
Development and Applications of Deep
Learning Structures for Point Cloud

Data

MAIERDAN MAIMAITIMIN

Department of Intelligent Mechanical Systems
Okayama University

This dissertation is submitted for the degree of
Doctor of Philosophy in Engineering

March 2017





Acknowledgements

This study is done with the help of many great people who contributed in some way to the
work described in this thesis.

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Keigo
Watanabe for the continuous support of my Ph.D study and related research, for his patience,
motivation, and immense knowledge. His guidance helped me in all the time of research
and writing of this thesis. I could not have imagined having a better advisor and mentor
for my whole study. Besides my advisor, I would like to thank the rest of my thesis
committee: Prof. Mamoru Minami and Prof. Akio Gofuku, for their insightful comments
and encouragement, but also for the hard question which incented me to widen my research
from various perspectives. I want to thank Associate Prof. Shoichi Maeyama, Assistance
Prof. Isaku Nagai for their supports and suggestions during my Ph.D research.

Every result described in this thesis was accomplished with the help and support of fellow
lab-mates. I would like to thank Dr. Tatusya Kato, Dr. Kimiko Motonaka, Ms. Yin Yin
Aye, Ms. Yu. Lang, Mr. Shilin Yi and Mr. Mikuria Kota in for the stimulating discussions,
research advise, and for all the fun we have had in the last five years.

Last but not the least, I would like to thank my family: my parents Abla Memtimin and
Jamal Gulnar, and to my sister Memtimin Dilnar for supporting me spiritually throughout
writing this thesis and my life in general, also thanks to my beloved Arken Medine for
encouraging and supporting me through my many times of frustration and confusion.





Abstract

This thesis makes three main contributions on a generalized method by using a surface
common feature based Deep Learning struture, that amis to acheve object recognition task
and emotional facial expression recognition task.

Because the popularity of DL has grown rapidly in the past few years, it leads many
research fields to have a qualitative leap, specially in the computer vision field. However,
most of the computer vision tasks based on the DL are focused on the 2D image data, and a
2D image is very vulnerable to the changing of environment. On the other hand, the 3D point
cloud data(PCD) is the collection of descriptive points of an object in 3D space. It is very
activated in distance-based segmentation, object recognition, and also self-driving system.
The advantages of PCD are, it able to describe full geometrical information about the objects,
and it is not affected by the lighting. But it also has some disadvantaged attributes, such as
its high dependency on reference coordinates, thus, its feature appears totally different in the
different coordinate system. And, compare to the 2D images, the useful information in 3D
PCD is not directly observable. Most of the previous researches on PCD-based methods are
only considered the information from the point itself, which is the distance between the point
and the observer, or using local feature extraction methods. But eventually some of these
research fell into 2D image processing, which causing the information loss, and some other
local feature based methods are limited in few objects, which makes these methods are not
widely applicable.

As a generalization methods to many problems, DL attempts to model high level ab-
stractions in a complex data source. By changing the structure of network connection, and
some techniques such as convolution, pooling, dropout and recurrence, it becomes a very
powerful machine learning algorithm. A well-designed DL can avoid the amount of problems,
which the deep neural network faced in previously, such as the vanishing of gradient and
over-fitting problems. The most important advantage of DL is that the manual design features
are not required anymore. So that, DL able to solve a complex problems freely in very high
dimension weight space. However, by the same reason, it is very difficult to understand the
principles of a DL.



vi

A new DL structure is proposed upon the human touch sensing theory in this thesis,
which is able to keep the advantages of PCD and it is based on the generalized features.
To be specific, there are two main cells in human touch sensing, one is a texture detection
cells named Meissner corpuscles, it responds to the roughness of a surface by the vibration
sensing, the other one is Merkel cells, an edge and curvature detection neuron responds to the
skin indentation. Under this knowledge and some previous research, a new DL structure as
the front end convert network is proposed to simulate these senses. The core approach of this
front end DL includes two parts, a stacked memories convolutional autoencoder(sMCAE) is
used to simulate the vibration neurons, that obtains the roughness of the surface from a PCD
as brain firing map, the other one is used to sense the skin indentations which react to the
object edge and surface curvature. To achieve a successful classification, firstly, a supervised
methods are used to define some simple classes, such as upward inclined, downward inclined,
upward curved, downward curved, edge and flat. In a later progress, an improved skin
indentation methods are proposed to produce a surface condition features, which based on
the surface normal vectors. In this improvement, the features are no longer designed by
manual, a stacked autoencoder is used to extract the features by feeding huge numbers of
samples. A properly designed convolutional neural network(CNN) is used as the back end
network to merge the roughness information and surface condition features, the it predicts
the objects. As a result, the network finally able to achieve 90 percent of accuracy.

In the last part, we trained and applied our final model on two tasks, one is recognition of
emotional facial expression, the other one is an object recognition task.



Table of contents

List of figures ix

List of tables xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aims of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Neural Network and Deep Learning 7
2.1 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Multilayer Neural Network and Back-propagation . . . . . . . . . . . . . . 11
2.3 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Convolution Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Rectified Linear Unit . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 3D Point Cloud Data on Deep Learning 25
3.1 3D Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Point Cloud Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Vision Based PCD . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 An Human-like Vision Analysis . . . . . . . . . . . . . . . . . . . 29



viii Table of contents

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Touch Sensing Based Semi-Supervised Deep Learning 39
4.1 Touch Sensing Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Improved Vibration Firing Map . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Stacked Convolutional Auto-encoder . . . . . . . . . . . . . . . . 44
4.2.2 Long-short Term Memories Unit . . . . . . . . . . . . . . . . . . . 46
4.2.3 Short Term Memories CAE . . . . . . . . . . . . . . . . . . . . . 48

4.3 Skin Indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Surface Condition . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Surface Common Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Applications of Surface Common Features on Deep Learning 65
5.1 Facial Expression Recognition . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 Emotion Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.3 Data Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.4 Recognition Network . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.3 Unsupervised Pre-training Filters . . . . . . . . . . . . . . . . . . 76
5.2.4 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusion 79
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

References 81

Appendix A A Raspberry Pi 3 Powered High Performance Computing for SCFnet 89

Appendix B Object Data 91



List of figures

2.1 Few samples from the MNIST database of handwritten digits; it has a training
set of 60,000 examples, and a test set of 10,000 examples, and the digits have
been size-normalized and centered in a fixed-size image . . . . . . . . . . . 7

2.2 A bio-neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 A simple neuron unit with an input-output relation . . . . . . . . . . . . . . 9
2.4 A sigmoid function with different gain . . . . . . . . . . . . . . . . . . . . 10
2.5 A one output neural network with single hidden layer . . . . . . . . . . . . 11
2.6 A multilayer neural network . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 The back-propagation algorithm . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 A convolutional neural network with two convolutional layers, two pooling

layer, one dense layer, and a softmax estimation layer. . . . . . . . . . . . . 16
2.9 Convolutional operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Cross convolutional operation . . . . . . . . . . . . . . . . . . . . . . . . 18
2.11 Deep inside of a trained CNN . . . . . . . . . . . . . . . . . . . . . . . . 19
2.12 A rectified linear unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.13 The structure of autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.14 The visualized weights of an autoencoder: (a) after 2000 samples; (b) after

20k samples; (c) after 30k samples; and (d) after 60k samples . . . . . . . . 22
2.15 The samples of input and the reconstruction output of the MNIST data. . . 24

3.1 An illustration of the depth stream values. . . . . . . . . . . . . . . . . . . 25
3.2 An illustration of the point cloud data. . . . . . . . . . . . . . . . . . . . . 26
3.3 The concept vision of a curvature and a flat plane with edge . . . . . . . . . 28
3.4 The visual-based transform methods of PCD; (a) is the original point cloud

data with three different noise levels; (b) is the depth map transfer method;
and (c) is normal vector colorized transform method. . . . . . . . . . . . . 28

3.5 A concept of human vision field . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 CAD model based recognition system . . . . . . . . . . . . . . . . . . . . 29



x List of figures

3.7 The object of CAD models . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Omni-directional projection . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9 A tea cup shape projection from PCD . . . . . . . . . . . . . . . . . . . . 32
3.10 The 2D projection of a curvature and a flat plane with edge . . . . . . . . . 32
3.11 The concept vision of a curvature and a flat plane with edge . . . . . . . . . 32
3.12 Some samples of selected objects. . . . . . . . . . . . . . . . . . . . . . . 33
3.13 HMM with a belief chain where black line represents the state transition; the

blue line represents the output probabilities from observations, which are the
small black circle; and the red line is the trust value from the belief chain. . 35

3.14 The result with and without surface condition on 100 dataset. . . . . . . . 36

4.1 Schematic illustration of integrating different sensors with memory devices
for the mimicry of human sensory memory. . . . . . . . . . . . . . . . . . 39

4.2 A single action potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 The firing rate response to the pressure level . . . . . . . . . . . . . . . . 41
4.4 A typical touch sensor neuron connecting via synapses . . . . . . . . . . . 41
4.5 The generalized linear model of a neuron . . . . . . . . . . . . . . . . . . 43
4.6 Binary conversion of PCD to neuron spikes . . . . . . . . . . . . . . . . . 44
4.7 Training structure of the autoencoder . . . . . . . . . . . . . . . . . . . . . 45
4.8 Full structure of an LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.9 A variant model of an LSTM . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.10 Illustrated detail of a short-term memorise unit . . . . . . . . . . . . . . . 50
4.11 Full structure of our model . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.12 The unfold structure of the sMCAE. . . . . . . . . . . . . . . . . . . . . . 52
4.13 Visualized maps of hidden layers: (a) denotes the visualized maps of first

hidden layer’s 100 kernels and (b) is the visualized maps of second hidden
layer’s 9 kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.14 The firing maps obtained from PCD . . . . . . . . . . . . . . . . . . . . . 55
4.15 The definition of main planes . . . . . . . . . . . . . . . . . . . . . . . . 56
4.16 Overview of the experiential environment: (a) CAD model of Triangular; (b)

CAD model of Half quoter cylinder; (c) CAD model of Trapezoidal prism;
(d) Depth data of the Trapezoidal prism; (e) Depth data of the Half quoter
cylinder; and (f) Depth data of the Triangular . . . . . . . . . . . . . . . . 56

4.17 Processing chart of point cloud data . . . . . . . . . . . . . . . . . . . . . 57
4.18 The concept of surface-common-feature . . . . . . . . . . . . . . . . . . . 58
4.19 Direction cosines of a normal vectors . . . . . . . . . . . . . . . . . . . . 58
4.20 Assumed skin indentation of half quoter cylinder in X-Z views . . . . . . . 60



List of figures xi

4.21 (a) Input data from trapezoidal prism; (b) Input data from triangular prism;
(c) Input data from half quoter cylinder . . . . . . . . . . . . . . . . . . . . 60

4.22 The improved surface condition . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 A modified valence-arousal space . . . . . . . . . . . . . . . . . . . . . . 66
5.2 The referred database: (a) Cohn-Kanade AU-coded facial expression database

and (b) our six major emotional facial expressions, where they were captured
in 230 frames from 30 actors. . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 The definition of six facial parts . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 The front-end convert DL structure . . . . . . . . . . . . . . . . . . . . . . 69
5.5 The few results from the front-end network. Each emotion are shown with

one RGB image (on the left) and one SCF map (on the right). . . . . . . . . 70
5.6 Some results from the front-end network. . . . . . . . . . . . . . . . . . . 70
5.7 The back-end concolutional neural network . . . . . . . . . . . . . . . . . 71
5.8 A confusion map sample of left eye (left), and the confusion map of final

prediction relied on the full facial parts (right) . . . . . . . . . . . . . . . . 72
5.9 The training and testing loss . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.10 The training and testing accuracy . . . . . . . . . . . . . . . . . . . . . . . 73
5.11 Some samples from RGB-Depth trainning dataset . . . . . . . . . . . . . . 74
5.12 Training result of SCFnet with RGB-D object dataset . . . . . . . . . . . . 75
5.13 The referred model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.14 Our modified model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.15 The trained out filters of sMCAE. . . . . . . . . . . . . . . . . . . . . . . 76
5.16 The pre-trained filters of back-end CNN: i.e., the first convolution layer filters. 76
5.17 The pre-trained filters of back-end CNN: i.e., the second convolution layer

filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.18 The object detection task: where the woodblock and toy are not included in

the training database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.1 The Raspberry Pi based high performance computing cluster . . . . . . . . 90
A.2 Assembled HPC, and some of the components: number 1 is the Kinect

device; number 2 is two fans; number 3 is the master node; number 4 is the
80W power supply; and number 5 is the worker cluster. . . . . . . . . . . 90

B.1 Illustrated detail of our model . . . . . . . . . . . . . . . . . . . . . . . . . 92





List of tables

2.1 The recorded accuracy on the MNIST data and the produced accuracy of our
neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 The specified structure of autoencoder . . . . . . . . . . . . . . . . . . . . 23

4.1 The specified structure of a sCAE, where the numbers in output shape
represent width, height and depth of output layer . . . . . . . . . . . . . . 48

4.2 Parameters for the captured data . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Encoded labels based on VAS, where for each arousal or valence, the left
denotes the high level flag; middle the neutral level flag; and right the low
level flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 The specified structure of convolutional autoencoder (CAE) . . . . . . . . . 69
5.3 Comparison of our SCFnet to multiple related approaches. . . . . . . . . . 74

A.1 The required items for a Beowolf cluster system . . . . . . . . . . . . . . . 89





Chapter 1

Introduction

1.1 Background

The earlier research of 3D object recognition is mostly based on the model-based algorithm[1–
4]. In these research, the point-related feature extraction methods such as Scale-Invariant
Feature Transform (SIFT), Histograms of Oriented Gradients (HOG) and Kd-tree, are used
to produce the key points from point cloud data (PCD), then these key points are used to
match the database, to find the most "likelihood" objects. However, these methods can only
be used to recognize the objects whose key features have already been manually included
in the model database. Thus, it cannot be applied universally. In order to use the advantage
of PCD, whic is able to describe the full geometrical information of the objects. Therefore,
many previous researchers have extensivly studied the PCD in neural network (NN) [73, 74],
but eventually they reverted back to 2D image processing, which will lose most parts of the
information of an object.

