI-TOF mass analysis

To determine the molecular size of Tll0287, the sample was
analyzed before the crystallization with MALDI-TOF/MS in
linear mode (Voyager-DE PRO MALDI-TOF mass spectrome-
ter; Applied Biosystems) as described previously (27). For
identification of possible extra mass, the Tll0287 protein was
digested with trypsin (Promega), and the polypeptides pro-
duced were analyzed with MALDI-TOF/MS in reflector mode
after reduction and alkylation (78).

Prediction of the signal peptide and transmembrane helices

Possible peptide signal cleavage sites were predicted by the
SignalP 4.1 Server (79), with the organism group set as Gram-
negative bacteria. For prediction of the transmembrane helices,
the HMMTOP server was used (80, 81).

Immunoblot analysis

Polyclonal antibodies against Tll0287 were obtained after
several injections of purified Tll0287 (supplemental Fig. S5)
into rabbits (Service de Pharmacologie et Immunoanalyse,
iBiTec-S, CEA Saclay). Amersham Biosciences ELC Prime
Western blotting detection reagents were used for immunoblot
analysis (GE Healthcare). For the experiment in Fig. 1, whole
cell samples were prepared by breaking the cell walls with
lysozyme treatment as described previously (82, 83), and the
resulting fraction was loaded onto SDS-polyacrylamide gel
directly without separation of the soluble and membrane frac-
tions. Thylakoid fractions and purified PsbA2-PSII core com-
plexes were purified from the WT*2 strain as described previ-
ously (82, 84). For comparison, the Tll0287 protein purified
from the WT*2 strain, whole cells, and thylakoid fractions of
wild type expressing the psbA1 gene predominately (WT) and
those of a WT*3 (27) strain expressing the psbA3 gene only
were compared.

For determining the cellular location of Tll0287, thylakoid
fraction of WT*2 were digested with a protease thermolysin
(Sigma-Aldrich) at 5 �g protease/ml for 6 h at 25 °C, followed
by detection with immunoblotting to determine the Tll0287
location. For comparison, the purified Tll0287 and PSII cores
purified from the WT*2 strain was digested in the same way,
and the PsbO protein was detected by immunoblotting with an
anti-PsbO antibody from Agrisera (Vännäs, Sweden).

Electrochemistry

The redox potential of Tll0287 was determined with the
same samples as that used for crystallization. Details of the
thin-layer (6 �m) electrochemical cell used for the experiments
are given in Ref. 85 except that the diamond windows were
replaced by CaF2 windows of 1-mm thickness. The working
gold grid purchased from Euromip (France) was surface-mod-
ified by dipping it for 10 min into a 5 mM pyrimide-3-carboxy-
aldehyde thiosemicarbazone (Lancaster) solution heated to
80 –90 °C, followed by careful washing of the gold grid with
ultra-pure water. The following redox mediators (each at 40 �M

final concentration) were used to accelerate the electrochemi-
cal reaction: methyl viologen (Em � �440 mV versus NHE),
benzyl viologen (Em � �360 mV versus NHE), antraquinone
2-sulfonate (Em � �225 mV versus NHE), 2 hydroxy 1– 4 naph-
toquinone (Em � �128 mV versus NHE), 2,5-dihydroxy-p-ben-
zoquinone (Em � �62 mV versus NHE), duroquinone (�8 mV
versus NHE), and phenazine ethosulfate (55 mV versus NHE).

Equilibrium redox titrations were performed by applying
potentials to the working gold grid from �100 to �500 mV
versus NHE with 20-mV intervals using a potentiostat (PRGE,
Tacussel Electronique). For each potential step, the sample was
allowed to equilibrate for 5 min. Spectra from 400 to 650 nm
were recorded using a modified Cary 14 spectrophotometer
equipped with a xenon light source and a UV-enhanced silicon
detector. The data were analyzed by calculating the integrated
Soret absorption (422– 457 nm) obtained from the difference of
the spectrum recorded at a given potential minus the spectrum
of fully oxidized Tll0287 obtained at �100 mV versus NHE. The
electrochemical cell was thermostatted at 15 °C with a water
circulation system, and the sample compartment was purged
with dry air.

Buffers at different pH values contained 200 mM NaCl, 0.03%
�-DDM, and 50 mM of buffer MES, pH 5.5, 6.0, or 6.5; Tricine,
pH 7.5; Tris, pH 8.5; or CAPS, pH 10.5. An aliquot of 9 �l of
the Tll0287 sample solution adjusted to the buffer solution
described above was mixed with 1 �l of mediator-buffer solu-
tion and dropped on the working gold grid. The path length of
the closed electrochemical cell was adjusted to �6 �m by
adjusting the Amide I/H2O absorption of the sample to �0.8
using an FTIR spectrophotometer (Bruker Tensor 27).
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