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ABSTRACT 

 

 In mammals, the corpus luteum (CL) is an essential endocrine gland for the 

establishment and maintenance of pregnancy. If pregnancy is not established, the CL 

regresses and disappears rapidly from the ovary (luteolysis). Luteolysis is initiated by 

the uterine prostaglandin F2α (PGF) in ruminants, and luteolysis is characterized by a 

reduction in progesterone (P4) production (functional luteolysis) followed by luteal cell 

death (structural luteolysis). The major event that causes structural luteolysis is luteal 

cell death (apoptosis). Apoptosis is a highly conserved mechanism that allows an 

organism to tightly control cell numbers and tissue size. Luteal regression is triggered 

by complex factors. Many cytokines, including tumor necrosis factor α and interferon γ 

secreted by immune cells, and nitric oxide produced by luteal endothelial cells directly 

induce CL cells to undergo apoptosis. These reports indicate that many molecules are 

involved in structural luteolysis. However, the indirect effects of the above luteolytic 

factors on luteolysis are not well understood. 

Glycosylation modulates a variety of physicochemical and biological properties 

of proteins such as protein folding, stability, targeting, and ligand binding. Most 

membrane proteins including cell surface receptors are glycosylated, and glycosylation 

status is important for their function. However, the role of glycosylation in the CL is not 

clear.  

Galectins are carbohydrate-binding proteins distributed intra- and extracellularly. 

Their carbohydrate-binding specificity for β-galactoside is conserved by evolutionarily 

preserved carbohydrate-recognition domains. Extracellular galectins interact with cell 

surface oligosaccharides and form lattices that enhance the resident time of 

glycoproteins at the cell surface. 

Galectin-3, a ubiquitously expressed protein involved in many cellular processes, 

serves as an anti-apoptotic and/or pro-apoptotic factor in various cell types. Although 

galectin-3 is detected in the bovine CL, its role remains unclear. The expression of 

galectin-3 in the bovine CL was highest at the regressed stage, and galectin-3 was 

localized on luteal steroidogenic cells (LSCs). When cultured LSCs were exposed to 

PGF for 48 h, the expression and secretion of galectin-3 increased. When the cultured 

LSCs were treated with galectin-3 for 24 h, cleaved caspase-3 expression was increased 

and the cell viability was decreased, whereas P4 production did not change. β1 integrin, 

a target protein of galectin-3, was expressed in bovine CL and possessed glycans which 

galectin-3 binds. Furthermore, galectin-3 bound to glycans of luteal β1 integrin. The 

decreased cell viability of cultured LSCs by galectin-3 was suppressed by β1 integrin 
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antibody. The overall findings suggest that the secreted galectin-3 stimulated by PGF 

plays a role in structural luteolysis by binding to β1 integrin. 

Galectin-1 is expressed in the functional CL of cows, and increases the viability 

of bovine LSCs by modifying the functions of membrane glycoproteins. The binding of 

galectin-1 to glycoproteins is blocked by α2,6-sialylation of the terminal galactose 

residues of glycoconjugates, which is catalyzed by a sialyltransferase (ST6Gal-I). 

However, the physiological role of α2,6-sialic acid in the bovine CL is unclear. The 

level of α2,6-sialylation of the bovine CL were higher during the regressed-luteal stage 

than other luteal stages. Lectin histochemistry revealed that α2,6-sialylated 

glycoconjugates were localized to luteal endothelial cells throughout the estrous cycle. 

In addition, α2,6-sialylated glycoconjugates concentrated to the membrane of LSCs 

during the regressed-luteal stage. PGF treatment for 72 h enhanced the expression of 

ST6Gal-I mRNA and the level of α2,6-sialylated glycoproteins in mid-LSCs. The level 

of α2,6-sialylated glycoproteins of late-LSCs (Days 15-17 after ovulation) was higher 

than that of mid-LSCs (Days 8-12 after ovulation), and galectin-1 increased the viability 

of mid-LSCs but not that of late-LSCs. Furthermore, galectin-1 increased the viability 

of late-LSCs when α2,6-sialic acid residues were removed by neuraminidase. The 

overall findings suggest that α2,6-sialylation stimulated by PGF contributes to luteolysis 

by inhibiting the luteotrophic effects of galectin-1 in the bovine CL. 

My study shows that the interaction between galectins and glycan play a critical 

role in the regression of bovine CL. Galectin-3 increased by PGF induced the apoptosis 

of bovine LSCs, and α2,6-sialylated glycoproteins inductively expressed by stimulation 

with PGF2α inhibits the interaction between galectin-1 and the N-glycoproteins on the 

cell surfaces, contribute to the regulation of luteolysis in co
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CHAPTER 1 

Galectin-3 contributes to luteolysis by binding to β1 integrin 

in the bovine corpus luteum 

 

INTRODUCTION 

 

The corpus luteum (CL) is a transient endocrine gland that is essential for the 

regulation of ovarian cycles as well as for the establishment of pregnancy. If pregnancy 

does not occur, regression of the CL (luteolysis) is initiated by the uterine prostaglandin 

F2α (PGF) in ruminants [1]. Luteolysis is characterized by a reduction in progesterone 

(P4) production (functional luteolysis) followed by luteal cell death (structural 

luteolysis) [2]. The major event that causes structural luteolysis is luteal cell death 

(apoptosis) [3-5]. Apoptosis is a highly conserved mechanism that allows an organism 

to tightly control cell numbers and tissue size [6]. Luteal regression is triggered by 

complex factors. Since progesterone is one of the survival factors in the bovine corpus 

luteum [7], functional luteolysis could be a cause of structural luteolysis. Many 

cytokines, including tumor necrosis factor α (TNF) and interferon γ (IFNG) secreted by 

immune cells, and nitric oxide produced by luteal endothelial cells directly induce CL 

cells to undergo apoptosis [8-10]. Nitric oxide is also known to play a crucial role in 

functional luteolysis [11]. These reports indicate that many molecules are involved in 

structural luteolysis. However, the indirect effects of the above luteolytic factors on 

luteolysis are not well understood. 

Galectin-3 is one of the β-galactoside-binding proteins that bind to target 

molecules through conserved carbohydrate recognition domains [12]. In various cell 

types, galectin-3 is expressed in the nucleus or cytoplasm, on the cell membrane, and in 

the extracellular matrix [13]. Galectin-3 is involved in many cellular processes such as 

apoptosis and proliferation [14-16]. Intracellular galectin-3 generally mediates 

anti-apoptotic effects through carbohydrate-independent processes [17-20], whereas 

extracellular galectin-3 binds to cell surface oligosaccharides, and thereby induces 

apoptosis [14, 21, 22].  

Integrins are cell surface glycoproteins that mediate adhesion to the 

extracellular matrix, and integrin signaling regulates cell proliferation, differentiation 

and apoptosis [23]. In mammals, they are composed of 18 α-subunits and 8 β-subunits 
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[24]. Among these integrins, 12 members containing the β1 subunit are involved in 

various biological functions [25]. β1 integrin is a glycan to which galectin-3 binds [26] 

and extracellular galectin-3 induces apoptosis by binding to β1 integrin in T cells and 

tumor cells [14, 22]. Therefore, interaction between galectin-3 and β1 integrin might 

also play a role in inducing apoptosis of luteal cells. 

In cow, galectin-3 has been identified in the uterus, cervix, oviduct, atretic 

follicles and CL [27]. Galectin-3 protein localization has been immunohistochemically 

detected in the regressing CL [27], but its physiological role is still unclear. Based on 

these reports, we hypothesized that galectin-3 is involved in the apoptosis of luteal cells 

during luteolysis. In the present study, to test this hypothesis, we examined 1) cyclic 

changes in the galectin-3 mRNA and protein expressions, 2) effect of luteolytic factors 

on expression of galectin-3 mRNA and protein in cultured mid luteal steroidogenic cells 

(LSCs), 3) subcellular localization of galectin-3 in the regressed CL and effect of PGF 

on the secretion of galectin-3 in LSCs, 4) effect of galectin-3 on P4 production and cell 

viability in LSCs, 5) expression and glycan structure of β1 integrin in bovine CL 

throughout the estrous cycle, 6) interaction between β1 integrin and galectin-3 in LSCs. 
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MATERIALS AND METHODS 

 

Collection of bovine CLs 

Ovaries were collected from Holstein cows at a local slaughter-house within 

10–20 min after exsanguinations. The stage of the estrous cycle was defined as 

described previously [28]. Ovaries with CLs were classified into the early (Days 2-3 

after ovulation), developing (Days 5-6), mid (Days 8-12), late (Days 15-17), and 

regressed (Days 19-21) luteal stages. After determination of the stages, CL tissues were 

immediately separated from the ovaries, frozen rapidly in liquid nitrogen, and then 

stored at −80°C until processed for mRNA and protein analyses. For cell culture, 

ovaries with CLs were submerged in ice-cold physiological saline and transported to the 

laboratory. 