On the other hand, in the past few years, the popularity of Deep Learning (DL) has
rapidly increased in many fields, leading these fields to qualitative leap, especially in the
computer vision. With increasing of computational abilities of computer, and developing of
various techniques, the DL becomes more powerful, as found from its ability even beyond the
human capacity in some fields, e.g., Google DeepMind (Alpha Go) and Microsoft ImageNet.
The DL is a concept, and a class of some modified neural networks. The DL includes two
main regions: one is based on the multilayer neural network, and the other is related to
restricted Boltzmann machine. DL attempts to model advanced abstractions from complex
data. The difference between a deep neural network (NN) and the DL is that the former
attempts to convert a complex nonlinear problem into many simple nonlinear problems
by only increasing the hidden layers, where as the latter has a deep structure, but with
multiple other techniques, i.e., convolution, dropout, pooling and recurrent. By changing the



2 Introduction

connection structure, adding convolution layers, processing the pooling operation, dropping
out some random nodes and pre-training the parameters, a well-designed DL can avoid
various problems which the DNN has conventionally, i.e., gradient vanishing and over-fitting.
The other main advantage of DL is that the feature engineering is not required anymore, so
that the DL can solve any complex problems in very high dimensional weight space.

1.2 Aims of The Thesis

This research is aimed at combining the advatages of DL and PCD to build a generalized
object recognition method. It is based on the common geometrical features of objects, such as
the surface curvatures and the surface roughness. In order to achieve this goal, an improved
DL structure is proposed by applying a theory of human touch sensing, in which can be
transfered the point cloud data in two ways, i.e., the surface roughness and the surface
curvatures. Then a general convolutional neural network is used as the final layer to combine
these two features. This DL structure is able to achieve a high accuracy in both object
recognition and emotional facial expression recognition.

1.3 Contributions

In this thesis, we have three main contributions.

• A Hidden Markov Model based object recognition system by using object’s shape
information and surface curvature of the object is proposed. Some basic surface
curvatures are defined by calculating the vectors between two presented points. An
additional Hidden Markov chain is used as the belief network which is based on the
surface curvature information to increase the prediction accuracy of the main Hidden
Markov chain . This method produces nearly 70 percent of accuracy. The most
advantage in this method is that a new feature concept, i.e., a surface curvature, is
introduced.

• A DL structure which is able to present the PCD as a brain firing map is proposed.
This DL included two main networks as a full front-end network. Corresponding to
the two different neuron cells under the human skin, this front-end network includes
two NNs: one is a stacked memories convolutional autoencoder (sMCAE), which is
designed to simulate the vibration neurons to convert a PCD to the surface roughness
by using a new network model, i.e. a short memory network, and the other uses surface
normal vectors to convert a PCD to the skin indentation, which reacts to the object



1.4 Thesis Structure 3

edge and the surface curvature. A semi-supervised method with the definition of some
simple classes is used to pre-train the network. The definitions include upward inclined,
downward inclined, upward curved, downward curved, edge and flat. As a back-end
network, a properly designed convolutional neural network (CNN) is used to merge
the roughness information and the surface condition information, and classify some
objects. This network is able to achieve 90 percent of accuracy.

• In emotional facial expression recognition task and object recognition task, the surface
common features are designed and trained on this surface common feature based
network (SCFnet). An unsupervised learning method is applied, in which there are
300 common features on 3000 objects. By using these pre-trained filters, this SCFnet
achieves 97 percent of accuracy. A comparison of our model with other related DL
models is also held on and object recognition task.

1.4 Thesis Structure

This thesis includes six chapters.

• In chapter 2, we review the reasons for restatement of neural network based models,
define the most basic from a perceptron, and explained a well-designed DL can avoid
some problems that DNN faced in previously, such as vanishing problems of gradient
and over-fitting problems, etc.

• In chapter 3, a vision-based HMM for PCD is proposed to achieve an object recognition
task.

• In chapter 4, a neurological theory of human touch sensing is studied and applied.
Then, two deep learning structures as the front end convert network are proposed to
obtain the vibration features and the surface condition from the PCD.

• In chapter 5, we apply and test our full DL structure in two tasks, i.e., an object
recognition and a recognition of emotional facial expressions task.

• In the last chapter, we conclude this full work.

1.5 Publications

This thesis is written upon the following publications.



4 Introduction

Journals

1. Maierdan Maimaitimin, Keigo Watanabe and Shoichi Maeyama, "Object Recognition
Using a Human-like Vision Analysis System," International Journal on Smart Material
and Mechatronics, Vol. 3, No. 1, pp. 140–145 (Jan, 2016).

2. Maierdan Maimaitimin, Keigo Watanabe and Shoichi Maeyama, "An Emotional Recog-
nition System for Facial Expression with Surface Common Features," International
Journal on Smart Material and Mechatronics, vol. 4, No. 1, pp. 192–198 (Dec. 2016).

3. Maierdan Maimaitimin, Keigo Watanabe and Shoichi Maeyama, "Stacked Convo-
lutional Auto-encoders for Surface Recognition based on 3D Point Cloud Data,"
International Journal on Artificial Life and Robotics, (Accepted: 29, Dec. 2016).

Conferences

1. Maierdan Maimaitimin, Keigo Watanabe and Shoichi Maeyama, "Surface-common-
feature Descriptor of Point Cloud Data for Deep Learning," in Proceedings of the
2016 IEEE International Conference on Mechatronics and Automation, pp. 525–529,
Harbin, China (2016).

2. Yu Lang, Maierdan Maimaitimin and Keigo Watanabe, "Design and Implementation
of HMM for 3D Emotion Recognition," in Proceeding of International Conference on
Smart Material and Mechatronics,, pp. 34–37, Makassar, Indonesia (2016).

3. Maierdan Maimaitimin, Keigo Watanabe and Shoichi Maeyama, "Multi-criteria based
Facial Expression Recognition by Using Deep Learning," in Proceedings of the 17th
SICE System Integration Division Annual Conference, pp. 140–144, Hokkaido, Japan
(2016).

4. Maierdan Maimaitimin, Yu Lang and Keigo Watanabe, "The Application of Deep
Learning on 3D Point Cloud Data," in Proceedings of Symposium on Fuzzy, Artificial
Intelligence, Neural Networks and Computational Intelligence, Osaka, Japan (2016).

5. Maierdan Maimaitimin, Keigo Watanabe and Shoichi Maeyama, "An Application
of ANNs to Human Action Recognition Based on Limbs’ Data," in Proceedings of
the Twentieth International Symposium on Artificial Life and Robotics, pp. 543–546,
Beppu, Japan (2015).



1.5 Publications 5

6. Maierdan Maimaitimin, Keigo Watanabe and Shoichi Maeyama, "Human Action
Recognition Based on the Angle Data of Limbs," in Proceeding of Joint 7th Interna-
tional Conference on Soft Computing and Intelligent Systems and 15th International
Symposium on Advanced Intelligent Systems (SCIS-ISIS), pp. 140–144, Kitakyushu,
Japan (2014).

7. Maierdan Maimaitimin, Keigo Watanabe and Shoichi Maeyama, "Estimation of Hu-
man Behaviors Based on Human Actions Using an ANN," in Proceedings of 14th
International Conference on Control, Automation and System, pp. 94–98 , Korea
(2014).





Chapter 2

Neural Network and Deep Learning

In this chapter, reasons for the restatement of neural network based models are reviewed,
i.e., it starts from the definition of the most basic neuron to the explanations of how deep
learning methods perform better than ordinary neural network. Simply, By going through the
single perceptron, multilayer neural network, convolution neural network and autoencoder,
the DL is discussed. This chapter is ended with a short comparison of recognition results in
handwriting digits, and the Fig. 2.1 shows the sample of Mixed National Institute of Standards
and Technology (MNIST) dataset. However, before we discuss the concept of neural network,

Fig. 2.1 Few samples from the MNIST database of handwritten digits; it has a training set of
60,000 examples, and a test set of 10,000 examples, and the digits have been size-normalized
and centered in a fixed-size image

as well, a brief introduction of neurons takes place at the beginning. Secondly, after the
simple discussions of perceptions, multilayer Neural Network (NN) is described. It is a most
typical supervised learning algorithm and widely used until a decade ago. Depending on
the type of the output unit, this model also can be used for the purpose of classification or
regression. At the third section, the improved multilayer neural network, i.e., a Convolutional
Neural Network (CNN) is described. CNN is specialized in pattern recognition tasks. It is
well-known for robustness to small inputs variations, minimal pre–processing and does not



8 Neural Network and Deep Learning

require any specific feature extractor choice. By discussing CNN structure, a clean view on
the concept of deep learning is shown. An unsupervised learning algorithm, i.e., autoencoder,
also is discussed. In the finally section, a conclusion about the neural network and deep
learning is discussed in an example of MNIST dataset.

2.1 Neural Network

To know deep learning, understanding a neural network is the best way. Recently, deep
learning becomes a whole new subject, but eventually the deep learning is still a type of
neural network which is based on a bio-neural network structure.

2.1.1 Neuron

Fig. 2.2 A bio-neuron

In this section, a basic introduction of neural network is described. As the elementary
building blocks of the brain and the rest of the nervous system[5, 6], it is very simple. There
are several types of neurons in the human brain. A typical neuron is illustrated in Fig. 2.2
with nucleus and all the dendrites. The dendrites are the input to the system while the output
can be transferred to the synapses via axon, and synapses are the junctions to other neurons.
Roughly speaking there are lots of neurons in human brain, around 100 billion each of which
is connected to the average 7000 neurons [7–9]. The received information in a specific
neuron (unit), from many different sources (inputs), is integrated into a single real number.
This real number is used to show the determination from the input signal to the specialized
correspondings. After this evaluation, the neuron outputs something that illustrates the results.
This is the famous integrate-and-fire model of neural function [10–13].

The neurons are non-deterministic, and they only emit spikes depending on their active-
ness, so even with the same input, the output at the other end is random to some extent.
The sure thing is that the more there are inputs which excite a neuron, the more spikes are
generated per second.



2.1 Neural Network 9

Fig. 2.3 A simple neuron unit with an input-output relation

In NNs [14, 15], the information processing is performed in two stages: one is a linear
addition like what mentioned before for natural neurons, and the other is a nonlinear function,
which produces the actual output of the unit (neuron), as shown in Fig. 2.3, which is described
by

y = f (b+∑
i

xiwi) (2.1)

where b is the bias, xi is the ith input to the neuron, wi is the weight of the ith input, f (·) is
the nonlinear function, and y is the output.

2.1.2 Activation Function

The activation function is denoted as a determination method for the output of the neuron,
where its input is the product of the neuron’s input and weight. There are various kinds of
activation functions depending on the network structure and problem setting.

Step function

To discuss the improvement of other activate functions, we need to start from the most basic
function, the step function. Below, u refers in all cases to the weighted sum of all the inputs
to the neuron, i.e. for n inputs,

u =
n

∑
i=1

xiwi (2.2)



10 Neural Network and Deep Learning

The output y of this activation function is binary, depending on whether the input meets
a specified threshold, θ . The "signal" is sent, i.e. the output is set to one, if the activation
meets the threshold, as described by

y =

1, if u >= θ ,

0, otherwise
(2.3)

Sigmoid function

Fig. 2.4 A sigmoid function with different gain

Sigmoid function is a commonly used simple logistic function:

g(x) =
1

1+ e−kx (2.4)

where the k is the gain parameter of sigmoid function. The sigmoid function is most attractive
as an activation function, because of its monotonicity and simple form, as shown in Fig. 2.4.
The activation derivative of sigmoid function with respect to x is obtained by

g′(x) = g(x)[1−g(x)] · k (2.5)

which means g(x) is increasing monotonously. Also because of its lower derivatives, this
activation function is desirable for learning algorithms, such as back-propagation method.



2.2 Multilayer Neural Network and Back-propagation 11

2.2 Multilayer Neural Network and Back-propagation

There are two types of largely classified neural network: a recurrent network and a feed
forward network. In this section we focus on the feed forward NN. The feed forward NN has
a hierarchical structure consisting of some layers without interconnections between neurons
in each layer, and of signals flow from the input-layer to the output-layer in one direction.

Fig. 2.5 A one output neural network with single hidden layer

Network Formulation

By going through the formulation of a typical MNN, which is shown in Fig. 2.5, it is easy to
explain the network content. The circles labeled b are called bias units, and correspond to the
intercept term. The leftmost layer of the network is called the input layer, and the rightmost
layer the output layer (which, in this example, has only three nodes). The middle layer
composed of some nodes is called the hidden layer, because their values are not observed in
the training set.

As shown in Fig. 2.5, in our neural network example has three input units (not counting
the bias unit), three hidden units in only one hidden layer, and one output unit. As a generic
definition, nt is denoted to the number of layers in our network, thus n1 = 3 in this network.
The layer i is labeled as Li, so that the layer L1 is the input layer, and Ln is our output layer.
The parameters (W,b) = (W (1),b(1),W (2),b(2)), where W (l)

i j are denoted to the parameter or
weight, associated with the connection between the unit j in the layer l, and the unit i in the
layer l +1. Also b(l+1)

(i) is the bias associated with the unit i in the layer l +1. Thus, in this

case, we have W (1) ∈ ℜ3×3 and W (2) ∈ ℜ3×1. Note that the bias b units don’t have any inputs



12 Neural Network and Deep Learning

or connections going into them, because they always output the value +1. sl denotes the
number of nodes in the layer l. The a(l)i is signed to denote the activation of unit i in the layer
l. For l = 1, also a(l)i = xi is denoted to the i-th input. Give a fixed setting of parameters W,b,
this neural network defines a hypothesis hW,b(x) that outputs a real number. Specifically, the
computation related to what this neural network represents is given by:

a(2)1 = f (W (1)
11 x1 +W (1)

12 x2 +W (1)
13 x3 +b(2)1 ) (2.6)

a(2)2 = f (W (1)
21 x1 +W (1)

22 x2 +W (1)
23 x3 +b(2)2 ) (2.7)

a(2)3 = f (W (1)
31 x1 +W (1)

32 x2 +W (1)
33 x3 +b(2)3 ) (2.8)

hW,b(x) = a(3)1 = f (W (2)
11 a(2)1 +W (2)

12 a(2)2 +W (2)
13 a(2)3 +b(3)1 ) (2.9)

Now, let z(l)i denote the total weighted sum of inputs to the unit i in the layer l, including the
bias term, e.g., z(2)i = ∑

n
j=1W (1)

i j x j +b(2)i , so that a(l)i = f (z(l)i ).
Note that this easily lends itself to a more compact notation. Once the activation func-

tion f () is extended to be applied to vectors in an element-wise way, i.e., f ([z1,z2,z3]) =

[ f (z1), f (z2), f (z3)], then the computation is replaced as:

z(2) =W (1)x+b(2) (2.10)

a(2) = f (z(3)) (2.11)

z(3) =W (2)a(2)+b(3) (2.12)

hW,b(x) = a(3) = f (z(3)) (2.13)

More generally, we use a(1) = x to denote the values from the input layer, then given the
layer l’s activations a(l), the layer l +1’s activations a(l+1) can be computed as:

z(l+1) =W (l)a(l)+b(l+1) (2.14)

a(l+1) = f (z(l+1)) (2.15)

By organizing these parameters in matrices and using matrix-vector operations, we can take
an advantage of fast linear algebra routines to quickly perform calculations in a network.
So far, we focus on the specified neural network structure. In other words, these equations
theoretically show us, that a well designed neural network can solve a complex linear
regression or a difficult classification task by increasing the number of hidden layers and
output units. For example, Fig. 2.6 shows a multilayer NN, which is capable of classifying



2.2 Multilayer Neural Network and Back-propagation 13

Fig. 2.6 A multilayer neural network

at least three different data (using one-hot encoder), or dealing with a multidimensional
regression problem. It works very well at the beginning until the problem becomes more and
more complex, but it is discussed later.

Back-propagation Algorithm

Fig. 2.7 The back-propagation algorithm

The goal of a back-propagation is to update each of the weights in the network so that
they cause the actual output to be closer the target output, thereby minimizing the error
for each output neuron in the network as a whole. To train a network as in Fig. 2.6, we
need to train examples (x(i),ytarget |i ∈ m), where ytarget ∈ ℜ3 and m is the number of training



14 Neural Network and Deep Learning

examples. For a single training example, i.e., (x,ytarget), the cost function is defined as:

Etotal = J(W,b;x,ytarget) = ∑
1
2

∥∥hW,b(x)− ytarget
∥∥2 (2.16)

The J(W,b) is an average sum of squared error term. To start the back-propagation, we note
some more labels on Fig. 2.7. First, let us consider one single weight w′

i j which is connected
from the first neuron of the last hidden layer to the first neuron on the output layer. The
partial derivative of Etotal with respect to W ′

i j can be extended by chain rule:

∂Etotal

∂W ′i j
=

∂Etotal

∂a j
×

∂a j

∂ z j
×

∂ z j

∂W ′i j
(2.17)

The derivative of Etotal with respect to a j is:

∂Etotal

∂a j
= y j − ytarger j (2.18)

and the derivative of the logistic function f with respect to its input u is f (u)(1− f (u)), so
that,

∂a j

∂ z j
= a j(1−a j) (2.19)

where a j = f (z j). Next, the derivative of z j = ∑
N
i=1 w′

i jhi are calculated with respect to
a particular w′

i j which is simply hi. Thus, after making the appropriate subsitutions, it
becomes:

∂E
∂w′i j

= (y j − ytarger j) · y j(1− y j) ·hi (2.20)

With this gradient, the update equation for w
′
i j can be constructed as:

w′
i j,new = w′

i j,old −η · (y j − ytarger j) · y j(1− y j) ·hi (2.21)

The gradient of the objective function with respect to the input-to-hidden weights are denoted
as wki. This gradient has already been partially computed when the previous gradient was
computed. Therefore, the full gradient is

∂E
∂wki

=
M

∑
j=1

(
∂E
∂y j

·
∂y j

∂u′j
·

∂u′j
∂hi

) · ∂hi

∂ui
· ∂ui

∂wki
(2.22)

The sum is due to the fact that the hidden unit to which wki connects is itself connected to
every output unit, thus each of these gradients needs to be taken into account as well. Both



2.3 Convolutional Neural Network 15

∂E
∂y j

and ∂y j
∂u′j

have already been computed, so that, it results:

∂E
∂y j

·
∂y j

∂u′j
= (y j − ytarger j) · y j(1− y j) (2.23)

Then the remaining derivatives
∂u′j
∂hi

, ∂hi
∂ui

, and ∂ui
∂wki

are required to be obtained, i.e.,

∂u′j
∂hi

=
∂ ∑

N
i=1 w′

i jhi

∂hi
= w′

i j (2.24)

and again using the derivative of the logistic function

∂hi

∂ui
= hi(1−hi) (2.25)

and finally
∂ui

∂wki
=

∂ ∑
K
k=1 wkixk

∂wki
= xk (2.26)

After making the appropriate substitutions, we can arrive at the gradient

∂E
∂wki

=
M

∑
j=1

[(y j − ytarger j) · y j(1− y j) ·w′
i j] ·hi(1−hi) · xk (2.27)

Thus, the update equation becomes

wnew
ki = wold

ki −η ·
M

∑
j=1

[(y j − ytarger j) · y j(1− y j) ·w′
i j] ·hi(1−hi) · xk (2.28)

2.3 Convolutional Neural Network

In the previous two sections, the basic neural network and the learning algorithm were
discussed. These are the most important and kernel objects to any NN structure. With the
increase of computational power and the different purposes, the NN architecture has been
developed in many different ways, and the Convolutional Neural Network (CNN) [31, 18, 23]
is the most famous and effective one.

A CNN is very similar to the ordinary NNs from the previous section: they are made up
of neurons that are able to learn the weights and biases. Each neuron receives some inputs,
performs a dot product and optionally follows it with a nonlinearity. The whole network
still expresses a single differentiable score function, which is from the raw input on one



16 Neural Network and Deep Learning

Fig. 2.8 A convolutional neural network with two convolutional layers, two pooling layer,
one dense layer, and a softmax estimation layer.

end to class scores at the other. And they still have a loss function (e.g. Softmax) on the
last (fully-connected) layer and all the techniques used for learning the regular NN are still
applied. To explain the function of CNN, a typical CNN which includes two convolution
layers, two pooling layers, and one dense layer is designed as shown in Fig. 2.8, where a
black node represents an activated node; a black node with a red shape outline indicates that
the current operation contains a valuable node; a red outline node with blank fill represents
the deactivated node; and a red node represents the output of pooling operation which is the
output of the purple nodes. As this example, in more detail:

• The input layer in the leftmost will hold the raw input values, and the source data are
16×16 matrix in this case.

• The convolution layer will compute the output of neurons that are connected to local
regions in the input, each convolution computing is a dot product between their weights
and a small region that is connected to in the input volume. This may result in volume
such as [14×14×2] if there are two filters.

• The pooling layer will perform a down-sampling operation along the spatial dimensions,
which are the width and height, resulting in volume such as [10×10×2].

• The fully-connected layer will compute the class, resulting in volume of size [1×1×10],
where each of the 10 numbers correspond to a class.



2.3 Convolutional Neural Network 17

However, there is a specialized layer, i.e., cross convolution layer, which is shown as the
second convolution layer in the figure. In cross convolution, the CNN is able to combine the
depth of feature maps. Note that some layers contain parameters, such as the convolution
layer and the full-connected layer perform transformations that are a function of not only
the activations in the input volume, but also of the parameters. On the other hand, the
pooling layers implements a fixed function. The parameters in the convolution layers and the
full-connected layers could be trained with gradient descent using or not using pre-training
methods. To be more specific, each layer is described in more details.

2.3.1 Convolution Layer

The parameters of convolution layer are related to a set of learn able filters. Every filter is
small spatially, along a width and a height, but extends through the full depth of the input
volume. For example, as shown in Fig. 2.9, a typical filter on a first layer of a CNN might
have the size [3×3×3], where the first and second “3" represents the width and height, and
the last one represents the depth of filters (i.e. RGB channel). During the forward pass, each
filter is convolved over the input volume and dot productions between the entries of the filters
and whole inputs are computed.

Fig. 2.9 Convolutional operation

At the second convolutional layer, there is a slight difference. In the previous convo-
lutional layer, it produced three different feature maps based on the three different filters.
However, these three feature maps also have a neurological connection, we couldn’t just con-
sider them independently. The cross convolutional layer computes dot productions between
the entries of the filters and three inputs from the previous feature maps.

With the difference of input, the CNNs can be 2D, 3D or even more dimensional, but
what the convolutional layer does is not so much different. The convolutional layer is the



18 Neural Network and Deep Learning

Fig. 2.10 Cross convolutional operation

core building block of a convolutional network that performs most of the computational
heavy lifting. In a CNN, a convolution operation is used to extract features from a local
neighborhood on the feature maps in the previous layer or inputs. The procedures after the
convolutional layer are exactly the same as an ordinary neural network, i.e., the convolutional
result is passed with a bias input to the activate function, such as a sigmoid function. Formally,
the value of a unit at the position (x,y) in the jth feature map in the ith layer, denoted as zxy

i j ,
is given by

zxy
i j = Sigm

(
bi j +∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

wpq
i jmz(x+p)(y+q)

(i−1)m

)
(2.29)

where the Sigm is the log-sigmoid function, bi j is the bias for the feature map, m is an index
over the set of feature maps in the (i−1)th layer connected to the current feature map, zxy

i j is
the value at the position (p,q) of the kernel connected to the kth feature map, and Qi and Pi

are the height and width of the kernel, respectively.
To summarize a convolutional layer, it follows that

• Accept a volume of size W1 ×H1 ×D1

• Require four hyperparameters:

number of filters K,



2.3 Convolutional Neural Network 19

their spatial extent F , and

the stride S.

• Produce a volume of size W2 ×H2 ×D2, where

W2 = (W1 −F)/S+1,

H2 = (H1 −F)/S+1, and

D2 = K.

• With parameter sharing, it introduces F ·F ·D1 weights per filter, for a total of (F ·F ·
D1) ·K weights and K biases.

• In the output volume, the dth depth slice is the result of performing a valid convolution
of the dth filter over the input volume with a stride of S, and then offset by dth bias.

2.3.2 Pooling Layer

Fig. 2.11 Deep inside of a trained CNN

It is common to periodically insert a pooling layer in-between successive convolutional
layers in a convolutional network architecture. Its function is to progressively reduce the
spatial size of the representation to reduce the amount of parameters and computations in the
network, and hence to also control overfitting. There are several types of pooling operations,
such as max pooling and average pooling. The max pooling operation is to take a max value
over all input values, where as the average pooling is to take the average value over the input
values. The depth of the input remains unchanged.
To summarize the pooling layer, it results in

• Accept a volume of size W1 ×H1 ×D1



20 Neural Network and Deep Learning

• Require four hyperparameters:

their spatial extent F and

the stride S.

• Produce a volume of size W2 ×H2 ×D2, where

W2 = (W1 −F)/S+1,

H2 = (H1 −F)/S+1, and

D2 = D1.

• Introduce zero parameters because it computes a fixed function of the input.

As shown in Fig. 2.11, after a convolution layer, the input values are turned into a feature
map, and the average pooling layer reduces the size of the feature map, and with another
convolution layer, the complex inputs are finally turned into a 28×28 feature map, which is
a light level feature collection.

2.3.3 Rectified Linear Unit

In the previous section, the log-sigmoid function was mentioned many times, which works
very well unless the network structure is getting more and more deep and complex. In a
complex NN structure, the gradient descent (GD) does not work as expected, and one of the
accepted reason is as follows: once the values reach the log-sigmoid left bottom or right
top of the function, the slope is nearly reduced to zero, so that it makes GD not effective
anymore. To solve the problem, some researchers proposed a rectified linear unit (ReLu)
function [16].

As shown in Fig. 2.12, the ReLU is defined by

f (z) = log(1+ exp(z))∼= max(0,z) (2.30)

where
z = xiwi +b (2.31)

There is a very major benefit of ReLU function. It is the reduced likelihood of gradient to
vanish when z > 0, which means the gradient in this region has a constant value. In contrast,
the gradient of sigmoids becomes increasingly small as the absolute value of x increases,
which leads to that the gradient of ReLU results in faster learning.



2.4 Autoencoder 21

Fig. 2.12 A rectified linear unit

2.4 Autoencoder

Fig. 2.13 The structure of autoencoder

An autoencoder [32, 19, 33, 22] is an unsupervised learning algorithm, which means it
takes an input {xi}n

i=1 and first maps it with an encoder to a hidden representation {yi}n
i=1

through a deterministic mapping, that is,

y = s(ωx+b) (2.32)

where s is a nonlinear activation function such as the sigmoid function. As shown in Fig.
2.13, the latent representation yiis mapped back with a decoder into a reconstruction z of the
same shape as x. The mapping happens through a similar transformation, e.g.:

z = s(ω ′y+b′) (2.33)



22 Neural Network and Deep Learning

The weight matrix ω ′ of the reverse mapping may be constrained to be the transpose
of the forward mapping as ωT = ω ′ . This is referred to as tied weights. The parameters
ω ′ and b are optimized such that the average reconstruction error is minimized. And the
reconstruction error can be measured in the following function:

LH(x,z) =−
n

∑
i=1

[xi logzi +(1− xi) log(1− zi)] (2.34)

where the d denotes the number of inputs.

2.5 An Example

Fig. 2.14 The visualized weights of an autoencoder: (a) after 2000 samples; (b) after 20k
samples; (c) after 30k samples; and (d) after 60k samples

The MNIST dataset is applied in a pre-tained Cross-CNN to classify the hand-writing
digits. It is a simple and clear classification task. By visualizing the training result and the
other parameters, the main adventures of a CNN can be reviewed. Table 2.1 shows the world



2.6 Summary 23

accuracy record on the MNIST dataset, and our two simple models, i.e., the Coross-CNN
and an autoencoder, are used to compare the results. The autoencoder itself, whose structure
is shown in Table 2.2, does not show a good result for this task, but the Cross-CNN model
produces an impressive result by using the autoencoder as a pre-training method. We trained a

Table 2.1 The recorded accuracy on the MNIST data and the produced accuracy of our neural
network

Name Year Error
DropConect NN 2013 0.0021
McDNN 2015 0.0023
Maxout Network 2013 0.0045
Deep CNN 2015 0.0046
CNN 2003 0.0119
*Cross-CNN 0.0032
*Autoencoder 0.17

* denotes our model

simple autoencoder to visulize the weights, which are shown in Fig. 2.14. The reconstruction
on the testing data are shown in Fig. 2.15.