 

Luteal cell isolation 

Luteal tissue from mid- and late-luteal stage CLs was enzymatically 

dissociated, and luteal cells were cultured as described previously [29]. Dissociated 

luteal cells from CLs were pooled. The luteal cells were suspended in a culture medium, 

Dulbecco modified Eagle medium and Ham F-12 medium (D/F; 1:1 [vol/vol]; D8900; 

Sigma-Aldrich Corp., St. Louis, MO, USA) containing 5% bovine serum (16170–078; 

Thermo Fisher Scientific, MA, U.S.A.) and 20 μg/ml gentamicin (15750–060; Thermo 

Fisher Scientific, MA, U.S.A.) under 5% CO2 in air. Cell viability was greater than 85% 

as assessed by trypan blue exclusion. The cells consisted of approximately 70% small 

LSCs, 20% large LSCs, 10% endothelial cells or fibrocytes, and no erythrocytes. In this 

study, these cells were defined as LSCs. 

 

Cell culture 

Dispersed luteal cells (2.0×105 cells/ml) were cultured in D/F medium 

containing 5% bovine serum in 24-well plates (2.0×105 cells/well, 662160; Greiner 

Bio-One, Frickenhausen, Germany) for Quantitative RT-PCR, or 75-cm2 culture flasks 

(12×105 cells/flask, 658175; Greiner Bio-One, Frickenhausen, Germany) for western 

blotting, or 96-well culture dishes (0.2×105 cells/well, 3860–096; Iwaki, Chiba, Japan) 

for cell viability test and EIA. The medium was replaced with D/F medium without 

phenol red (D2906; Sigma-Aldrich Corp., St. Louis, MO, USA) containing 0.1% bovine 

serum albumin (BSA; 23209; Thermo Fisher Scientific, MA, U.S.A.), 5 ng/ml sodium 
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selenite (S5261; Sigma-Aldrich Corp., St. Louis, MO, USA), and 5 μg/ml 

holo-transferrin (T3400; Sigma-Aldrich Corp., St. Louis, MO, USA), and the following 

experiments were carried out. 

 

Quantitative RT-PCR 

Total RNA was extracted from CL tissues and cells using TRIsure 

(BIO-38032; BIOLINE) according to the manufacturer’s directions. One μg of each 

total RNA was reverse transcribed using a ThermoScriptTM RT-PCR System (no. 

11146-016; Invitrogen, Carlsbad, CA, USA), and 10% of the reaction mixture was used 

in each PCR using specific primers for galectin-3 from the bovine sequence (Table 1). 

Quantification of mRNA expression was determined by iQ SYBR Green Supermix (no. 

170-8880; Bio-Rad Laboratories, Inc, Berkeley, CA, USA) starting with 2 ng of 

reverse-transcribed total RNA. For quantification of the mRNA expression levels, and 

PCR was performed under the following conditions: 95°C for 15 min, followed by 45 

cycles of 94°C for 15 sec, 60°C for 20 sec and 72°C for 15 sec. MRPL4 mRNA 

expression was used as an internal control. To analyze the relative level of expression of 

each mRNA, the 2- ΔΔCT method was used [34].  In the present study, we compared 

four housekeeping genes in the CL by real-time PCR. The four genes evaluated were 

mitochondrial ribosomal protein L4 (MRPL4), cytochrome c oxidase subunit IV 

(COX4), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and tubulin beta 2 

(TUBB) (Table 1). To determine the most stable transcribed housekeeping gene, 

Normfinder software (download at http://moma.dk/normfinder-software) was used. This 

software calculates the gene expression stability measure (M) and determines the most 

stable housekeeping gene via a stepwise exclusion or ranking process resulting in the 

selection of the most stable housekeeping genes for the specific tissue. Since MRPL4 

was the most suitable, with an average expression stability of M = 0.171, followed by 

COX4 (M =0.261) > GAPDH (M = 0.762) > TUBB (M = 0.280), MRPL4 was used as a 

housekeeping gene for further experiments. 

 

Western blotting 

Protein concentrations in the lysates were determined by using BSA as a 

standard. The proteins were then solubilized in SDS gel-loading buffer (50 mM 

Tris-HCl, 2% SDS [31607-94, Nacalai Tesque, Tokyo, Japan], 10% glycerol, 1% 

β-mercaptoethanol [137-06862; Wako Pure Chemical Industries, Ltd.], pH 6.8), and 
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heated at 95°C for 10 min. Samples (30 μg protein/lane) were separated on SDS-PAGE, 

and then transferred to a PVDF membrane (RPN303F; GE Healthcare., Little Chalfont, 

Buckinghamshire, UK). The membrane was washed in TBS-T (0.1% Tween 20 in TBS 

[25 mM Tris-HCl, 137 mM NaCl, pH 7.5]), incubated in blocking buffer (5% nonfat 

dry milk in TBS-T) for 1 h at room temperature. After washing, the membranes were 

incubated with galectin-3 antibody diluted at 1:1000 (sc-20157; Santa Cruz 

Biotechnology Inc., CA, USA), cleaved caspase-3 antibody (#9661; Cell Signaling 

Technology Inc., Beverly, MA, USA) diluted at 1:1000, tumor necrosis factor receptor 

1 (TNFR1) antibody (ab19139; Abcam, Cambridge, UK) diluted at 1:1000, β1 integrin 

antibody (MAB2000; Millipore, Billerica, MA, USA) diluted at 1:1000 or ACTB 

antibody (A2228; Sigma-Aldrich Corp., St. Louis, MO, USA) diluted at 1:10000 for 

overnight at 4°C. After washing with TBS-T, the membrane was incubated with the 

appropriate secondary antibodies (anti-rabbit Ig, HRP-linked whole antibody produced 

by donkey [NA934; Amersham Biosciences Corp., San Francisco, CA, USA; 1:10000] 

for galectin-3, cleaved caspase-3 and TNFR1 protein; anti-mouse Ig, HRP-linked whole 

antibody produced by sheep [no. NA931; Amersham Biosciences Corp.; 1:10000 for β1 

integrin or 1:40000 for ACTB]) for 1 h at room temperature. After washing again with 

TBS-T, the signal was detected by chemiluminescence using Immobilon Western 

Chemiluminescent HRP Substrate (P36599; Millipore, Billerica, MA, USA). ACTB 

protein expression was used as an internal control. The intensity of the immunological 

reaction in the tissues was estimated by measuring the optical density in the defined 

area by computerized densitometry using Image LabTM Software version 4.0 (Bio-Rad 

Laboratories, Inc, Berkeley, CA, USA). 

 

Immunohistochemistry 

The sections, at 5 μm thickness, were de-waxed and washed in 

phosphate-buffered saline. Subsequently the sections were incubated at room 

temperature with 3% hydrogen peroxide in distilled water for 20 min and Avidin/Biotin 

blocking solution (Vector Laboratories Inc., Burlingame, CA, USA) for 15 min for each 

reagent. Then the sections were incubated with normal goat serum for 60 min at room 

temperature followed by galectin-3 antibody (1:200) at 4°C overnight. After washing 

twice in PBS, the sections were incubated with biotinylated anti-rabbit IgG (1:500; 

Vector laboratories Inc., Burlingame, CA, USA) for 60 min at room temperature. The 

reaction sites were visualized using Vectastain ABC Elite kit (Vector Laboratories Inc., 
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Burlingame, CA, USA) for 60 min at room temperature and ImmPACT® 3, 

3’-Diaminobenzidine (DAB) Peroxidase Substrate Kit (Vector Laboratories Inc., 

Burlingame, CA, USA) for 5 min. The sections were counterstained for 2 min with 

haematoxylin and observed under a light microscope (BX51; Olympus Corporation, 

Tokyo, Japan). 

 

WST-1 assay 

WST-1, a kind of MTT [3-(4,5-dimethyl-2 thiazolyl)-2,5-diphenyl-2 

H-tetrazolium bromide], is a yellow tetrazolium salt that is reduced to formazan by live 

cells containing active mitochondria. The culture medium was replaced with 100 μl D/F 

without phenol red medium-BSA, and a 10 μl aliquot (0.3% WST-1, 0.2 mM 

1-methoxy PMS in PBS, pH 7.4) was added to each well. The cells were then incubated 

for 4 h at 38°C. The absorbance was read at 450 nm using a microplate reader (Model 

450; Bio-Rad, Hercules, CA). In this assay, data were expressed as percentages of the 

appropriate control values. 

 

P4 determination 

Concentrations of P4 were determined directly from the cell culture media with 

an enzyme immunoassay, as described previously [30]. The standard curve ranged from 

0.391 to 100 ng/ml, and the median effective dose (ED50) of the assay was 3.5 ng/ml. 