Table 2.2 The specified structure of autoencoder

Layer Output Shape
Width, Height, Depth

Parameters Connection

Input 28, 28, 1 0
FC 1 1, 1, 50 50×784+50=39250 Input Layer
FC 2 1, 1, 50 50×50+50=2550 FC 1
FC 3 1, 1, 25 25×50+25=1275 FC 2
FC 4 1, 1, 50 25×50+50=1300 FC 3
FC 5 1, 1, 50 50×50+50=2550 FC 4
FC 6 1, 1, 784 784×50+784=39984 FC 5

2.6 Summary

In this chapter, as a prerequisite for understanding the deep learning, the neural networks
was discussed. Due to the inclusion of some new algorithms, such as ReLu, convolution and
pooling, as well as independent expert filters, that, a deep structured NN, i.e., DL, can learn
very complex features from input data. As a comprehension example, we used the MNIST
dataset to test two models, i.e., an AE and a Cross-CNN.



24 Neural Network and Deep Learning

Fig. 2.15 The samples of input and the reconstruction output of the MNIST data.



Chapter 3

3D Point Cloud Data on Deep Learning

In the previous chapter, some models in the frame of both Neural Network (NN) and Deep
Learning (DL), which were most related in our research, were discussed. Up to now, there
are more than 100 network models, and the number is updated daily. All these networks are
developed according to the different data structure. To design a reasonable DL structure with
point cloud data (PCD), the understanding of 3D point cloud is very important. This chapter
presents the 3D PCD that are going to be studied in vision-based methods.

3.1 3D Sensors

Fig. 3.1 An illustration of the depth stream values.

Understanding the sensor structure and its capability are important, because the data
definitions and the devices are directly linked. In this section, the Microsoft Kniect sensor
is introduced. The Kinect sensor has been developed and patented under a project Natal



26 3D Point Cloud Data on Deep Learning

since 2006 by Microsoft Company. The Kinect device is primarily based on a depth sensing
technology that consists of an Infra–Red (IR) camera and an IR emitter positioned in a certain
distance. Although, it includes many other sensors, such as RGB camera and voice sensor,
the depth sensor is the main topic in this research.

The depth data from the Kinect camera are provided by the depth stream. The depth data
are represented as a frame made up of pixels that contain the distance in millimeters from the
camera plane to the nearest object, as illustrated by Fig. 3.1. The depth frame is available in
different resolutions. The maximum resolution 640×480 pixel is used in this research. The
depth frames are captured in 30 frames per second.

3.2 Point Cloud Data

Fig. 3.2 An illustration of the point cloud data.

Since the PCD is not directly captured by Kinect, it needs to use a conversion between the
depth and PCD. The depth stream in Kinect is represented by the Z values in uniformed (X ,Y )
position. In order to obtain a successful conversion, the focal length (FL) and optical center
(OC) of Kinect need to be mentioned, where the FL is (Fx,Fy) = (262.5,262.5) and OC is
composed of (Cx,Cy) = (159.75,110.75). The following equations represent the conversion



3.2 Point Cloud Data 27

relationship between the depth and PCD,

xi =(ui −Cx)×DiFx

yi =(vi −Cy)×DiFy

zi =Di

(3.1)

where xi, yi and zi are the x, y and z values of the ith point; ui is the x pixel position of the ith
depth point; vi is the y pixel position of the ith depth point; and D represents the depth value.
By converting the full depth stream, the PCD can be obtained.

A point cloud [36] corresponds to a set of data points in a coordinate system. The PCD in
3D coordinate system can represent a set of points with (x,y,z) values. The PCD includes the
geometrical information, which are the shape, surface condition and so on. An information
source like PCD, should be very activated in machine learning field, but the truth is opposite.
It is very difficult to successfully apply the PCD in machine learning algorithm. One of
the reasons for this is that a PCD designates very different features in different reference
coordinates. Thus, the features are not stable for a machine learning. On the other hand,
the 2D images, they can be represented by a unified measurement method, such as RGB
channel, grey level or others. Moreover, each point value in the PCD is very independent,
there is no any logical connection between them. Because of these two reasons, when the
PCD is directly used in a general NN structure, the network can not converge. To examine
this conclusion, a confirmatory experiment is held. Two CNNs with the same architecture
are trained, but one of them is trained on 2D images (MNIST), and the other one is trained
on PCD. The Fig. 3.3 shows the trained result, in which the CNN trained with PCD does not
converge after it reaches 50th epoch.

3.2.1 Vision Based PCD

Intuitively, the PCD is just a set of points in a space, and it is only associated with its reference
space. To apply a PCD in any application, the choice of reference is the most important step,
before considering it in any machine learning algorithm.

To apply the 3D information, some early researchers proposed some transforming meth-
ods, as shown in Fig. 3.4, where the original PCD with three different noise values, the depth
map, and the normal-values color map are presented in Fig. 3.4 (a), (b) and (c), respectively.
The depth map considers the distance between the points and turns it to the grey level images.
The grey images are very good at the distance performance. However, it performs barely
active during the changes of small distance. On the other hand, the normal vector colorized



28 3D Point Cloud Data on Deep Learning

Fig. 3.3 The concept vision of a curvature and a flat plane with edge

Fig. 3.4 The visual-based transform methods of PCD; (a) is the original point cloud data with
three different noise levels; (b) is the depth map transfer method; and (c) is normal vector
colorized transform method.



3.2 Point Cloud Data 29

method is very good at sensing the small changes on the surface, but the data dimension is
increased to six, which makes it difficult in application.

3.2.2 An Human-like Vision Analysis

Fig. 3.5 A concept of human vision field

Fig. 3.6 CAD model based recognition system

As shown in Fig. 3.5, an object is visualized by its shape [38, 40], color, and texts for
human eyes. Therefore, the 2D projections of 3D PCD are obtained to capture the visualized
features. An object recognition system is approached in the study, which is based on the
visualized features of the CAD models, and an HMM is applied as the prediction method,
where the whole concept is shown as Fig. 3.6.



30 3D Point Cloud Data on Deep Learning

Fig. 3.7 The object of CAD models

These CAD models are chosen as database because their true objects are easy to be
accessed in real world, such as soft drink bottle, tea cup, and tea pot, as shown in Fig. 3.7.

Shape generation

To generate the shape configuration, 3D to 2D projection is indeed[40, 44]. Fig. 3.8 shows
the concept of virtual omni-directional projection space. For rotating an object in 3D space,
a basic rotation matrix is applied, which is presented in the following equations:

Rx(θx) =

1 0 0
0 cosθx −sinθx

0 sinθx cosθx

 (3.2)

Ry(θy) =

 cosθy 0 sinθy

0 1 0
−sinθy 0 cosθy

 (3.3)

Rz(θz) =

cosθz −sinθz 0
sinθz cosθz 0

0 0 1

 (3.4)



3.2 Point Cloud Data 31

Fig. 3.8 Omni-directional projection

They can be summarized as R = Rx(α) ·Ry(β ) ·Rz(γ) that depends on the roll angle α , the
pitch angle β , and the yaw angle γ . The reason to consider the omni-direction because of the
projections of a 3D object in different 2D planes have many different shapes. After rotating
the object in each angle, it is projected on a 2D plane to generate the shape. The following
equations show a very general way to project the objects onto 2D plane:

X ′ = {(X −Xc)× (F/Z)}+Xc (3.5)

Y ′ = {(Y −Yc)× (F/Z)}+Yc (3.6)

where the virtual camera is located in (Xc,Yc,Zc)and the 3D point to be projected is denoted
as P = (X ,Y,Z). The distance from the camera to the 2D plane to be projected is F , so that
the equation of the plane is F = Z −Zc. The 2D coordinates of P projected onto the plane
are given by (X ′,Y ′). Since the binary shape images of each angle are obtained, as shown in
Fig. 3.9, the Sobel operator can be used to generate the edge lines of each projection. Also,
the Harris corner detection algorithm is used with a high threshold value to detect a large
angle corner. So far, the shape and edge information of a PCD model is obtained, but the
texts property is necessary information.



32 3D Point Cloud Data on Deep Learning

Fig. 3.9 A tea cup shape projection from PCD

Fig. 3.10 The 2D projection of a curvature and a flat plane with edge

Fig. 3.11 The concept vision of a curvature and a flat plane with edge



3.2 Point Cloud Data 33

Surface analysis

When projecting a point in 3D space onto 2D plane, the curved surface and the inclined
plane have different expression in the 2D plane, as shown in Fig. 3.10 and Fig. 3.11 shows
the extended visualization. There are plenty of points in each small window, as shown in
Fig. 3.11 (a) and (b). The difference between the sizes of two adjacent vectors, is the most
important condition to determine the logical value for every plane which is represented by
different vectors. The feature vector ∆p and ∆θ can be defined as:

• If the ∆p is changing linearly and ∆θ < 90 , then it is a curved surface without a peak,
assigning a value as 1.

• If the ∆p is always 0 and ∆θ < 30, then it is a inclined plane, assigning a value as 2.

• If the ∆p is changing and ∆θ < 90 in different direction, then it is a curved surface
with a peak, assigning a value as 3.

• If there isn’t an available p⃗ or the number of p⃗ is not enough to reflect the changing of
∆p, then assigning as 0.

Matching and prediction

Fig. 3.12 Some samples of selected objects.



34 3D Point Cloud Data on Deep Learning

So far, the feature data of some objects are obtained from both the 3D CAD models
and the real world object, and the real model of objects are shown in Fig. 3.12. For the
experiments, a Hidden Markov Model (HMM) based recognition system is approached, and
k-nearest neighbor (KNN) method is used to produce the clustering results of the features.
The KNN is used to calculate the most nearest matching features in database to the current
detected features. The HMM predicts the current detected object by calculating the most
likelihood sequence of 16 separated windows’ values. In our research, the KNN is not the
main topic but the HMM is one of the key relevant research.

The HMM is a well-known probabilistic model of sequence data. In general definition,
there are some main parameters:

• a set of N states {1, . . . ,N}

• an alphabet of M output symbols, s = {s1, . . . ,sM}

• a set of output probabilities, B = {bi j|1 < i < N,1 < j < s1, . . . ,sM}

• a set of transition probabilities, A = {Ai j|1 < i < N,1 < j < s1, . . . ,sM}

• an initial start probability distribution, π = pi, . . . , pn

where N = 3, i.e., "cup", "teapot", "bottle", Bα is a matrix, which represents the probability
of features such as "None", "corner edge", "curved line" and "line". Bβ represents the
probability of features, i.e., "None", "curvature", "curvature with peek" and "inclined plane".
A is 3× 3 matrix in our case. To calculate B and A, the dataset includes Cup, Teapot and
Bottle, which are generated by using CAD models. The data obtained in three different
situations (upright, lateral and inverted) were generated in 36 angles (every 10 degree in
Y-Axis). All these data are labeled by their feature vector, which includes 32 elements, 16
digits for shape and surface features. There is one major difference between a general HMM
and our specified HMM. In this case, we actually have two feature sets, i.e., the shape feature
is captured from RGB and the surface condition is generated from PCD. These two features
can not be described in same probabilistic distribution because the shape feature and the
surface condition are not relevant at all. So another Markov chain is designed as a belief
chain to associate the main Markov chain, which is shown in Fig. 3.13.

For the detail, these two hidden Markov chains have their own tasks, and they separately
predict the current piece of feature mostly like object "A", but when the belief chain outputs
a prediction as "A" in status Ti, how much trustworthy it is for main chain at Ti moment
is denoted as the trust value ωi to the main chain. In order to calculate the ωi, we need
the sample test data, in which it includes 100 samples in each object. So, the main chain



3.2 Point Cloud Data 35

Fig. 3.13 HMM with a belief chain where black line represents the state transition; the blue
line represents the output probabilities from observations, which are the small black circle;
and the red line is the trust value from the belief chain.

predictions depend on not only the observation, but also the belief chain. where the belief
chain depends on the observation Ot and the previous status St−1.

P(·) = P(S1:t ,O1:t) = P(S1)P(O1|S1)
T

∏
t=2

P(St |St−1)P(Ot |St) (3.7)

where the P(·) is the prediction probability of current tth status. So that the P(S1:t ,O1:t)

represents the current status probability depends on all the state probabilities up to now.
Before calculating the trust value, let the current feature be noted as ω , features x in cup,
teapot and bottle be denoted as X ,Y , and Z, then the trust value can be factorized as:

ωx = P(ω|x ∈ {X , Y, Z})

=
P(x|ω)

P(ω)

(3.8)

This calculates the real possibility of the belief chain to recognize the right object. However,
the main chain not only depends on the observation, Ot and the previous status St−1, but also
depends on the trust values W (ω) from the current outputs of the belief chain, where the



36 3D Point Cloud Data on Deep Learning

belief function is designed as:

W (ωx) =

ωx
3 if 0 < ωx < 0.5

1.2ωx −0.5 if 0.5 ≤ ωx ≤ 1
(3.9)

Therefore, the final prediction should be:

Prediction =
P(S1:t ,O1:t)+W (ωx)

P(S1:t ,O1:t)+ωx
(3.10)

Result

Fig. 3.14 The result with and without surface condition on 100 dataset.

As shown in Fig. 3.14, the blue bar is the prediction accuracy of these three objects
without considering of the surface conditions, and the orange bar is the accuracy result of
considering the surface conditions.

3.3 Summary

In this chapter, the surface condition based on vision, which is affecting the recognition rate,
was able to be used as an information source of objects. However, due to the probability



3.3 Summary 37

distribution, the estimation range was restricted to only these three objects, and too much
preprocessing was required in this method. Thus, the subsequent chapters focus on the
different representations of PCD to reduce the processing.





Chapter 4

Touch Sensing Based Semi-Supervised
Deep Learning

Fig. 4.1 Schematic illustration of integrating different sensors with memory devices for the
mimicry of human sensory memory.

In the previous chapter, the PCD was analyzed and applied in the vision-based method,
which considered the shape features and surface conditions of an object, and the results
were shown as positive. But the truth is that the PCD is not captured by the RGB sensor, so
that it does not correspond to the vision field. There are more positive potentials in PCD.
As mentioned, the PCD is composed of points in space, which makes it fully relevant with
geometrical features. But, the PCD includes the position value of points, which is only related
to the reference coordinate. Once the reference is changed, then the previous relationship
between these points is no longer available, i.e., one PCD is operated as a projection in a



40 Touch Sensing Based Semi-Supervised Deep Learning

different coordinate, and it outputs totally different results. In this section, a new approach is
discussed to describe some stable features from PCD based on a human touch sensing theory.

As shown in Fig. 4.1, the human body has five sensation modalities, such as touch, sight,
hearing, taste and smell, where these senses to the neural system have a specified priority.
However, they are not isolated and often work together. These multiple sensing units with
several memory areas build up a highly integrated system which is the human brain.