The intra- and interassay coefficients of variation were 5.8% and 9.3%, respectively. 

 

Lectin blotting 

Protein samples were subsequently separated by SDS-PAGE. Separated 

proteins were transferred onto PVDF membrane. The membrane was blocked with 5% 

BSA in TBS-T, and then reacted with 1.0 μg/ml of HRP-conjugated L4-PHA lectin 

(J212; J-OIL MILLS, Tokyo, Japan) in TBS-T for 1 h. After washing again with TBS-T, 

the reactive protein bands were detected by chemiluminescence using Immobilon 

Western Chemiluminescent HRP Substrate. 

 

Galectin-3 overlay assay 

Cell lysates (2.0 mg of protein) were immunoprecipitated with β1 integrin 

antibody and protein-G-beads, as described above. Precipitated proteins were separated 

by SDS-PAGE and subsequently transferred to a PVDF membrane. The membrane was 
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blocked with 5% BSA in TBS-T, and then exposed to biotin-conjugated galectin-3. 

Biotinylated label of glectin-3 was performed using EasyLink Biotin Conjugation Kit 

(ab102865; Abcam), according to the manufacture’s instruction. After washing with 

TBS-T, the membrane was incubated with streptavidin conjugated to HRP. After 

washing again with TBS-T, the reactive protein bands were detected by 

chemiluminescence using Immobilon Western Chemiluminescent HRP Substrate. 

 

Experiment 1: Cyclic changes in the galectin-3 mRNA and protein expressions 

Galectin-3 mRNA and protein expressions of in each CL tissues (Early n=4, 

Developing n=4, Mid n=4, Late n=4, Regressed n=4,) were examined by quantitative 

RT-PCR and western blotting. Galectin-3 protein localization of in each CL tissues 

(Early; n=3, Mid; n=3, Regressed; n=3) was analyzed by immunohistochemistry. 

 

Experiment 2: Effect of luteolytic factors on expression of galectin-3 mRNA and 

protein in cultured mid LSCs 

 To clarify regulatory factors of galectin-3 mRNA and protein in cultured mid 

LSCs, the cells were exposed to 2.3 nM recombinant human TNF (Dainippon 

Pharmaceutical, Osaka, Japan) and/or 2.5 nM recombinant bovine IFNG (kindly 

donated by Dr. S. Inumaru, NIAH, Ibaraki, Japan) or 1.0 μM PGF (P7652; 

Sigma-Aldrich Corp., St. Louis, MO, USA) for 12, 24, 48 and 72 h. The doses for 

treatments were selected based on previous reports [30, 31]. After the culture, the 

expression of galectin-3 mRNA was determined by quantitative RT-PCR. The 

galectin-3 protein expression was assessed by western blotting in cells treated with PGF 

for 48 h. 

 

Experiment 3: Subcellular localization of galectin-3 in the regressed CL and effect 

of PGF on the secretion of galectin-3 in cultured mid LSCs 

To elucidate the subcellular localization of galectin-3 in the regressed CL, the 

regressed CL tissue was fractionated into membrane and cytoplasm fractions. The CL 

tissues were homogenized on ice in the homogenization buffer by a tissue homogenizer 

(Physcotron, NS-50; NITI-ON Inc., Chiba, Japan), followed by a filtration with a metal 

wire mesh (150 μm). For protein analysis, nuclei were removed from the tissue 

homogenates by centrifugation at 700 x g for 5 min. The resultant supernatant was 

fractionated into membrane and cytoplasmic cell fractions by centrifugation at 20,000 x 
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g for 1 h. The membrane and cytoplasm fractions were detected expression of galectin-3 

protein by western blotting. Validation of the cell fractionation was performed by 

reprobing with TNFR1 antibody as a plasma membrane marker and ACTB antibody as 

a cytoplasm marker. Since TNFR1 is expressed in the bovine CL [32] and generally 

known as a membrane receptor, TNFR1 antibody was used for plasma membrane 

marker. 

To examine whether PGF induces secretion of the galectin-3 in LSCs, after 48 

h of treatment with PGF (1.0 μM), cultured LSCs were treated with a non-competing 

saccharide, 0.1 M sucrose and a competing saccharide, 0.1 M β-lactose for 4 h. LSCs 

were collected and subsequently analyzed galectin-3 protein by western blotting. 

 

Experiment 4: Effect of galectin-3 on P4 production and cell viability in cultured 

mid LSCs 

 To reveal the effect of galectin-3 on P4 production and cell viability in LSCs, 

the cells were exposed to recombinant galectin-3 (0.01, 0.1, 1.0, 5.0 μg/ml; R&D 

Systems, Inc., Minneapolis, MN, USA) for 24 h. The cell viability was determined by 

Dojindo Cell Counting Kit including WST-1 (No. 345-06463; Dojindo, Kumamoto, 

Japan) as described previously [33]. Progesterone concentrations in the media of LSCs 

were measured by enzyme immunoassay. Expression of cleaved caspase-3 was 

analyzed by western blotting in cells treated with recombinant galectin-3 (1.0 μg/ml) for 

24 h. 

 

Experiment 5: Expression and glycan structure of β1 integrin in bovine CL 

throughout the estrous cycle 

The membrane fractions of the CLs and the LSCs were lysed in a lysis buffer 

consisting of 20 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1.0% Triton X 

100, 10% Glycerol and protease inhibitor cocktail (11 697 498 001; Roche; Basel, 

Switzerland). The lysates (2.0 mg of protein) were incubated with β1 integrin antibody 

and protein-G-beads (MAB2000; Millipore, Billerica, MA, USA) at 4°C for 24 h. The 

beads were washed with lysis buffer three times and immunoprecipitated proteins were 

analyzed by lectin blotting. 

 

Experiment 6: Interaction between β1 integrin and galectin-3 in cultured mid 

LSCs 
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To investigate whether galectin-3 decreases cell viability via β1 integrin in 

LSCs, after 1 h of treatment with β1 integrin neutralizing antibody (MAB1965; 

Millipore, Billerica, MA, USA) or anti-mouse IgG diluted at 1:1000, cultured LSCs 

were treated with recombinant galectin-3 (1.0 μg/ml) for 24 h and the cell viability was 

determined by WST-1. 

 

Statistical analysis 

All experimental data are shown as the mean ± SEM. The statistical 

significance of differences in the expression of galectin-3 mRNA and protein, cleaved 

caspase-3 protein, P4 production and the viability of LSCs were assessed by analysis of 

a one-way ANOVA followed by Bonferroni's multiple comparison test. Probabilities 

less than 5% (P<0.05) were considered significant. 
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RESULTS 

 

Experiment 1: Cyclic changes in the galectin-3 mRNA and protein expressions  

The expressions of galectin-3 mRNA and protein in the bovine CL were higher 

at the regressed luteal stage than at the other luteal stages (Fig. 1A, B; P<0.05). 

Galectin-3 was mainly localized in LSCs and macrophage (Fig. 2).  

 

Experiment 2: Effect of luteolytic factors on expression of galectin-3 mRNA and 

protein in cultured mid LSCs 

The expression of galectin-3 mRNA was significantly increased by a treatment 

with PGF for 48 h (Fig. 3A; P<0.05), but not by TNF and/or IFNG, compared with 

control for 12, 24, 48 and 72 h. The expression of galectin-3 protein was also 

significantly increased by a treatment with PGF for 48 h (Fig. 3B; P<0.05). 

 

Experiment 3: Subcellular localization of galectin-3 in the regressed CL and effect 

of PGF on the secretion of galectin-3 in cultured mid LSCs 

The expression of galectin-3 protein was mainly detected in membrane fraction. 

ACTB was mostly detected in the cytoplasmic fraction and TNFR1 was detected in the 

membrane fraction (Fig. 4A).  

The expression of galectin-3 protein was significantly increased by PGF. 

PGF-induced galectin-3 expression was significantly decreased by β-lactose (Fig. 4B, 

P<0.05).  

 

Experiment 4: Effect of galectin-3 on P4 production and cell viability in cultured 

mid LSCs 

Galectin-3 did not affect P4 production (Fig. 5A), whereas galectin-3 (1.0, 5.0 

μg/ml) significantly decreased the cell viability (Fig. 5B; P<0.05). Furthermore, the 

protein expression of cleaved caspase-3 was significantly increased by galectin-3 (1.0 

μg/ml) (Fig. 5C; P<0.05).  

 

Experiment 5: Expression and glycan structure of β1 integrin in bovine CL 

throughout the estrous cycle 

β1 integrin mRNA and protein in bovine CL were expressed throughout the 

estrous cycle (Fig. 6A, B). β1 integrin in both bovine CL and cultured mid LSCs 
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possessed glycans which galectin-3 binds as revealed by lectin blotting using L4-PHA 

(Fig. 6C).  

 

Experiment 6: Interaction between β1 integrin and galectin-3 in cultured mid 

LSCs 

Galectin-3 bound directly to β1 integrin in the isolated mid luteal cells (Fig.7 

A). Although cultured LSC viability was decreased by galectin-3, the viability of the 

LSC treated with β1 neutralizing integrin antibody was not changed by galectin-3 

compared with control (Fig. 7 B P<0.05).  
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Figure 1. Changes in the relative amounts of galectin-3 expressions. (A) Comparison of 

relative amounts of galectin-3 mRNA determined by quantitative RT-PCR in bovine CL 

tissue throughout the estrous cycle (Early, Days 2-3; Developing, Days 5-6; Mid, Days 

8-12; Late, Days 15-17; Regressed luteal stages [Regress], Days 19-21). Data are the 

mean ± SEM for four samples/stage and are expressed as the relative ratio of galectin-3 

mRNA to MRPL4 mRNA. (B) Representative western blot bands for galectin-3 and 

ACTB. Densitometrically analyzed western blot results in the bovine CL tissue during 

different luteal phases. Data are the mean ± SEM for four samples/stage and are 

expressed as the relative ratio of galectin-3 protein to ACTB protein. Different 

superscript letters indicate significant difference (P<0.05), as determined by ANOVA 

followed by Bonferroni’s multiple comparison test. 
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Figure 2. Representative images of the localization of galectin-3 protein in bovine CL 

throughout the estrous cycle. Black arrows indicate macrophages. Scale bars represent 

50 μm. 
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Figure 3. Effects of luteolytic factors on the expression of galectin-3 mRNA and 

protein in LSCs. (A) LSCs were treated with PGF (1.0 μM) or TNF (2.3 nM) and/or 

IFNG (2.5 nM) for 12, 24, 48 and 72 h. Data are expressed as the relative ratio of 

galectin-3 mRNA to MRPL4 mRNA levels. (B) Representative western blot bands for 

galectin-3 and ACTB in the cells treated with PGF (1.0 μM) for 48 h. The resultant 

signal was detected by chemiluminescence and quantitated by computer-assisted 

densitometry. Data are expressed as the relative ratio of galectin-3 protein to ACTB 

protein. All values are the means ± SEM. All of the experiments were repeated more 

than three times. The data were statistically analyzed using ANOVA followed by 

Bonferroni’s multiple comparison test. Asterisks indicate significant differences 

compared with control for 48 h (P<0.05). 
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Figure 4. (A) Subcellular localization of galectin-3 in the regressed CL. Regressed CL 

was fractionated into the membrane and cytoplasm fractions. Galectin-3 is shown in the 

upper lane. Staining for ACTB and TNFR1 was used to assess the purity of the 

cytoplasm and membrane fractions, respectively. (B) Effect of PGF on the secretion of 

galectin-3 in cultured mid LSCs. Cultured mid LSCs were treated with 0.1 M sucrose 

and 0.1 M β-lactose (Lactose) for 4 h after treated PGF (1.0 μM) for 48 h. The 

galectin-3 protein expression was assessed by western blotting analysis. Representative 

western blot bands for galectin-3 and ACTB are shown. All values are the means ± 

SEM. All of the experiments were repeated more than three times and different 

superscript letters indicate significant difference (P<0.05), as determined by ANOVA 

followed by Bonferroni’s multiple comparison test. 
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Figure 5. Effects of galectin-3 on P4 production (A) and cell viability (B) in LSCs. The 

cells were treated with recombinant galectin-3 (0, 0.01, 0.1, 1.0, 5.0 μg/ml) for 24 h. (C) 

Representative western blot bands for cleaved caspase-3 and ACTB in the cells treated 

with recombinant galectin-3 (1.0 μg/ml) for 24 h. The resultant signal was detected by 

chemiluminescence and quantitated by computer-assisted densitometry. Protein data are 

expressed as the relative ratio of cleaved caspase-3 protein to ACTB protein. All values 

are the means ± SEM. All of the experiments were repeated more than three times. The 

data were statistically analyzed using ANOVA followed by Bonferroni’s multiple 

comparison test (* P<0.05). 
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Figure 6. Changes in the relative amounts and glycan structure of β1 integrin. (A) 

Comparison of relative amounts of β1 integrin mRNA determined by quantitative 

RT-PCR in bovine CL tissue throughout the estrous cycle. Data are the mean ± SEM for 

four samples/stage and are expressed as the relative ratio of β1 integrin mRNA to 

MRPL4 mRNA. (B) Representative western blot bands for β1 integrin and ACTB. 

Densitometrically analyzed western blot results in the bovine CL tissue during different 

luteal phases. (C) L4-PHA lectin blot analysis of glycans attached to β1 integrin. 

Purified β1 integrin proteins were subjected to blotting analysis probed either β1 

integrin antibody or plant lectin (L4-PHA for detecting oligomers of D-GalNac). Data 

are the mean ± SEM for four samples/stage and are expressed as the relative ratio of 

galectin-3 protein to ACTB protein.  

 

 

 

 

 



- 24 - 

 

 

Figure 7. Interaction between β1 integrin and galectin-3 in cultured mid LSCs. (A) 

Galectin-3 overlay assay of glycans attached to β1 integrin. Immunoprecipitated β1 

integrin proteins were subjected to blotting analysis probed either β1 integrin antibody 

or Biotinylated galectin-3. As shown, biotin-conjugated galection-3 bound to β1 

integrin from the mid LSCs. (B) Cultured mid LSCs were treated with recombinant 

galectin-3 (1.0 μg/ml) for 24 h after treated with β1 integrin function blocking antibody 

or mouse IgG (diluted at 1:1000) for 1 h. All values are the means ± SEM. All of the 

experiments were repeated more than three times, and different superscript letters 

indicate significant difference (P<0.05), as determined by ANOVA followed by 

Bonferroni’s multiple comparison test. 
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Table 1. Primers for Quantitative RT-PCR 
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DISCUSSION 

 

Galectin-3 is a ubiquitously expressed protein that is involved in cell survival 

and death in many cell types [35]. In the mice, since regressing CL consisted of 

galectin-3-positive luteal cells, galectin-3 is suggested to be involved in luteal 

regression [36]. Although galectin-3 has been detected immunohistochemically in the 

bovine CL throughout the estrous cycle [27], its regulatory factor, target protein and 

roles in LSCs are unclear. Galectin-3 is present in the cell nucleus or cytoplasm, on the 

cell surface, and also in the extracellular environment [15]. Galectin-3 has been 

demonstrated to play the conflicting roles in cell viability, i.e. cell survival and 

apoptosis [15]. The two different actions of galectin-3 on cell viability depend on its 

subcellular localization [13]. Intracellular galectin-3 generally protects cells against 

apoptosis through carbohydrate-independent mechanisms, whereas extracellular 

galectin-3 binds to cell surface oligosaccharides and induces apoptosis [14, 21, 22, 37]. 

The major event that causes the structural luteolysis is death of LSCs by apoptosis [5]. 

In the present study, the expression of galectin-3 in the bovine CL was higher at the 

regressed luteal stage than at the other luteal stages, and that its protein was localized in 

LSCs and macrophages (Fig. 1, 2). As galectin-3 is commonly used as a macrophage 

maker [38], galectin-3 positive cells besides LSCs were judged as macrophages. Since 

the bone marrow-derived macrophages of galectin-3-deficient mouse exhibited 

defective phagocytosis of apoptotic cells, galectin-3 in macrophages is thought to play 

important roles of phagocytosis [39]. Moreover, luteolysis involves phagocytic 

elimination of apoptotic luteal cells by luteal macrophages in rat [40]. Based on the 

above findings, galectin-3 may also be required for phagocytosis by macrophages in the 

regressing CL in cattle. 

The localization of galectin-3 on the membrane might not completely be 

supported, because a faint band of β-actin was detected in plasma membrane fraction 

(Fig. 4A). Therefore, I further investigated whether galectin-3 was localized on LSCs 

stimulated by PGF (a mimic luteal regression) (Fig 4B). Galectin-3 binds to 

N-acetyllactosamine (LacNAc) structure in glycans, and lactose is a saccharide which 

has structure similar to LacNAc and inhibits the binding to galectin-3 [13]. On the other 

hand, since sucrose is a saccharide which does not bind to galectin-3, sucrose is 

commonly used as a negative control of lactose [22]. In the present study, the 

expression of galectin-3 protein stimulated by PGF was decreased by lactose but not 
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sucrose (Fig 4B), and the western blot band of membrane fraction was obviously 

stronger than that of cytosol fraction (Fig. 4A). The above findings strongly suggest that 

galectin-3 is mainly localized on the plasma membrane in the regressed CL. 