4.1 Touch Sensing Mechanism

Fig. 4.2 A single action potential

Action potentials are often referred to as spikes or impulses [51, 52]. When it is not
stimulated, a typical neuron rests at a voltage of about −70 mV. When a neuron cell is
stimulated and it fires an action potential, the voltage jumps up to about +40 mV, and then
comes back down again, as shown in Fig. 4.2. It all happens very fast (note the time scale),
all in a matter of a few thousandths of a second. The action potential starts at a neuron’s soma
and travels all the way along its axon [53–55]. Basically, the shape of the action potential is
the same anywhere along the length of the axon. In fact, the input signal is treated differently
depending on the strength [56]. There are many types of strength that can be detect, because
of the different types of neuron. Among them, the vibration stimulus and skin indentation
are the main topics in this research.

More specifically, there are many different neurons under the skin such as the Pacinian
corpuscle, Merkel cells, Meissner corpuscles, and Ruffini ending [57]. These sensing neurons



4.1 Touch Sensing Mechanism 41

Fig. 4.3 The firing rate response to the pressure level

Fig. 4.4 A typical touch sensor neuron connecting via synapses



42 Touch Sensing Based Semi-Supervised Deep Learning

have different responses to different intensity stimuli, as shown in Fig. 4.3. These different
morphologies serve as specific receptor functions, yet each is associated with a single
neuronal cell type: the dorsal root ganglion neuron. Fig. 4.4 shows the neurological model
of a typical touch sensor. In our touch sensing model, we only consider two main sensing
neurons, the Merkel cells and the Meissner corpuscles. The Merkel cells correspond to the
skin indentation, such as the pressure or the large changes of the surface. The Meissner
corpuscles correspond to the vibration, e.g., the sense of surface roughness.

Stimulus to spike

A model for relating an input current to the spike probability is to characterize the average
stimulus over a certain window of duration T preceding each spike. The collection of all
stimuli that lead to spike generation is called the spike-triggered ensemble, and the mean of
the spike-triggered ensemble is called the spike-triggered average (STA). If one considers
the spike-triggered ensemble to represent a probability distribution over important stimuli,
then the STA is an estimate of the first moment of that distribution. Intuitively, the shape of
the spike-triggered average corresponds with the shape of the primary feature for which the
neuron is selective. In shortly, a common model of a neuron is the idealization of a Poisson
process, which produces the probability of the observed number y of spikes which is given
by:

P(y|λ ) = (λ∆)y

y! exp(−λ∆) (4.1)

where λ∆ is the expected number of spikes in a small unit of time ∆, and λ is the intensity of
the Poisson process. In practice, the binary representation of y simplifies the log-likelihood
further

ℓ(θ) = ∑
t=spike

(logλt)−∆∑
t
(λt) (4.2)

As shown in Fig. 4.5, on the basis of the Poisson process, a generalized linear model (GLM)
of a neuron was proposed and applied by many neural scientists [52-55]. The equation of
random spike in this GLM is as followed:

P(·) = (S ∈ [t, t +∇]|Ht ,Xt) = λt (4.3)

where the P(·) represents the spike number between time t to t +∆; X is the stimulus in time
t and the H is the neuron activation state. The outcome of current random spike generation is
highly depended on the current X and post-spike activation H. In order to fully model the
response, we need to identify the conditional intensity λ . The λ could be the outcome of the



4.1 Touch Sensing Mechanism 43

Fig. 4.5 The generalized linear model of a neuron

roll of a die, samples in Markov random field’s integration period or the number of action
potentials generated by neural network. It is shown in the following equation:

λt = f (k ·Xt +h ·Ht +µi) (4.4)

where the λt is related to the stimulus and previous spiking history, the k is the stimulus filter,
h is a post-spike filter to account for spike history, and µ is a constant bias to match the firing
rate. The term (h ·Ht) is the post-spike activity received by the neuron. The f is an arbitrary
invertible function termed a link function. Generally, the f is refereed as exp(·), which is
able to simplify the likelihood calculation. Combining equations 4.1 and 4.4, the probability
of observing the complete spike can be represented as:

ℓ(θ) = ∑
i,t=spike

(ki ·Xt +hi ·Ht +µ)−∆ ∑
i,t=spike

(ki ·Xt +hi ·Ht +µ) (4.5)

where we have added the subscript i throughout to label neuron i, and the θ is the parameter
space. Up to here, obviously, this full procedure can be represented by a neural network with
one input, and a recurrent layer as the post-spike generator. As shown in Fig. 4.6, a multiple
GLM is used to simulate the neuron spike, where the input stimulus values are represented
by the point position in the PCD. However, the (x,y) values are fixed in a PCD, so that only
the z values are related to the generation of stimulus, and the z values are normalized. In
order to apply this static data in the sequential model as stimulus inputs, the convolution is
applied at the beginning layer to simulate the chronological order. By using the algorithm in
Sec. 2.3.1, the sequential order n of a PCD can be calculated, in this case n = 4096, which is
also referred as spike in equation. By applying this slight modified multiple GLM on a given



44 Touch Sensing Based Semi-Supervised Deep Learning

Fig. 4.6 Binary conversion of PCD to neuron spikes

PCD, a neuron firing map can be generated, which means how the roughness of this surface
is felt when human slips the fingers over on it. By applying this less information, our neural
network still is not able to converge.

4.2 Improved Vibration Firing Map

In the previous section, the experimental result of the multiple GLM on our PCD was not
good enough. However, we can clearly see this theory is working. To be able to obtain more
collectable features, we need more sensitive conditional intensity. To achieve this target, a
recurrent structure is applied.

4.2.1 Stacked Convolutional Auto-encoder

Firstly, let us recall the basic principles of auto-encoder (AE) models. An AE takes an input
X ∈ R and first maps it to the latent representation h ∈ R using a deterministic function
of the type h = f (θ) = σ(Wx+ b), where the parameter θ consist of W and b. These
parameters are then used to reconstruct the input by a reverse mapping. The two parameter
sets are usually constrained to be of the form W =W T , using the same weights for encoding
the input and decoding the latent representation. Each training pattern xi is then mapped
onto its code hi and its reconstruction yi. The parameters are optimized, minimizing an
appropriate cost function over the training set Dn = {(x0, t0), ...,(xn, tn)}. Fully connected
AEs ignore the data structure. This is not only a problem when dealing with realistically
sized inputs, but also introduces redundancy in the parameters, forcing each feature to be



4.2 Improved Vibration Firing Map 45

global. Convolutional AEs (CAEs) differ from AEs because the weights in CAEs are not
shared among all locations in the input, preserving spatial locality. The reconstruction is
hence due to a linear combination of basic image patches based on the latent code [17–20].

Fig. 4.7 Training structure of the autoencoder

The CAE architecture is intuitively similar to the CNN described in Sec. 2.3, except that
the weights are shared during the encoding and decoding in each CAE, i.e., Ŵ =W T . And
the structure is given by:

hk = σ(x ·W k +bk) (4.6)

where the bias is broadcasted to the whole map, σ is an activation function, and · denotes
the 2D convolution. A single bias per a latent map is used, because a desired each filter is
specialized on the features of the whole input. The reconstruction is obtained by using the
following equation:

y = σ(∑
k∈H

hk ·Ŵ k + c) (4.7)

under the minimization of a cost function, which is described by the mean squared error
(MSE):

E(θ) =
1
2n

n

∑
i=1

(xi − yi)
2 (4.8)



46 Touch Sensing Based Semi-Supervised Deep Learning

where h identifies the group of latent feature maps and Ŵ is obtained by taking the flip
operation over both dimensions of the weights W , i.e., Ŵ = W T . Just as for the standard
networks the back-propagation algorithm is applied to compute the gradient of the error
function with respect to the parameters. This can be easily obtained by convolution operations
using the following formula:

∂E(θ)
∂W k = (x ·δhk + ĥk ·δy) (4.9)

where the δh and δy are the deltas of the hidden states and the reconstruction, respectively.
The AEs can be stacked to form a deep hierarchy, as shown in Fig. 4.7. Each layer

receives its input from the latent representation of the previous layer. As for deep belief
networks, unsupervised pre-training can be performed in greedy and layer-wise fashion.
After wards the weights can be fine-tuned using back-propagation. The structure is very
simple, as shown in Fig. 4.7, whose structure can be described as the following equations:

α = (Ft ·Xt)ωt +bt (4.10)

β = S1(α)ωs1 +bα (4.11)

δ = S2(β )ωs2 +bβ (4.12)

y(·) = S3(δ )ωs3 (4.13)

where the α , β , and δ are the simply summaries of outputs from the previous layer, and S
represents the activation function.

4.2.2 Long-short Term Memories Unit

According to the previous research, there is a memory effect in this GLM, which is defined as
Spike History. To improve our CAE, a variant LSTM structure is applied between the hidden
units. As shown in Fig. 4.12, it is the unfold structure of our proposed model. For general-
purpose sequence modeling, LSTM as a special RNN structure has proven to be stable and
powerful for modeling long-range dependencies in various previous studies [21, 29, 30, 84].
An LSTM has a more detailed and effective method to explain how memories affect on the
current cell. The LSTM has the ability to remove or add information to the cell state, and
the decision is made by structures called gates, i.e., forget gate, input gate, and output gate.



4.2 Improved Vibration Firing Map 47

The gates are a way to optionally pass information through. They are composed out of a
sigmoid layer and a pointwise multiplication operation. The sigmoid layer produces the
numbers between zero and one, which describes how much of each component should be
passed through.

Fig. 4.8 Full structure of an LSTM

As shown in Fig. 4.8, the red block is called "Forget gate", which is the first and most
powerful gate. It decides what information could be thrown from the current network cell.
The gate’s status is decided by a sigmoid layer, where it takes both ht−1 and xt and produces a
number between zero and one for each number in the cell state Ct−1. An output one represent
Completely keep and 0 represents Completely drop. The mathematical representation of
red block is:

ft = σ(ωk
f ·ht−1 +ω

p
f ·xt +b f ) (4.14)

where the ω represents the vector of weights, the subscription f represents the ω is in the
forget gate, and the superscript k and p represent the ω respects to the previous hidden cell
and current neuron input, respectively. The next step is to decide what new information can
go to be stored in the cell state, as shown in green block of the Fig. 4.8. This gate consists of
two parts: one is a sigmoid layer called Input gate, which decides what values should be
updated, and a tanh layer creates a vector of new candidate values. The other is composed of
a new candidate Ĉt and the output of Input gate, which are combined to create an update to



48 Touch Sensing Based Semi-Supervised Deep Learning

the cell state. The mathematical representation of green block is:

it = σ(ωk
i ·ht−1 +ω

p
i ·xt +bi) (4.15)

where the the subscription i of ω respects to the input gate.

Ĉt = τ(ωk
C ·ht−1 +ω

p
C · xt +bC) (4.16)

where the the subscription C of ω respects to the cell status, and τ is the tanh logistic function.
The output of tanh function is permitted to assume both positive and negative values in the
interval [−1,1], that allows the function performs as a amplifier. Therefore, the new cell
status Ct can be updated as:

Ct =Ct−1 × ft +(it ×Ĉt) (4.17)

The values of the output gates are computed together with the new state of the memory unit,
and their outputs are calculated as follows:

ot = σ(ωk
o ·ht−1 +ω

p
o ·xt +bo) (4.18)

ht = ot × τ(Ct) (4.19)

4.2.3 Short Term Memories CAE

According to the LSTM and the GLM, a specified NN with memory units is designed, where
the AE is the kernel trainer and a convolution layer is the input layer. Table 4.1 is the structure
of a stacked CAE (sCAE), which is used to convert the PCD to a brain fire-map.

Table 4.1 The specified structure of a sCAE, where the numbers in output shape represent
width, height and depth of output layer

Layer Output Shape
Width, Height, Depth

Parameters Connection

Input 26, 32, 1 0
Conv. 1 26, 32, 16 13312 Input Layer
Maxpooling 13, 16, 32 0 Conv. 1
Conv. 2 13, 16, 8 1664 Maxpooling
Upsampling 26, 32, 32 Conv. 2
Conv. 3 26, 32, 1 832 Upsampling

There is an improved model of memory cell, as shown in Fig. 4.9. In this model, the
cell’s status at t −1 cell no longer affects cell at t +1. The reason is that vibration or skin



4.2 Improved Vibration Firing Map 49

Fig. 4.9 A variant model of an LSTM

indentation spikes in only firing in very short time, and reverts back to the rejection mode
immediately. The details of this unit are shown in Fig. 4.10, and the complete structure of
sMCAE, which consists of this unit is shown in the figure Fig. 4.11. The equations of LSTM
are replaced according to the new proposed model as follow:

ft = σ(ωk
f ·ht−1 +ω

p
f ·xt +b f ) (4.20)

Ĉ1
t =Ct−1 × ft (4.21)

At = τ(ωk
a ·ht−1 +ω

p
a ·xt +ba) (4.22)

where the subscription a represents the amplifier gate.

it = σ(ωk
i ·ht−1 +ω

p
i ·xt +bi) (4.23)

Ĉ2
t = At × it (4.24)

Tt = Ĉ1
t +Ĉ2

t (4.25)



50 Touch Sensing Based Semi-Supervised Deep Learning

Fig. 4.10 Illustrated detail of a short-term memorise unit



4.2 Improved Vibration Firing Map 51

Fig. 4.11 Full structure of our model



52 Touch Sensing Based Semi-Supervised Deep Learning

where the T represents the current inner cell status. Then the passing status and output value
are shown as:

Ct = τ(T̂t × xt + T̂t ×ht−1) (4.26)

ht = (T̂t × xt + T̂t ×ht−1) (4.27)

Fig. 4.12 The unfold structure of the sMCAE.