In various cells types, galectin expression is induced by cytokines as TNF, 

IFNG and interleukin 1 β [41-44]. In luteolysis, TNF and IFNG produced by immune 

cells play an important role [5]. Not only cytokines (TNF and IFNG) but also PGF are 

known as important luteolytic factors [5, 33]. Since galectin-3 expression was higher at 

the regressed luteal stage (Fig. 1, 2), I hypothesized that TNF, IFNG or PGF affect the 

expression and secretion of galectin-3 in LSCs. In the present study, the expression and 

secretion of galectin-3 in LSCs was stimulated by PGF at 48 h. PGF is elevated as a 

series of pulses in uterine venous blood at days 18-19 after ovulation [1]. In addition, 

galectin-3 expression in bovine CL was increased at the regressed stage (Fig. 1). Based 

on the above findings, PGF which triggers the induction of luteolysis during days 18-19 

[1] may stimulate the expression and secretion of galectin-3 by LSCs during days 19-21. 

Furthermore, galectin-3 localized on plasma membrane in the regressed CL may be the 

result of secretion of galectin-3 from LSCs in response to PGF.  

Luteolysis is characterized by a phase of inhibited P4 production (functional 

luteolysis), followed by a phase of decreasing in luteal size (structural luteolysis), when 

cells of the CL undergo apoptosis [1]. P4 production by LSCs treated with galectin-3 

did not change in spite of decreasing LSC viability. There are no reports that galectin-3 

affects a hormone production by any types of cells. One might only suppose that the cell 

death of LSCs started occurring at around 24 h after galectin-3 treatment. Galectin-3 

may contribute to only structural luteolysis, not to functional luteolysis. Galectin-3 

binds to glycoproteins such as integrins, neural cell adhesion molecule and CD98 [35]. 

In addition, integrins are expressed in luteal cells of rodents, and granulosa and theca 

cells of ruminants [23]. β1 integrin is reported to be involved in apoptosis induced by 

galectin-3 in colonic epithelial cells [22]. Based on the above findings, I hypothesized 

that the apoptosis in LSCs induced by galectin-3 requires β1 integrin. As expected, β1 

integrin was expressed and possesses glycans which galectin-3 binds in bovine CL 

throughout the estrous cycle. However, β1 integrin expression and glycan structure did 

not change throughout the estrous cycle (Fig. 6). This may be the reason why luteolysis 

is controlled by the change of galectin-3 expression during the estrous cycle, but not by 

changes in the expression or glycan structure of β1 integrin. I confirmed that galectin-3 

induces LSC death by binding to β1 integrin (Fig. 7), as shown in colon epithelial cells 
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and T cells [14, 22]. Integrins including β1 integrin bind to extracellular matrix 

(fibronectin, collagen), and galectin-3 inhibits the binding of the integrins to the 

extracellular matrix [45]. A variety of cell types undergo apoptosis by lack of 

extracellular matrix attachment, which is termed anoikis [24]. These findings suggest 

that galectin-3 produced by LSCs inhibits binding of integrins to extracellular matrix, 

and induces anoikis in LSCs.   

The overall findings suggest that galectin-3 increased by PGF induces 

apoptosis in bovine LSCs via β1 integrin, contributing to structural luteolysis. 
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SUMMARY 

 

Luteolysis is characterized by a reduction in progesterone (P4) production 

(functional luteolysis) and tissue degeneration (structural luteolysis) in the corpus 

luteum (CL). One of major events during structural luteolysis is luteal cell death. 

Galectin-3, a ubiquitously expressed protein involved in many cellular processes, serves 

as an anti-apoptotic and/or pro-apoptotic factor in various cell types. Although 

galectin-3 is detected in the bovine CL, its role remains unclear. The expression of 

galectin-3 in the bovine CL was higher at the regressed stage than at the other luteal 

stages. Galectin-3 was localized on luteal steroidogenic cells (LSCs). When cultured 

LSCs were exposed to prostaglandin F2α (PGF) for 48 h, the expression and secretion 

of galectin-3 increased. When the cultured LSCs were treated with galectin-3 for 24 h, 

cleaved caspase-3 expression was increased and the cell viability was decreased, 

whereas P4 production did not change. β1 integrin, a target protein of galectin-3, was 

expressed in bovine CL and possessed glycans which galectin-3 binds. Furthermore, 

galectin-3 bound to glycans of luteal β1 integrin. The decreased cell viability of cultured 

LSCs by galectin-3 was suppressed by β1 integrin antibody. The overall findings 

suggest that the secreted galectin-3 stimulated by PGF plays a role in structural 

luteolysis by binding to β1 integrin. 
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CHAPTER 2 

Possible contribution of α2,6-sialylation to luteolysis in cows 

by inhibiting the luteotrophic effects of galectin-1 
 

INTRODUCTION 

 

Luteolysis is characterized by a reduction in progesterone production (functional 

luteolysis) followed by a rapid decrease of the size of the corps luteum (CL) (structural 

luteolysis) [2]. The major cause of structural luteolysis is luteal cell death (apoptosis) 

[1-5]. During structural luteolysis, many cytokines from macrophages and neutrophils 

[9], and nitric oxide from luteal endothelial cells in response to prostaglandin F2α 

(PGF) directly induce apoptosis of cells in the CL [2, 8-11]. However, other factors 

besides these key molecules may also be involved in luteolysis. 

Glycosylation modulates a variety of physicochemical and biological 

properties of proteins such as protein folding, stability, targeting, and ligand binding 

[47-52]. Most membrane proteins including cell surface receptors are glycosylated, and 

glycosylation status is important for their function [53, 54]. However, the role of 

glycosylation in the CL is not clear. Galectins are carbohydrate-binding proteins 

distributed intra- and extra-cellularly [55]. Their carbohydrate-binding specificity for 

β-galactoside is conserved by evolutionarily preserved carbohydrate-recognition 

domains [55]. Extracellular galectins interact with cell surface oligosaccharides and 

form lattices that enhance the resident time of glycoproteins at the cell surface [56]. 

Among 15 members of galectins, galectin-1 is one of the most broadly distributed 

galectins in mammalian tissues, in which it modulates cell proliferation and survival 

[57-59]. Galectin-1 binds to N-acetyllactosamine (LacNAc) residues, which consist of 

galactose β-linked to N-acetylglucosamine, whereas its binding is completely inhibited 

by α2,6-sialylation of galactose [60-62]. ST6Gal-I is a sialyltransferase that catalyzes 

the binding of an α2,6-sialic acid to galactose on glycan branch ends through an 

α2,6-linkage [63, 64]. The addition of α2,6-sialic acid to the terminal galactose of 

glycans masks the galectin recognition sites, and inhibits the role of galectin-1 in 

adhesion, migration, and apoptosis [65]. We recently demonstrated that galectin-1 binds 

to the glycans on the surface of bovine luteal steroidogenic cells (LSCs) in the bovine 

mid CL and increases the viability of LSCs, suggesting that galectin-1 has a 

luteotrophic function in the bovine CL [66]. The protein expression of galectin-1 in the 
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cell membrane fraction is high in the CL during mid-luteal stages while it decreases in 

the regressed CL [66]. The loss of luteotrophic galectin-1 from the cell membrane may 

be due to a decreased ligand-binding ability and accompanied by modifications of 

ligand glycoconjugates such as α2,6-sialylation during luteolysis.   

I hypothesized that the level of α2,6-sialylation is increased by luteolytic 

factors and that this increase inhibits the binding of galectin-1 to glycan, thereby 

weakening the survival signal of galectin-1 during luteolysis. To test this hypothesis, I 

examined 1) cyclic changes in the expression of ST6Gal-I mRNA and the level of 

α2,6-sialylation of glycoproteins in the bovine CL, 2) the effects of luteolytic factors on 

the expression of ST6Gal-I mRNA and the level of α2,6-sialylation in cultured 

mid-LSCs, and 3) Effect of α2,6-sialylation on galactin-1-enhanced viability of cultured 

mid- (Days 8-12 after ovulation) and late- (Days 15-17 after ovulation) LSCs. 
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MATERIALS AND METHODS 

 

Collection of bovine CLs, luteal cell isolation and cell culture 

Collection of bovine CLs, luteal cell isolation and cell culture were conducted 

as described in MATERIALS AND METHODS of chapter 1 (Page 8). 

 

Protein fractionation and extraction 

The CL tissues for western blotting were homogenized on ice in the 

homogenization buffer (300 mM sucrose, 32.5 mM Tris-HCl, 2 mM EDTA, pH 7.4) by 

a tissue homogenizer (Physcotron, NS-50; NITI-ON Inc., Chiba, Japan), followed by 

filtration with a metal wire mesh (grid size 150 μm). For protein analysis, nuclei were 

removed from the tissue homogenates by centrifugation at 700 xg for 5 min. The 

resultant supernatant was fractionated into membrane and cytoplasmic fractions by 

centrifugation at 20,000 xg for 60 min. For protein analysis using LSCs, total cell 

lysates were used. After culture, LSCs were collected and lysed in lysis buffer 

consisting of 20-mM Tris-HCl, pH 7.4, 150-mM NaCl, 1-mM EDTA, 1.0% Triton 

X-100, 10% glycerol, and protease inhibitor cocktail (1697498; Roche, Mannheim, 

Germany). Their protein concentrations were determined by BCA method [67]. The 

proteins were then solubilized in SDS gel-loading buffer (50 mM Tris-HCl, 2% SDS, 

10% glycerol, 1% β-mercaptoethanol, pH 6.8), and heated at 95°C for 10 min. 

Validation of the subcellular fractionation was performed by western blotting using the 

antibodies against tumor necrosis factor receptor 1 (TNFR1; ab19139; Abcam, 

Cambridge, UK) as a plasma membrane marker and β-actin (A2228; Sigma-Aldrich, 

MO, USA) as a cytoplasm marker (data not shown). 

 

Quantitative RT-PCR 

Quantitative RT-PCR was conducted as described in MATERIALS AND 

METHODS of chapter 1 (Page 9) using specific primers for ST6Gal-I from the bovine 

sequence (Table 1).  

 

Western blotting 

Proteins were solubilized in SDS gel-loading buffer, and heated at 95°C for 10 

min. Samples (20 μg protein/lane) were separated on SDS-PAGE, and then transferred 

to a PVDF membrane (RPN303F; GE Healthcare., Little Chalfont, Buckinghamshire, 
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UK). The membrane was washed in TBS-T (0.1% Tween 20 in TBS [25 mM Tris-HCl, 

137 mM NaCl, pH 7.5]) and incubated in blocking buffer (5% nonfat dry milk in 

TBS-T) for 1 h at room temperature. After washing, the membranes were incubated 

with galectin-1 antibody at 1:4,000 (AF1152, R&D Systems, MN, USA) or β-actin 

(ACTB) antibody diluted at 1:10,000 (A2228; Sigma-Aldrich, MO, USA) for overnight 

at 4°C. After washing with TBS-T, the membrane was incubated with the appropriate 

secondary antibodies (HRP-linked donkey anti-goat IgG [no.sc-2020; Santa Cruz 

Biotechnology; 1:5,000 for galectin-1] or HRP-linked sheep anti-mouse IgG [no. 

NA931; Amersham Biosciences Corp.; 1:40,000 for ACTB]) for 1 h at room 

temperature. After washing again with TBS-T, the signal was detected by 

chemiluminescence using Immobilon Western Chemiluminescent HRP Substrate 

(P36599; Millipore, Billerica, MA, USA). β-Actin protein expression was used as an 

internal control for the experiments using total cell lysates. The intensity of the 

immunological reaction in the tissues or cells was estimated by measuring the optical 

density in the defined area by computerized densitometry using Image LabTM Software 

version 4.0 (Bio-Rad Laboratories, Inc, Berkeley, CA, USA). 

 

Lectin blotting 

Protein samples (5 μg/lane) were subsequently separated by SDS-PAGE. 

Separated proteins were transferred onto a PVDF membrane. The membrane was 

blocked with 5% BSA in TBS-T, and then reacted with biotin-conjugated SSA (0.17 

μg/ml) lectin in TBS-T for 1 h. After washing again with TBS-T, the membrane was 

incubated with 0.17 μg/ml of streptavidin conjugated to HRP (#21130; Pierce 

Biotechnology, IL, USA). After washing again with TBS-T, the reactive protein bands 

were detected by chemiluminescence using Immobilon Western Chemiluminescent 

HRP Substrate as described above. 

 

Lectin histochemistry 

The CL tissues (2.0-3.0 g) are classified as early-luteal (n=3), mid-luteal (n=4), 

late-luteal (n=3), and regressing stages (n=5), and fixed with 4% paraformaldehyde for 

histological analysis. The fixed tissues were embedded into paraffin according to the 

conventional method. Five-μm-thick sections were de-waxed and washed in 

phosphate-buffered saline. Subsequently the sections were incubated at room 

temperature with 3% hydrogen peroxide in distilled water for 20 min, and Avidin/Biotin 
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blocking solution (Vector Laboratories Inc., Burlingame, CA, USA) for 15 min for each 

reagent, followed by Carbo-free blocking solution (Vector Laboratories In.) for 60 min. 

Then the sections were incubated with biotin-conjugated SSA lectin (1.0 μg/ml) at 4°C 

overnight. After washing twice in PBS, the reaction sites were visualized using 

Vectastain ABC Elite kit (Vector Laboratories Inc., Burlingame, CA, USA) for 60 min 

at room temperature and ImmPACT® 3, 3’-Diaminobenzidine (DAB) Peroxidase 

Substrate Kit (Vector Laboratories Inc., Burlingame, CA, USA) for 5 min. The sections 

were counterstained for 2 min with haematoxylin and observed under a light 

microscope (BX51; Olympus Corporation, Tokyo, Japan) using 20x object lens. Control 

sections were incubated with PBS instead of SSA, and a disappearance of the signals in 

both endothelial cells and luteal cells was confirmed. LSCs and luteal endothelial cells 

were identified by localization and morphology features of the cells [71, 72]. Since SSA 

lectin reacts against the endothelial cells [73], SSA lectin positive cells besides LSCs 

were judged as luteal endothelial cells. and I referenced that SSA lectin reacts against 

the endothelial cells. 

 

Viability assay 

WST-8, a kind of MTT, is a yellow tetrazolium salt that is reduced to formazan 

by live cells containing active mitochondria. The culture medium was replaced with 100 

μl D/F without phenol red medium-BSA, and a 10 μl WST-8 was added to each well. 

Cells were then incubated for 4 h at 38.5°C. The absorbance was read at 450 nm using a 

microplate reader (Model 450; Bio-Rad, Hercules, CA).  

 

Experiment 1: Cyclic changes in the expression of ST6Gal-I mRNA and the level of 

α2,6-sialylation of glycoproteins in the bovine CL  

ST6Gal-I mRNA and α2,6-sialic acid expressions of in each CL tissues and 

membrane fraction of CL tissues (early n=4, developing n=4, mid n=4, late n=4, 

regressed n=4,) were examined by quantitative RT-PCR and lectin blotting using 

Sambucus Sieboldiana Agglutinin (SSA; J218; J-OIL MILLS, Tokyo, Japan). 

Localization of α2,6-sialic acid in each CL tissues (Early; n=3, mid; n=3, Regressed; 

n=3) was analyzed by lectin histochemistry using SSA. 

 

Experiment 2: Effect of luteolytic factors on the expression of ST6Gal-I mRNA 

and the level of α2,6-sialylation of cultured mid-LSCs  
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To clarify whether luteolytic factors play a role in the expression of ST6Gal-I 

mRNA and the level of α2,6-sialylation in the bovine CL, the cultured mid-LSCs were 

exposed to 2.3 nM recombinant human tumor necrosis factor α (TNFα; Kindly donated 

by Dainippon Pharmaceutical, Osaka, Japan), 2.5 nM recombinant bovine interferon γ 

(IFNG; Kindly donated by Dr. S. Inumaru, NIAH, Ibaraki, Japan), 1.0 μM PGF (P7652; 

Sigma-Aldrich Corp., St. Louis, MO, USA) alone, or TNFα in combination with IFNG 

for 24, 48 and 72 h. Additionally, the cultured mid-LSCs were exposed to 10 ng/ml 

luteinizing hormone (LH: USDA-bLH-B6) and 1.0 μM prostaglandin E2 (PGE: no. 

P0409; Sigma) for 24 h. The doses for treatments were selected based on previous 

reports [30, 31, 68, 69]. After the culture, the expression of ST6Gal-I mRNA was 

determined by quantitative RT-PCR. TNF (2.3 nM) and IFNG (2.5 nM) induces the 

expression of FAS mRNA in cultured LSCs [34]. The induction of the expression of Fas 

mRNA by TNF (2.3 nM) and IFNG (2.5 nM) was confirmed in this experiment. The 

expression of α2,6-sialic acid in total cell lysates was assessed by SSA lectin blotting 

only in cells treated with PGF for 72 h. 

 

Experiment 3: Effect of α2,6-sialylation on galactin-1-enhanced viability of 

cultured mid- and late-LSCs 

The level of α2,6-sialylation of mid- and late-LSCs in total cell lysates was 

measured by SSA lectin blotting. To investigate the effect of galectin-1 on cell viability 

of mid- and late-LSCs, these cells were incubated with or without recombinant 

galectin-1 (1,000 ng/ml; 1152-GA-050/CF; R&D Systems, Inc, Minneapolis, MN) for 

24 h. The cell viability was determined by Methyl tetrazolium (MTT) assay. In my 

previous study, galectin-1 (10, 100, and 1,000 ng/ml) significantly increased the 

viability of cultured LSCs and the greatest increase in the viability of LSCs was 

observed by the treatment with galectin-1 (1,000 ng/ml) [66]. Thus, I used 1,000 ng/ml 

of galectin-1 in the present study. 