However, the learning algorithm of this short-term memories CAEs (sMCAE) is also
a little bit different from an original back-propagation. Since a short memory unit is only
activated one step forward, the training also should be calculated one step backward, which
are shown in Fig. 4.12 as the same color arrows, i.e., the red arrows show that the back-
propagation between yt(·) and Xt affects also the previous weights in t − 1. The forward
procedures are shown as the following equations:

yt = f (S3
t )

S3
t = f (S2

t ,C
3
t−1,h

3
t−1)

S2
t = f (S1

t ,C
2
t−1,h

2
t−1)

S1
t = f (Xt ,C1

t−1,h
1
t−1)

(4.28)



4.3 Skin Indentation 53

Then, the short memories back-propagation is given by:

Et =
1

2n ∑
t
(yt − xt)

2 (4.29)

∂Et

∂ωt
=

∂Et

∂S3
t

∂S3
t

∂S2
t

∂S2
t

∂S1
t

∂S1
t

∂ωt
(4.30)

Up to here, it is nothing more different than a normal back-propagation. However the previous
weight ωt−1 also takes an effect from the Ct−1 and ht−1. The S is the short memories block,
and the ω

j
i represents the four weights in time i of jth short memories block. To the ωt−1,

the Et−1 gives another back propagation training.

g(x) = η · f

(
∂ ∑

i
m=3 ∑

j
m=3ω i

t−1xtω
j

t−1xt

∂ωold
t−1

)
(4.31)

where f () represents the ReLU function, and η is the learning rate. Since the ReLU is
defined as f (x) = max(0,x) , then the dervative of ReLU is:

f ′(x) =

1, if x > 0

0, otherwise
(4.32)

Finally to a new ωt−1, it follows that:

ω
new
t−1 = ω

old
t−1 −g(·) (4.33)

As an experiment, the NN kernel which is composed of ω is set to 100 and 9 for the
first and second encoder layers, which can help us to evaluate the fitness of the kernel. The
trained kernels after 2000 epochs on 900 groups are shown in Fig. 4.13 (a) and (b). As shown
in Fig. 4.14, the PCD is converted to the neuron fire-map. The labels K1 and K2 are the two
slightly changed structures of this memorable sMCAE: the result K1 shows the convert result
only with one recurrent stage, whereas K2 shows the result with both recurrent stages.

4.3 Skin Indentation

As mentioned at the beginning of this chapter, to build a robust NN, the more information
is required. In the previous section, the sMCAE were used to convert a PCD into the brain
firing map of vibration signal. But, only vibration is not enough. Thus, the skin indentation



54 Touch Sensing Based Semi-Supervised Deep Learning

Fig. 4.13 Visualized maps of hidden layers: (a) denotes the visualized maps of first hidden
layer’s 100 kernels and (b) is the visualized maps of second hidden layer’s 9 kernels

is discussed. To manage that, a set of simple definitions of the surface are defined. In this
research, any complex surface is assumed to be composed of several simple structures: i.e.,
they are defined as a curved plane, a normal plane, and an inclined plane, as shown in Fig.
4.15. However, these definitions need to be more measurable. In many previous research, it
is proved that the surface normal vector is the most intuitive variables to the surface. In this
section a new scheme is proposed to quantify the difference of surface curvatures.

4.3.1 Data

Table 4.2 Parameters for the captured data

Captured area X direction Y direction Z direction

Positive Negative Positive Negative Positive Negative

75 mm 75 mm 50 mm 50 mm 650 mm 0 mm

Object size
Half quoter cylinder

Length × Width × Height

Triangular prism

Length × Width × Height

Trapezoidal

Length × Width × Height

80 mm×50 mm×16 mm 60 mm × 56 mm × 18 mm 100 mm × 40 mm× 22 mm

The average

number of points
8981 8978 8987



4.3 Skin Indentation 55

Fig. 4.14 The firing maps obtained from PCD



56 Touch Sensing Based Semi-Supervised Deep Learning

Fig. 4.15 The definition of main planes

Fig. 4.16 Overview of the experiential environment: (a) CAD model of Triangular; (b) CAD
model of Half quoter cylinder; (c) CAD model of Trapezoidal prism; (d) Depth data of the
Trapezoidal prism; (e) Depth data of the Half quoter cylinder; and (f) Depth data of the
Triangular



4.3 Skin Indentation 57

The environment that obtained the data is shown in Fig. 4.16. In order to obtain a set of
quality point data, a fixed position is applied between the Kinect sensor and the object. This
distance is determined by calculating the density of PCD in a fixed area. The definition of the
fixed area is also shown in Table 4.2 as a captured area. Objects used to capture the data are
3D printed from CAD models to control the amount of captured data. All these works help
us to save a lot of time on pre-processing of the point data. The full parameters are shown
in Table 4.2, where each object has obtained the fifty-group data about 9000 points in each
group.

4.3.2 Surface Condition

Fig. 4.17 Processing chart of point cloud data

The raw data captured from Kinect include a huge number of noise data. It cannot be
directly applied in research. The raw point set is converted to the organized point set by
down-sampling operation and smoothing, as shown in Fig 4.17. The organized point set can
be used on a surface normal estimation [41–50].

Assume that the normal vectors v of a curve line on each point P are taken as unique
pressure forces N. Therefore each pressure force N has a maximum force value which does
not exceed one unit of pressure. As shown in Fig. 4.18, the force vector m can be separated
into two branch forces in 2-dimensional space, the nx and ny. By using the nx and ny, it is
easy to describe the change of this line’s curvature. Once it is turned into 3-dimensional,
there is nz as the branch force in Z-axis, as shown in Fig. 4.19. The mathematical equations
for this theory are shown such as:

m = nxex +nyey +nzez (4.34)



58 Touch Sensing Based Semi-Supervised Deep Learning

Fig. 4.18 The concept of surface-common-feature

Fig. 4.19 Direction cosines of a normal vectors



4.3 Skin Indentation 59

where ex, ey, and ez are the standard bases in Cartesian notation, then the direction cosines
are

cosa =
m · ex

|m|
=

nx√
n2

x +n2
y +n2

z

(4.35)

cosb =
m · ey

|m|
=

ny√
n2

x +n2
y +n2

z

(4.36)

cosc =
m · ez

|m|
=

nz√
n2

x +n2
y +n2

z

(4.37)

Squaring each equation and adding the results, it follows that:

cos2 a+ cos2 b+ cos2 c = 1 (4.38)

After obtained the angles a, b and c, the branch force of n can be calculated as:

nx = n̂cosa

ny = n̂cosb

nz = n̂cosc

(4.39)

where n̂ =
√

n2
x +n2

y +n2
z .

By using this method, the surface-condition-feature (SCF) map can be converted from
the surface normals. An X-Z view of a half quoter cylinder’s SCF map is shown in Fig.
4.20, where the positive part of this line represents the U pper curve, and the negative part
represent the Downward curve (See as red and black lines in Fig. 4.20). And it is very easy
to remove the noise data and corner plane data, since their normal vector is perpendicular to
the reference plane (See as green block in Fig. 4.20).

4.3.3 Result

When the full PCD is converted, a surface condition can be represented by all the cells of two
small adjacent area’s feature elements: {|Di|}n

i and {|bi|}n
i . An encoder are used to convert

these definitions into a skin indentation signal. Thus, the different skin indentation is roughly
separated into six class, such as "Upward inclined," "Downward inclined," "Upward curve,"
"Downward curve," "Edge," and "Flat."

An sAE is used as a training algorithm in this part, as shown in Fig. 4.21. In order to use
the autoencoder, the input data is reshaped into 18 different groups with 3×3 matrix data in



60 Touch Sensing Based Semi-Supervised Deep Learning

Fig. 4.20 Assumed skin indentation of half quoter cylinder in X-Z views

Fig. 4.21 (a) Input data from trapezoidal prism; (b) Input data from triangular prism; (c)
Input data from half quoter cylinder



4.4 Surface Common Feature 61

each group by considering the geometric features in the real world, such as: upward inclined
(black), downward inclined (purple), upward curved (blue), downward curved (green), edge
(red) and flat (yellow). Although, the data still include many noises, but the geometric
features are strong enough to use average pooling to initialize the feature map.

4.4 Surface Common Feature

So far, the vibration firing map and the skin indentation are captured from a single PCD.
However, during the process, the computing load for the skin indentation was huge, and
the sMCAE computed the small curvature of the surface. For this reason, an improvement
of surface common features (SCF) are proposed to only focus on the big changes of the
surface. The method for modeling the skin indentation is based on the surface normal vectors
[37, 39, 40]. A surface can be expressed by the normal vector n. In particular, two adjacent
normal vectors are formed to express a minimum surface condition by calculating the distance
vector

−→
D . The processing of point cloud data with n points is calculated as the following

steps:

1. Calculate all point vectors
−→
P n. The point vector is started from the origin point O to

each point Pi, where {i ∈ n} .

2. Each of two adjacent point vectors
−→
P ’s are used to generate a tangent vector

−→
T .

3. A normal vector n̂ is considered as the cross product of two adjacent tangent vectors
−→
T i and

−→
T i+1.

4. The difference between each two adjacent normal vectors are defined as the distance
vector

−→
D , which can represent the bending level between the two estimated minimum

surfaces by its size
−−→
∥D∥.

5. The direction parameter b is assigned by 1 or 0, the values are dependent on the positive
or negative direction of distance vector

−→
D .

In this way, an environmental irrelevant bending features can be captured easily, as shown in
Fig. 4.22.

4.5 Summary

In this chapter, an improved method which was based on SCF has been proposed under the
human touch sensing theory. This method used 3D PCD in a specified deep learning structure,



62 Touch Sensing Based Semi-Supervised Deep Learning

Fig. 4.22 The improved surface condition



4.5 Summary 63

i.e., the sMCAE, to produce the surface features. As expected, the result showed the SCF was
very sensitive to the change of surface, and using SCF in sMCAE was very effective on the
surface classification. However, the method was only proved by the well-formed idealized
data. The next chapter will present this method on the captured real-world data, to improve
the universality.





Chapter 5

Applications of Surface Common
Features on Deep Learning

5.1 Facial Expression Recognition

5.1.1 Introduction

The facial expressions are response to internal emotional states, intentions, or social com-
munications of humans [53-55]. Recognizing and understanding the facial expressions are
of increasing importance because they provide the emotions, health status and affection
of humans [56]. Such information can be used for controlling the interaction in HRI. For
instance, analyzing the human emotions through these information, an intelligent system is
able to support the user by offering help [57].

Over the last few years, many research have been proposed to recognize the facial
expressions. Ying-li et al. [57-59] proposed a facial expression analysis system based on
both permanent facial features and transient facial features, and they achieved an average
recognition rate of 96 percent. Some other approaches employ geometry and appearance
based features that are directly extracted from the face. For examples, Bartlett et al. [60]
used a bank of 72 complex-valued Gabor filters, in which eight orientations and nine spatial
frequencies were used to extract features and afterwards to detect the action units using
support vector machine classifiers.

However, human emotions are complicated, thus the emotional expressions do not easily
give the interpretation and inference of interaction. Since some emotional facial expressions
have a very similar physical performance in 2D image data source, to distinguish a difference
between sad and anger in images, it could be a difficult task even for human. In this section,
the previously presented model is used in a recognition of emotional facial expression task.



66 Applications of Surface Common Features on Deep Learning

5.1.2 Emotion Modeling

Fig. 5.1 A modified valence-arousal space

The valence-arousal space (VAS) is used to classify the emotions by the valued labels,
where the simplified version is shown in Fig. 5.1. This map discrete is created based on
the psychological model of Russell’s circumplex model [62, 63]. This value labels of the
classification model can lead to a robust emotional state representation that is continuous in
principle. However, this model only can help us to quantify the emotion in two values. To
obtain labels for these emotions, we collected some linguistic descriptions [61, 64-68]:

• Happiness: A face with happiness has corners of the mouth drawn up and back. The
cheeks are raised, and the lower eyelids are tense. Wrinkles exist at the outer corners
of the eyes.

• Sadness: A face showing sadness has the eyebrows drawn in and up, the skin below
the eyebrows is triangulated with the inner corner up, and the corners of the lips are
turned down. The jaw comes up and the bottom lip pouts out.



5.1 Facial Expression Recognition 67

Table 5.1 Encoded labels based on VAS, where for each arousal or valence, the left denotes
the high level flag; middle the neutral level flag; and right the low level flag

Eyes Cheek Mouth cornerEmotions Arousal Valence Arousal Valence Arousal Valence
Angry 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1
Sad 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1
Fear 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0
Calmness 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0
Happy 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0
Surprise 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0

• Disgust: A disgusted face has the eyebrows downcast. The lower eyelid raised, the
cheeks are raised and the nose is scrunched. The upper lip is also raised or curled
upward.

• Surprise: A surprised face features the eyebrows raised up and curved. The skin
below the brow is stretched. The eyelids are wide open. The jaw is dropped, widly
opened mouth.

• Fear: A face showing fear has raised eyebrows that are usually more flat, not curved.
The upper eyelids are raised, but lower eyelids are tense and drawn up. The lips are
usually tensed or drawn back, the mouth may be open and nostrils may be flared

• Anger: An angry face will show eyebrows that are lowered and drawn together, widly
opened eyes, the lower eyelids tensed. Nostrils may be flared, and the mouth is either
firmly pressed together with the lips drawn down at the corners, or in a square shape as
if shouting. Also, the lower jaw juts out.

Such as the literature descriptions of eyes in emotion, “Angry” is “bulging,” then the high
level performance flag of “Arousal” is assigned as 1, whereas for the eye line in emotion,
“Angry” is also described as ”lowered,” then the low level performance flag of the “Valence”
is assigned as 1. Therefore the “angry” is encoded to {1,0,0,0,0,1}, and others so on. In fact,
this encoding system allows us to separate the performance values more than 10 levels, but
as a simple task in this case, it is not necessary. To predict an emotion, the VAS values of
six parts are fed to a back-propagation neural network. And the labels of the emotions are
encoded accoring to the descriptions, such as “Angry” = {1, 0, 0, 0, 0, 0 }; “Sad” = {0, 1, 0,
0, 0, 0 }; “Fear” = {0, 0, 1, 0, 0, 0 }; “Calmness” = {0, 0, 0, 1, 0, 0 }; “Happy” = {0, 0, 0, 0,
1, 0 }; and “Surprise” = {0, 0, 0, 0, 0, 1 }. In this network, we have 36 neurons in the input
layer, and 18 neurons in the first hidden layer and 6 neurons in the output layer.



68 Applications of Surface Common Features on Deep Learning

5.1.3 Data Training

Fig. 5.2 The referred database: (a) Cohn-Kanade AU-coded facial expression database and
(b) our six major emotional facial expressions, where they were captured in 230 frames from
30 actors.

Fig. 5.3 The definition of six facial parts

As shown in Fig. 5.2, we referred Cohn-Kanade [59] facial expression database as our
teaching models for the actors, and the Kinect device was used to capture the real time SCF
dataset. As in this time, six basic emotional facial expressions were captured in 230 frames



5.1 Facial Expression Recognition 69

from 30 actors. To reduce the computing load, the face area was separated into six parts, “left
eye,” “left cheek,” “left mouth corner,” “right eye,” “right cheek,” and “right mouth corner,”
as shown in Fig. 5.3.