To remove sialic acid from cell surface glycoproteins, late-LSCs were treated 

with or without neuraminidase (0.1, 1.0, 10 units/ml; P0720S; New England BioLabs 

Inc., Ipswich, MA) for 1 h and washed. Then, cells were further incubated for 24 h and 

α2,6-sialic acid expression was analyzed by SSA lectin blotting to confirm a reduction 

in the level of α2,6-sialylation by neuraminidase treatment. To examine whether 

α2,6-sialic acid inhibits the effect of galectin-1 on the viability of late-LSCs, cells were 

incubated with or without neuraminidase (10 units/ml) for 1 h and washed. Then cells 
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were further incubated with or without recombinant galectin-1 (1000 ng/ml) for 24 h. 

The cell viability was determined using a WST-8 cell proliferation assay.  

 

Statistical analysis 

All experimental data are shown as the mean ± SEM. The statistical 

significances of differences were assessed by analysis of Student’s t-test, one-way 

ANOVA followed by Dunnett’s multiple comparison test or two-way ANOVA 

followed by Tukey’s multiple comparison test using the GraphPad Prism ver 6.0 

(GraphPad software, San Diego, CA). Probabilities less than 5% (P<0.05) were 

considered statistically significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 37 - 

 

RESULTS 

 

Experiment 1: Cyclic changes in the expression of ST6Gal-I mRNA and the level of 

α2,6-sialylation of glycoproteins in the bovine CL 

The expression of ST6Gal-I mRNA in the bovine CL was significantly higher 

during the regressed-luteal stage than during the developing and mid-luteal stages (Fig. 

8A). The level of α2,6-sialylation in the membrane fraction was higher during the 

regressed-luteal stage than during the other luteal stages (Fig. 8B). Lectin 

histochemistry revealed that α2,6-sialylated glycoconjugates were localized to luteal 

endothelial cells throughout the estrous cycle (arrows in Fig. 9). In the regressed-luteal 

stage, α2,6-sialylated glycoconjugates concentrated to the plasma membrane of LSCs 

(Fig. 9).  

 

Experiment 2: Effect of luteolytic factors on the expression of ST6Gal-I mRNA 

and the level of α2,6-sialylation of cultured mid-LSCs  

 The expression of ST6Gal-I mRNA was significantly increased by treatment 

with PGF for 72 h, but it was not affected by treatment with TNFα, IFNG, or a 

combination of TNFα and IFNG for 24, 48 or 72 h (Fig. 10A). Moreover, the 

expression of ST6Gal-I mRNA was not affected by treatment with LH or PGE for 24 h 

(Fig. 14). The level of α2,6-sialylated glycoproteins in total cell lysates was also 

significantly increased by treatment with PGF for 72 h (Fig. 10B). 

 

Experiment 3: Effect of α2,6-sialylation on galactin-1-enhanced viability of 

cultured mid- and late-LSCs 

 The level of α2,6-sialylated glycoproteins of late-LSCs was higher than that of 

mid-LSCs (Fig. 11A). Galectin-1 (1.0 μg/ml) increased the viability of mid-LSCs, while 

it did not affect the viability of late-LSCs (Fig. 11B, C). Neuraminidase treatment (1.0 

and 10 units/ml) decreased the level of α2,6-sialylation in total cell lysates of late-LSCs 

(Fig. 12A). Pretreatment of late-LSCs with neuraminidase (10 units/ml) restored the 

ability of galectin-1 to increase their viability (Fig. 12B). 
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Figure 8. Changes in the relative amounts of the expression of ST6Gal-I mRNA and 

α2,6-sialylated glycoproteins. (A) Comparison of relative amounts of ST6Gal-I mRNA 

determined by quantitative RT-PCR in bovine CL tissue throughout the estrous cycle 

(early [E], Days 2-3; developing [D], Days 5-6; mid [M], Days 8-12; late [L], Days 

15-17; regressed luteal stages [R], Days 19-21). Data are the mean ± SEM for four 

samples/stage and are expressed as the relative ratio of ST6Gal-I mRNA to MRPL4 

mRNA. (B) Representative α2,6-sialic acid specific SSA lectin blotting of membrane 

glycoproteins from CL. Different superscript letters indicate significant difference 

(P<0.05), as determined by ANOVA followed by Tukey’s multiple comparison test. 
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Figure 9. Representative images of the localization α2,6-sialylated glycoconjugates on 

the bovine CL throughout the estrous cycle revealed by SSA lectin histochemistry. 

Black arrows indicate luteal endothelial cells. The mid-CL tissues were used in the 

control sections.  
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Figure 10. Effects of luteolytic factors on the expression of ST6Gal-I mRNA and the 

level of α2,6-sialylated glycoproteins in total cell lysates of mid-LSCs. (A) LSCs were 

treated with TNFα (2.3 nM), IFNG (2.5 nM), TNFα and IFNG or PGF (1.0 μM) for 24, 

48, and 72 h. Data are expressed as the relative ratio of ST6Gal-I mRNA to MRPL4 

mRNA levels. (B) Representative SSA lectin blot analysis for α2,6-sialic acid and 

ACTB in cells treated with PGF (1.0 μM) for 72 h. The resultant signal was detected by 

chemiluminescence and quantitated by computer-assisted densitometry. Data are 

expressed as the relative ratio of α2,6-sialylated proteins to ACTB protein. All values 

are the means ± SEM. All of the experiments were repeated more than three times, and 

the data were statistically analyzed using student t-test and ANOVA followed by 

Dunnett’s multiple comparison test. Asterisks indicate significant differences compared 

with control for 72 h (P<0.05). T+I: TNFα+IFNG treatment. 
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Figure 11. Difference in α2,6-sialylation and the effect of galectin-1 in cultured mid- 

and late-LSCs. (A) Representative SSA lectin blotting of glycoproteins and ACTB in 

total cell lysates of mid- and late-LSCs. (B, C) Mid- and late-LSCs were incubated with 

or without galectin-1 (1.0 μg/ml) for 24 h. All values are the means ± SEM. The data 

were statistically analyzed using student t-tests. Asterisks indicate significant 

differences compared with control (P<0.05).  
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Figure 12. Effect of neuraminidase on the action of galectin-1 in late-LSCs. (A) 

Representative images of SSA lectin blotting and ACTB in total cell lysates of 

late-LSCs cultured for 24 h after the pretreated with or without neuraminidase (0.1, 1.0, 

and 10 units/ml) for 1h. (B) Late-LSCs were pretreated with or without neuraminidase 

(10 units/ml) for 1h, and further incubated with or without recombinant galectin-1 (1.0 

μg/ml) for 24 h. All values are the means ± SEM. Different superscript letters indicate 

significant difference (P<0.05), as determined by ANOVA followed by Tukey’s 

multiple comparison tests. 
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Figure 13. Changes in the relative amounts of galectin-1 protein expression in total 

(cytoplasmic and cell membrane) fraction of the CL tissue. Representative images for 

western blot analysis for galectin-1 and ACTB are shown in the top. Densitometrically 

analyzed western blot results in both cytoplasmic and cell membrane fraction of bovine 

CL tissue throughout the estrous cycle (Early [E], Days 2-3; Developing [D], Days 5-6; 

Mid [M], Days 8-12; Late [L], Days 15-17; Regressed luteal stages [R], Days 19-21) are 

shown in the bottom. Data are the mean ± SEM of three samples/stage and are 

expressed as the relative ratio of galectin-1 protein to ACTB protein. Different 

superscript letters indicate significant difference (P<0.05), as determined by ANOVA 

followed by Tukey’s multiple comparison test. 
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Figure 14. Effects of LH or PGE on the expression of ST6Gal-I mRNA in mid-LSCs. 

LSCs were treated with LH (10 ng/ml) or PGE (1.0 μM) for 24 h. Data are expressed as 

the relative ratio of ST6Gal-I mRNA to MRPL4 mRNA levels. All values are the means 

± SEM. All of the experiments were repeated more than three times. 

 

 

Figure 15. Effects of TNFα and IFNG on the expression of Fas mRNA in mid-LSCs. 