5.1.4 Recognition Network

In this case, the network structure is recalled from Sec. 4.2 and Sec. 4.3.

Front-end Conversion

.

Table 5.2 The specified structure of convolutional autoencoder (CAE)

Layer Output Shape
Width, Height, Depth

Parameters Connected

Input 96, 96, 1 9216 sMCAE output
Conv. 1 86, 86, 36 465948 Input
Ave. pooling 80, 80, 18 0 Conv. 1
Conv. 2 64, 64, 9 36864 Ave. pooling
Ave. pooling 28, 28, 9 0 Conv. 2
Flatten 1664 11741184 Ave. pooling
Dense 512 851968 Flatten
Dropout 384 0 Dense
Dense 100 38400 Dropout
Dense 6 600 Dense

Fig. 5.4 The front-end convert DL structure



70 Applications of Surface Common Features on Deep Learning

Fig. 5.5 The few results from the front-end network. Each emotion are shown with one RGB
image (on the left) and one SCF map (on the right).

Fig. 5.6 Some results from the front-end network.



5.1 Facial Expression Recognition 71

As shown in Fig. 5.4, the front-end part, that is the sMCAE provided from Sec. 4.2
and Sec. 4.3 is used, where the detail of the model is shown in Table 5.2. During the facial
expression recognition task, the human face roughness is far small than the noise data, so
that to gain such value, the SCF values and vibration values are summarized in the last of
front-end layer. The converted results are shown in Fig. 5.5 and Fig. 5.6, where the SCF
results from former represents the emotions, respectively.

Back-end Classification

Fig. 5.7 The back-end concolutional neural network

As shown in Fig. 5.7, the back-end part, i.e., a typical CNN is used to classify the emotion
by combining the output of front-end network. In this CNN, there are mainly three different
type layers: the first type is a convolutional layer, which is located in the leftmost and third
layers; the second type is an average pooling layer, which cames right after the convolutional
layer; and the last type is a dense layer which is located in the rightmost to integrate the
feature maps and predict the result.

5.1.5 Result

The left confusion map in Fig. 5.8 shows the recognition accuracy when there is only one
of facial parts, whereas the right-hand side confusion matrix shows the result with the full
facial parts. Fig. 5.9 shows the training and testing loss. The accuracy on the training and
testing data is shown in Fig. 5.10. It is found from this figure that at around 100 epochs, the
recognition accuracy is achieved nearly 97 percent.



72 Applications of Surface Common Features on Deep Learning

Fig. 5.8 A confusion map sample of left eye (left), and the confusion map of final prediction
relied on the full facial parts (right)

Fig. 5.9 The training and testing loss



5.2 Object Recognition 73

Fig. 5.10 The training and testing accuracy

5.2 Object Recognition

5.2.1 Introduction

Object recognition is one of the main subjects in computer vision, and also it is important
for making robots useful in complex environments. As one of the most activated branch
fields, most of the 3D object recognition [69-72] are limited in the conventional research
to instance recognition (model-based key-point matching to nearest neighbors [73-78, 82]).
Those methods also use hand-designed features such as SIFT, or HOG. In this section, we
apply the previous DL model to object recognition. As shown in Fig. 5.11, the RGB-D object
dataset [79, 81] is used to train our models, and some captured original data are used to test
the model. And the compared result shows in Table 5.3.

5.2.2 Model Details

As shown in Fig. 5.13, Socher and Richard [84] proposed a 3D object recognition which
is also based on the DL structure. Their model uses both raw RGB and depth images.
First, it separately extracts features from RGB and depth. Each modality is first given to



74 Applications of Surface Common Features on Deep Learning

Fig. 5.11 Some samples from RGB-Depth trainning dataset

Table 5.3 Comparison of our SCFnet to multiple related approaches.

Classifier Extra features for 3D and RGB 3D RGB Both

Linear SVM

Spin Images, efficient match kernel (EMK),
random Fourier sets, width, depth,
height; SIFT, EMK, texton histogram,
color histogram

53.1 ±1.7 74.3 ±3.3 81.9 ±2.9

Random Forest same as above 64.7 ±2.3 83.9 ±3.5 83.9 ±3.5

CNN-RNN Depth convolution filters;
RGB convolution filters 78.9 ±3.8 82.4 ±3.1 86.8 ±3.3

SCFnet sMCAE firing map, surface common features;
RGB convolution filters 91.7 ±1.2 79.5 ±1.7 89.8 ±8.2



5.2 Object Recognition 75

Fig. 5.12 Training result of SCFnet with RGB-D object dataset

a single convolutional layer which provides a useful translational invariance of low level
features such as edges and allows the parts of an object to be deformable to some extent.
The pooled filter responses are then given to a recurrent neural network (RNN), which can
learn compositional features and part interactions. The RNNs hierarchi cally project inputs
into a lower dimensional space through multiple layers with tied weights and nonlinearities
[79, 80, 83]. In this experiment, we modified a new structure according to this model, but
used our SCF based network (SCFnet) instead of their depth-images based CNN, where the
structure is shown in Fig. 5.14.

Fig. 5.13 The referred model



76 Applications of Surface Common Features on Deep Learning

Fig. 5.14 Our modified model

5.2.3 Unsupervised Pre-training Filters

Fig. 5.15 The trained out filters of sMCAE.

Fig. 5.15 shows the trained out filters of the unsupervised sMCAE. To be more specific,
the visualization of the back-end CNN filters are shown in Fig. 5.16 and Fig. 5.17.

Fig. 5.16 The pre-trained filters of back-end CNN: i.e., the first convolution layer filters.



5.2 Object Recognition 77

Fig. 5.17 The pre-trained filters of back-end CNN: i.e., the second convolution layer filters.

5.2.4 Object Detection

Fig. 5.18 The object detection task: where the woodblock and toy are not included in the
training database.

To measure our modified SCFnet, some untrained objects are used to test the result
that once the model faces unknown objects. As shown in Fig. 5.18, the system still can
recognize the object by their geometrical features. The red blocks represent the objects are



78 Applications of Surface Common Features on Deep Learning

only detected by the SCFnet (more than 60 percent of probability), and the black blocks
represent the object are detected by both RGB and SCFnet. However, there is a woodblock,
which confuse the SCFnet, but not the RGB network.

5.3 Summary

In this chapter, our DL structure has been applied on two tasks, i.e., a facial expression
recognition and an object recognition. This model was also compared with other research to
demonstrate that, the result showed increasingly high accuracy in both task.



Chapter 6

Conclusion

This thesis is concluded by summarizing our contributions. Finally, we discuss future research
directions.

6.1 Contributions

Firstly, it developed unsupervised Deep Learning(DL) models for discovering features from
Point Cloud Data (PCD) by proposing in different steps. While the popularity of DL has
grown rapidly in many fields, the application of DL in 3D object recognition was previously
limited to using depth map and other images-based methods to pre-processing the data,
which lost most of the information that a 3D object could have. In contrast we developed
new models based on human touch sensing theory that used surface roughness and surface
conditions to produce the surface common features. The earlier methods were based on
using Hidden Markov Model to recognize objects by their shape information and surface
curvature. By calculating the vectors between two presented points, some basic surface
curvatures were defined. This method produced nearly 70 percent of accuracy. However,
this method with a new concept of curvature was still mainly based on images with too
many pre-processing steps. Lately, a new method was proposed to present the PCD in a
new structure. The method included two main networks as a full front-end network. We
learned there are two main cells in human touch sensing: one is texture detection cells
named Meissner corpuscles, which respond to the "feeling" of roughness in a surface by
the vibration sensor cell; the other is Merkel cells, i.e., edge and surface curvature detection
neurons, which respond to the skin indentation. Corresponding to this theory, the core
approach of this front-end network included two parts: an stacked memories convolutional
autoencoder (sMCAE) was designed to simulate the vibration neurons, and converted a PCD
to the surface roughness; the other network was used to sense the skin indentations which



80 Conclusion

react to the object edge and surface curvature. We achieved a successful classification, and
some supervised definitions of some simple classes were used to pre-train the network, such
as upward inclined, downward inclined, upward curved, downward curved, edge and flat.
Finally, we used a properly designed convolutional neural network (CNN) as the back-end
network to merge the roughness information and surface condition information, and this
CNN is also used to classify objects. As a result, the network finally was able to achieve
90 percent of accuracy. An emotional facial expression recognition task and an object
recognition task were designed to test our model, which was developed in earlier chapters.
However, there weren’t any available PCD-based DL models, we compared our model with a
RGB-Depth based DL model on object recognition task. Thus, our model showed significant
improvements in the task.

6.2 Future Work

In this paper, feature learning was used to perform the semi-supervised training in specific
objects. Due to the wideness of nature, there are millions of objects which are different to
each other even in a same category. To be able to recognize unknown objects, it is very
difficult if the artificial network is trained in specific objects. As the future work, the training
procedure must include from low level features, edge, curvatures, and colors, to high level
features, i.e., the meaning of the structure. Specifically, the definitions of a cup in human brain
includes not only the object’s color, shape or texture, but the object’s significance, which is
defined as connection features. In future research, the environment based memories network
which considers the meaning of the geometrical features from the different environments,
will be added in the DL structure.



References

[1] J. E. Johnson and Martial Hebert, “Using spin images for efficient object recognition in
cluttered 3D scenes,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 21, no. 5, pp. 433–449, 1999.

[2] D. G. Lowe, “Local feature view clustering for 3D object recognition,” in Proceedings
of Computer Vision and Pattern Recognition, 2001, pp. 682–699.

[3] M. Liu and X. Li, “Generic object recognition based on the fusion of 2D and 3D SIFT
descriptors,” in Proceedings of 18th International Conference on Information Fusion,
2015, pp. 1085–1092.

[4] Y. Lei, M. Bennamoun, and M. Hayat, “An efficient 3D face recognition approach using
local geometrical signatures,” Pattern Recognition, vol. 47, no.2, pp. 509–524, 2014.

[5] A. Barr, P. R. Cohen, and E. A. Feigenbaum, The handbook of Artificial Intelligence.
California, William Kaufmann, 1989.

[6] R. C. O’Reilly and Y. Munakata, Computational Explorations in Cognitive Neuroscience:
Understanding the Mind by Simulating the Brain. MA, MIT press, 2000.

[7] J. Allanson and S. H. Fairclough, “A research agenda for physiological computing,”
Interacting with computers, vol. 16, no. 5, pp. 857–878, 2004.

[8] A. Girouard, T. Desney, N, Lennart, and M. Regan, “Brain, body and bytes: psychophys-
iological user interaction,” in Proceedings of CHI’10 Extended Abstracts on Human
Factors in Computing Systems, pp. 4433–4436, 2010.

[9] A. Calimera, M. Enrico, and P. Massimo, “The human brain project and neuromorphic
computing,” Functional Neurology, vol. 28, no. 3, pp. 191–196, 2013.

[10] J. O. Kephart, and M. C. David, “The vision of autonomic computing,” Computer, vol.
36, no. 1, pp. 41–50, 2003.



82 References

[11] T. B. Moeslund, H. Adrian, and K. Volker, “A survey of advances in vision-based
human motion capture and analysis,” Computer Vision and Image Understanding, vol.
104, no. 2, pp. 90–126, 2006.

[12] A. Jaimes and S. Nicu, “Multimodel human-computer interaction: A survey,” Computer
Vision and Image Understanding, vol. 108, no. 1, pp. 116–134, 2007.

[13] A. Konar, Artificial Intelligence and Soft Computing: Behavioral and Cognitive Model-
ing of the Human Brain. CRC press, 1999.

[14] C. M. Bishop, Pattern Recognition and Machine Learning. New York, Springer, 2006.

[15] G. Thomas, “Machine learning in ecosystem informatics and sustainability,” in Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence, 2009, pp.
8–13.

[16] C. Zhang and C. W. Philip, “Parametrized sigmoid and ReLU hidden activation func-
tions for DNN acoustic modeling,” in Proceedings of Interspeech. 2015, pp. 3224–3228.

[17] R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann Machines,” in Proceedings of
International Conference on Artificial Intelligence and Statistics. 2009, pp 3–11.

[18] Y. Bengio, Learning Deep Architectures for AI. North America, now, pp. 1–127, 2009.

[19] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” ICML Unsu-
pervised and Transfer Learning, vol. 27, pp. 37–50, 2012

[20] R. Socher, “Semi–supervised recursive autoencoders for predicting sentiment distribu-
tions,” in Proceedings of the Conference on Empirical Methods in Natural Language
Processing, Association for Computational Linguistics, 2011, pp. 151–161.

[21] N. Srivastava and R. Salakhutdinov, “Multimodal learning with deep boltzmann ma-
chines,” in Advances in Neural Information Processing Systems, 2012, pp. 2222–2230.

[22] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in Proceedings of the 25th International
Conference on Machine learning, 2008, pp. 1096–1103.

[23] Q. V. Le, J. Ngiam, A. Coates, and Ng Y. Andrew, “On optimization methods for deep
learning,” in Proceedings of the 28th International Conference on Machine Learning,
2011, pp. 265–272.



References 83

[24] Z. Wu, Y. G. Jiang, J. Wang, and X. Xue, “Exploring inter–feature and inter–class
relationships with deep neural networks for video classification,” in Proceedings of the
22nd ACM International Conference on Multimedia, 2014, pp. 167–176.

[25] J. Masci, U. Meier, D. Ciresan, and J. Schmidhuber, “Stacked convolutional auto–
encoders for hierarchical feature extraction,” in Proceedings of International Conference
on Artificial Neural Networks, 2011, pp. 52–59.

[26] G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[27] P. Vincent, H. Larochelle, I. Lajoie, and Y. Bengio, “Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising criterion,”
Journal of Machine Learning Research, pp. 3371–3408, 2010.

[28] A. R. Abbas, K. Wolslegel, D. Seshasayee and Z. Modrusan, “Deconvolution of blood
microarray data identifies cellular activation patterns in systemic lupus erythematosus,”
PloS one, vol. 4, no. 7, e6098, 2009.

[29] L. Deng, “A tutorial survey of architectures, algorithms, and applications for deep
learning,” APSIPA Transactions on Signal and Information Processing, vol. 3, e2, 2014.

[30] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85–117, 2015.

[31] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[32] M. E. Yumer, P. Asente, R. Mech, and L. B. Kara, “Procedural Modeling Using
Autoencoder Networks,” in Proceedings of the 28th Annual ACM Symposium on User
Interface Software and Technology, 2015, pp. 109–118.

[33] H. Kamyshanska and R. Memisevic, “The potential energy of an autoencoder,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 6, pp. 1261–1273,
2015.

[34] A. Mannini and A. M. Sabatini, “Machine learning methods for classifying human
physical activity from on–body accelerometers,” Sensors, vol. 10, no. 2, pp. 1154–1175,
2010.

[35] R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, Machine Learning: An Artificial
Intelligence Approach. Berlin, Springer, 1983.



84 References

[36] R. B. Rusu and C. Steve, “3d is here: Point cloud library (pcl),” in Proceedings of
International Conference on Robotics and Automation, 2011, pp. 1–4.

[37] A. Boulch and M. Renaud, “Fast and robust normal estimation for point clouds with
sharp features,” Computer Graphics Forum, vol. 31, no. 5, pp. 1766–1774, 2012.

[38] H. Hoppe, T. DeRose, T. Duchamp, and J. McDonald, “Surface reconstruction from
unorganized points,” ACM SIGGRAPH Computer Graphics, vol. 26, no. 2, 1992.

[39] J. Zhang, J. Cao, X. Liu, J. Wang, J. Liu, and X. Shi, “Point cloud normal estimation
via lowrank subspace clustering,” Computers and Graphics, vol. 37, no. 6, pp. 697–706,
2013.

[40] G. Guennebaud and M. Gross, “Algebraic point set surfaces,” ACM Transactions on
Graphics (TOG), vol. 26, no. 3, pp. 23, 2007.

[41] D. L. Page, Y. Sun, A. F. Koschan, J. Paik, and M. A. Abidi, “Normal vector voting:
crease detection and curvature estimation on large, noisy meshes,” Graphical Models,
vol. 64, no. 3, pp.199–229, 2003.

[42] T. K. Dey, G. Li, and J. Sun, “Normal estimation for point clouds: A comparison study
for a Voronoi based method,” in Proceedings of Eurographics/IEEE VGTC Symposium
Point–Based Graphics, 2005, pp. 39–46.

[43] Q. Merigot, O. Maks, and J. G. Leonidas, “Voronoi-based curvature and feature estima-
tion from point clouds,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 6, pp. 743–756, 2011.

[44] X. P. Zhang, H. J. Li, and Z. L. Cheng, “Curvature estimation of 3D point cloud surfaces
through the fitting of normal section curvatures,” in Proceedings of AsiaGraph, 2008, pp.
23–26.

[45] S. Holzer, R. B. Rusu, M. Dixon, and S. Gedikli, “Adaptive neighborhood selection
for real–time surface normal estimation from organized point cloud data using integral
images,” in Proceedings of International Conference on Intelligent Robots and Systems,
2012, pp. 2684–2689.

[46] N. J. Mitra and A. Nguyen, “Estimating surface normals in noisy point cloud data,”
in Proceedings of the 19th Annual Symposium on Computational Geometry, 2003, pp.
322–328.



References 85

[47] Y. Guo, M. Bennamoun, F. Sohel, and M. Lu, “3D object recognition in cluttered
scenes with local surface features: a survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 36, no. 11, pp. 2270–2287, 2014.

[48] D. Zheng, J. Xu, and C. Ren-xi, “Generation method of normal vector from disordered
point cloud,”in Proceedings of IEEE Joint Urban Remote Sensing Event, 2009, pp. 1–5.

[49] X. D. Yang and Y. L. Tian, “Super normal vector for activity recognition using depth
sequences,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 804–811.

[50] D. OuYang and H. Y. Feng, “On the normal vector estimation for point cloud data from
smooth surfaces,” Computer–Aided Design, vol. 37, no. 10, pp. 1071–1079, 2005.

[51] I. M. Park, E. W. Archer, and N. Priebe, “Spectral methods for neural characterization
using generalized quadratic models,” in Proceedings of Advances in Neural Information
Processing Systems, 2013, pp. 2454–2462.

[52] P. Dayan and L. F. Abbott, “Theoretical neuroscience: computational and mathematical
modeling of neural systems,” Journal of Cognitive Neuroscience, vol. 15, no. 1, pp.
154–155, 2003.

[53] Z. Yan, W. Zhang, Y. He, D. Gorczyca, Y. Xiang, and L. E. Cheng, “Drosophila
NOMPC is a mechanotransduction channel subunit for gentle–touch sensation,” Nature,
vol. 493, no. 7431, pp. 221–225, 2013.

[54] T. J. Prescott, E. D. Mathew, and M. W. Alan, “Active touch sensing,” Philosophical
Transactions of the Royal Society B, vol. 366, no. 1581, pp.2989–2995, 2011.

[55] Y. Roudaut, A. Lonigro, B. Coste, J. Hao, and P, Delmas, “Touch sense: functional
organization and molecular determinants of mechanosensitive receptors,” Channels,
vol.6, no. 4, pp. 234–245, 2012.

[56] A. Gallace and C. Spence, “Touch and the Body,” Psyche, vol. 16, no. 1, pp. 30–67,
2010.

[57] G. Robles-De-La-Torre, “The importance of the sense of touch in virtual and real
environments,” IEEE Multimedia, vol. 13, no. 3, pp. 24–30, 2006.

[58] M. Pantic and P. Ioannis, “Dynamics of facial expression: recognition of facial actions
and their temporal segments from face profile image sequences,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 31, no. 2, pp. 433–449, 2006.



86 References

[59] Z. Zeng, M. Pantic, and G. I. Roisman, “A survey of affect recognition methods:
Audio, visual, and spontaneous expressions,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol.31, no. 1, pp. 39–58, 2009.

[60] J. J. J. Lien, T. Kanade, J. F. Cohn, and C. C. Li, “Detection, tracking, and classification
of action units in facial expression,” Robotics and Autonomous Systems, vol.3, pp. 131–
146, 2000.

[61] Y. Tong, J. Chen, and Q. Ji, “A unified probabilistic framework for spontaneous fa-
cial action modeling and understanding,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 32, no. 3, pp. 258–273, 2010.

[62] Y. Tian, T. Kanade, and J. F. Cohn, “Recognizing lower face action units for facial
expression analysis,” in Proceedings of 4th International Conference on Automatic Face
and Gesture Recognition, 2000, pp. 484–490.

[63] Y. Tian, T. Kanade, and J. F. Cohn, “Recognizing action units for facial expression
analysis,” IEEE Transactions on pattern analysis and machine intelligence, vol. 23, no.
2, pp. 97–115, 2001.

[64] M. S. Bartlett, G. Littlewort, and M. Frank, “Recognizing facial expression: machine
learning and application to spontaneous behavior,” IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2005, pp. 568–573.

[65] T. Kanade, J. F. Cohn, and Y. Tian, “Comprehensive database for facial expression
analysis.” in Proceedings of 4th International Conference on Automatic Face and Gesture
Recognition, 2000, pp. 46–53.

[66] R. A. James, “The circumplex model of affect,” Journal of Personality and Social
Psychology, vol. 39, no. 6, pp. 1161–1178, 1980.

[67] J. Posner, R. A. James, and S. P. Bradley, “The circumplex model of affect: An integra-
tive approach to affective neuroscience, cognitive development, and psychopathology,”
Development and psychopathology, vol. 17, no. 3, pp. 715–734, 2005.

[68] P. Ekman, “Facial expression and emotion,” American Psychologist, vol. 48, no. 4, p.
384, 1993.

[69] R. Adolphs, “Neural systems for recognizing emotion,” Current Opinion in Neurobiol-
ogy, vol. 12, no. 2, pp. 169–177, 2002.



References 87

[70] M. T. Posamentier and A. Herve, “Processing faces and facial expressions,” Neuropsy-
chology Review, vol. 13, no. 3, pp. 113–143, 2003.

[71] R. J. James and W. Davidson, Handbook of Affective Sciences. Oxford University Press,
2002.

[72] P. Ekman and F. V. Wallace, “Measuring facial movement.” Environmental Psychology
and Nonverbal Behavior, vol. 1, no. 1, pp. 56–75, 1976.

[73] H. Chen and B. Bir, “3D free–form object recognition in range images using local
surface patches,” Pattern Recognition Letters, vol. 28, no. 10, pp. 1252–1262, 2007.

[74] Z. Teng and X. Jing, “Surface–based general 3D object detection and pose estimation,”
in Proceedings of IEEE International Conference on Robotics and Automation, 2014, pp.
5473–5479.

[75] K. Tanaka, “Inferotemporal cortex and object vision,” Annual Review of Neuroscience,
vol. 19, no. 1, pp. 109–139, 1996.

[76] F. Rothganger, S. Lazebnik, and C. Schmid, “3d object modeling and recognition using
local affine-invariant image descriptors and multi-view spatial constraints,” International
Journal of Computer Vision, vol. 66, no. 3, pp. 231-259, 2006.

[77] A. E. Johnson and H. Martial, “Using spin images for efficient object recognition in
cluttered 3D scenes,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 21, no. 5, pp. 433–449, 1999.

[78] A. K. Jain and D. Chitra, “3d object recognition,” Statistics and Computing, vol. 10, no.
2, pp. 167–182, 2000.

[79] K. Lai and D. Fox, “Object recognition in 3D point clouds using web data and domain
adaptation,” The International Journal of Robotics Research, vol. 29, no. 8, pp. 1019–
1037, 2010.

[80] K. Lai, L. Bo, X. Ren, and D. Fox, “Detection-based object labeling in 3D scenes,”
in Proceedings of International Conference on Robotics and Automation, 2012, pp.
1330–1337.

[81] G. Pang and U. Neumann, “Training–based object recognition in cluttered 3d point
clouds,” in Proceedings of International Conference on 3D Vision, 2013, pp. 87–94.



88 References

[82] J. Huang and S. You, “Detecting objects in scene point cloud: A combinational ap-
proach,” in Proceedings of International Conference on 3D Vision, 2013, pp. 175–182.

[83] K. Lai, L. Bo, X. Ren, and D. Fox. “A large-scale hierarchical multi-view rgb-d object
dataset,” in Proceedings of International Conference on Robotics and Automation (ICRA),
2011, pp. 1817–1824.

[84] R. Socher, B. Huval, B. P. Bath, C. D. Manning, and A. Y. Ng, “Convolutional-recursive
deep learning for 3d object classification,” Neural Information Processing Systems, vol.
3, no. 7, pp. 665-673, 2012.



Appendix A

A Raspberry Pi 3 Powered High
Performance Computing for SCFnet

The world’s fastest computer is currently China’s Sunway TaihuLight with 10,649,600 CPU
cores. The 32 cores created by 8 Raspberry Pi 3 units might seem less impressive, but it’s
an enough good computing environment for a DL with nearly 30 layers (200k parameters),
where the requirments are shown in Table A.1. In our case, we used 8 Raspberry Pi 3 to built
a 32 core beowolf cluster system. The advantage of cluster is that, the one single Pi 3 is far
lower than a desktop system with Core I7 cpu, but once applying the parallel computing
technique, a 32 core cluster is more capable than a single Core I7.

In our DL training processing, the master node of this cluster works as the broadcast
point, which is also gathering the information from Kinect, and checks the standby worker
nodes, using the message passing interface to seperate the calculating gradient of neurons to
each worker, as shown in Fig. A.1.

Table A.1 The required items for a Beowolf cluster system

Device Number Other
Raspberry Pi 3 8
Ethernet Hub/Router 1 at least 9 ports
TF SD-cards 8 at least 16 GB
Kinect v1 1 v2 is not supported

by Linux OS
Power supply 1 80 W

By creating this computing cluster, we were able to reduce the 70 percent of training time
in this 30 layer DL structure (i.e., SCFnet), which was nearly 17 hours. And Fig. A.2 shows
the assembled final cluster.



90 A Raspberry Pi 3 Powered High Performance Computing for SCFnet

Fig. A.1 The Raspberry Pi based high performance computing cluster

Fig. A.2 Assembled HPC, and some of the components: number 1 is the Kinect device;
number 2 is two fans; number 3 is the master node; number 4 is the 80W power supply; and
number 5 is the worker cluster.



Appendix B

Object Data

This appendix shows the data structure which is related to HMM-based recognition in Chapter
3. The data includes 3 main types of objects, i.e., cups, teapots, and bottles. Each of the
objects have 10 different CAD source models. Each of the models is captured by applying
the omnidirectional projection to produce the edge information and the information on the
surface condition. The illustration of the data structure is shown in Fig. B.1, where the blue
blocks represent the labels for different objects.



92 Object Data

Fig. B.1 Illustrated detail of our model


	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Background
	1.2 Aims of The Thesis
	1.3 Contributions
	1.4 Thesis Structure
	1.5 Publications

	2 Neural Network and Deep Learning
	2.1 Neural Network
	2.1.1 Neuron
	2.1.2 Activation Function

	2.2 Multilayer Neural Network and Back-propagation
	2.3 Convolutional Neural Network
	2.3.1 Convolution Layer
	2.3.2 Pooling Layer
	2.3.3 Rectified Linear Unit

	2.4 Autoencoder
	2.5 An Example
	2.6 Summary

	3 3D Point Cloud Data on Deep Learning
	3.1 3D Sensors
	3.2 Point Cloud Data
	3.2.1 Vision Based PCD
	3.2.2 An Human-like Vision Analysis

	3.3 Summary

	4 Touch Sensing Based Semi-Supervised Deep Learning
	4.1 Touch Sensing Mechanism
	4.2 Improved Vibration Firing Map
	4.2.1 Stacked Convolutional Auto-encoder
	4.2.2 Long-short Term Memories Unit
	4.2.3 Short Term Memories CAE

	4.3 Skin Indentation
	4.3.1 Data
	4.3.2 Surface Condition
	4.3.3 Result

	4.4 Surface Common Feature
	4.5 Summary

	5 Applications of Surface Common Features on Deep Learning
	5.1 Facial Expression Recognition
	5.1.1 Introduction
	5.1.2 Emotion Modeling
	5.1.3 Data Training
	5.1.4 Recognition Network
	5.1.5 Result

	5.2 Object Recognition
	5.2.1 Introduction
	5.2.2 Model Details
	5.2.3 Unsupervised Pre-training Filters
	5.2.4 Object Detection

	5.3 Summary

	6 Conclusion
	6.1 Contributions
	6.2 Future Work

	References
	Appendix A A Raspberry Pi 3 Powered High Performance Computing for SCFnet
	Appendix B Object Data