LSCs were treated with TNFα (2.3 nM) and IFNG (2.5 nM) for 24 h. Data are expressed 

as the relative ratio of Fas mRNA to MRPL4 mRNA levels. All values are the means ± 

SEM. The data were statistically analyzed using student t-tests. Asterisks indicate 

significant differences compared with control (P<0.05). 
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Table 2. Primers for real-time PCR 

    Gene Forward and reverse primers (5'-3')  Accession no. Product (bp) 

    ST6Gal-I 
F: ATTGTGTGGGACCCATCTGT  

BC112480 110 

R: TGATCAGGATGCAGCTTACG  

    Fas 
F: TCCAGATCTCACGCAAACAG  

NM174662 150 

R: CAGTTGCCTCCCTTCATCAT  

    MRPL4 
F:GGCTCAAGACCTTCAACCTG  

BC108102 138 
R:GCGTGTAACGTGAGTCATGC  
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DISCUSSION 

 The present study revealed that α2,6-sialylation increased during luteolysis in 

the bovine CL and that the increase was regulated by luteolytic PGF through enhancing 

the expression of a sialyltransferase, ST6GAL-I in LSCs. An increased α2,6-sialylation 

on membrane glycoprotein of LSCs during the late-luteal stage attenuated the effect of 

galectin-1 on luteal cell viability. Removal of α2,6-sialic acids by a treatment with 

neuraminidase restored the effect of galectin-1, suggesting that α2,6-sialylation is 

involved in the regulation of luteolysis by inhibiting the binding of galectin-1 to the 

glycans. 

As mentioned above, extracellular galectin-1 promotes cell viability in bovine 

LSCs, suggesting that galectin-1 has a luteotrophic function in the bovine CL [66]. In 

that study, I also showed that the amount of galectin-1 on the cell membrane of the CL 

decreased during luteolysis. However, in the present study, the abundance of galectin-1 

in both cytoplasmic and cell membrane fraction of the CL did not change during the 

estrous cycle. This reminds us that the change in the glycan structure to decrease the 

binding of galectin-1 to glycan on cell membrane may contribute to a loss of galectin-1 

on the cell membrane of LSCs during luteolysis. However, the mechanism to inhibit the 

binding of galectin-1 to glycans during luteolysis remained unclear. Galectins have an 

affinity for LacNAc, whereas modifications of LacNAc structure influence the affinity 

for each galectin subtype. It is well known that α2,6-sialylation of the terminal galactose, 

which is catalyzed by ST6GAL-I, interferes with the binding of galectin-1 [60-62]. I 

revealed here that the level of α2,6-sialylation increased during the late-luteal stage and 

was highest during the regressed-luteal stage where galectin-1 expression on cell 

membrane decreased [66]. These findings suggest that α2,6-sialylation on the glycan 

ligand for galectin-1 inhibits the binding of galectin-1 to the glycan, resulting in a 

decreased localization of galectin-1 on cell membrane of LSCs. Consequently, the 

survival signal induced by galectin-1 may become weak in LSCs during luteolysis. In 

ST6Gal-I-deficient mice, the vascularization is decreased, and the platelet endothelial 

cell adhesion molecule (PECAM) which is important for cell adhesion of endothelial 

cells is unable to remain on the cell surface and incompletely transduced inhibitory 

signals such as antiapoptotic role [74]. In the present study, α2,6-sialic acid localized at 

the luteal endothelial cells. These findings suggest that α2,6-sialylation plays important 

roles of vascularization. 

Galectin-1 has a role in a variety of biological processes, such as cell adhesion, 
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invasion, cell migration, cell survival, and cell death [75]. In mouse, galectin-1 strongly 

expresses during luteolysis, and the expression of ST6Gal-I mRNA is enhanced in the 

regressing CL, suggesting that the interaction between galectin-1 and α2,6-sialylation 

plays an important role in luteolysis [76]. Galectin-1 is also likely to have a luteotrophic 

role in the human CL, and an inhibition of the binding of galectin-1 to glycan caused by 

α2,6-sialylation possibly contributes to the induction of luteolysis in women [77]. In the 

bovine CL, galectin-1 increases the viability of mid-LSCs but does not affect the 

viability of late-LSCs which contained abundant α2,6-sialylated glycoproteins, 

suggesting that α2,6-sialylation in late-LSCs attenuates the effect of galectin-1. When 

the late-LSCs were pretreated with neuraminidase to remove sialic acid residues, 

galectin-1 could increase the cell viability in late-LSCs, further supporting a luteolytic 

role of α2,6-sialic acids. 

Expression of ST6GAL-I mRNA was enhanced by PGF but not by other 

luteolytic factors (Fig. 10). In human luteinizing granulosa cells, luteotrophic factors 

―PGE2 and human chorionic gonadotrophin― strongly suppress the expression of 

ST6Gal-I mRNA [77]. However, in the present study, PGE2 and luteinizing hormone 

did not suppress the expression of ST6Gal-I mRNA in bovine LSCs. In contrast, PGF 

significantly enhanced the expression of ST6GAL-I in bovine LSCs, whereas other 

luteolytic factors including TNFα, IFNG had no effect. PGF regulates luteal function by 

activating protein kinase (PK) C pathways in luteolysis [30, 78]. In addition, activation 

of PKC pathway was found to stimulate α2,6-sialylation in Madin-Darby canine kidney 

cells [79]. These findings suggest that activation of the PKC pathway by PGF 

contributes to the increase of α2,6-sialylation in bovine LSCs during luteolysis.  

Although α2,6-sialylation on glycoproteins likely has a role in luteolysis in 

cows, the proteins carrying α2,6-sialic acid are unclear. We previously revealed that 

galectin-1 enhances the cell viability of mid-LSCs by binding to the glycans of vascular 

endothelial growth factor receptor-2 (VEGFR-2), and the protein expression and 

stability of VEGFR-2 on the cell surface require the binding of galectin-1 to glycan of 

VEGFR-2 in bovine LSCs [66]. Since glycosylation of receptors is important in cell 

surface retention of various receptors through interaction with galectins [80], inhibition 

of the binding of galectin-1 to the glycan of VEGFR-2 by α2,6-sialylation may decrease 

in the VEGFR-2-mediated survival signal in LSCs during luteolysis. However, it is 

unlikely that the sugar chain on VEGFR-2 contains abundant α2,6-sialic acids because I 

could not find a band with an approximate molecular weight for VEGFR-2 (220 kDa) in 
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the SSA lectin blotting analysis. Further studies are required to reveal the proteins 

carrying α2,6-sialic acid residues. 

 The overall findings suggest that the α2,6-sialylation stimulated by PGF 

inhibits the interaction between galectin-1 and glycan, contributing to luteolysis by 

reducing the galectin-1 effect on luteal cell viability in cattle. 
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SUMMARY 

 

The corpus luteum (CL) is essential for establishing pregnancy. If pregnancy 

does not occur during the estrus cycle, luteolysis is induced by prostaglandin (PG) F2α 

secreted from the uterus. Galectin-1, a β-galactose-binding protein, is expressed in the 

functional CL of cows, and increases the viability of bovine luteal steroidogenic cells 

(LSCs) by modifying the functions of membrane glycoproteins. The binding of 

galectin-1 to glycoproteins is blocked by α2,6-sialylation of the terminal galactose 

residues of glycoconjugates, which is catalyzed by a sialyltransferase (ST6Gal-I). 

However, the physiological role of α2,6-sialic acid in the bovine CL is unclear. The 

level of α2,6-sialylation of the bovine CL were higher during the regressed-luteal stage 

than other luteal stages. Lectin histochemistry revealed that α2,6-sialylated 

glycoconjugates were localized to luteal endothelial cells throughout the estrous cycle. 

In addition, α2,6-sialylated glycoconjugates concentrated to the membrane of LSCs 

during the regressed-luteal stage. PGF2α treatment for 72 h enhanced the expression of 

ST6Gal-I mRNA and the level of α2,6-sialylated glycoproteins in mid-LSCs. The level 

of α2,6-sialylated glycoproteins of late-LSCs (Days 15-17 after ovulation) was higher 

than that of mid-LSCs (Days 8-12 after ovulation), and galectin-1 increased the viability 

of mid-LSCs but not that of late-LSCs. Furthermore, galectin-1 increased the viability 

of late-LSCs when α2,6-sialic acid residues were removed by neuraminidase. The 

overall findings suggest that α2,6-sialylation stimulated by PGF2α contributes to 

luteolysis by inhibiting the luteotrophic effects of galectin-1 in the bovine CL. 

 

 

 

 

 

 

 

 

 

 

 

 



- 50 - 

 

CONCLUSION 

 

 The present study investigated the possible contribution of galectins and glycan 

to luteolysis in cows. The first series of experiments indicate that PGF enhanced the 

expression of galectin-3 in cultured bovine LSCs, and galectin-3 binding to the glycan 

on β1 integrin induces apoptosis of bovine LSCs during structural luteolysis. The 

second series of experiments showed that PGF increased the level of α2,6-sialylation, 

and increase in the level of α2,6-sialylation prevented the interaction between galectin-1 

and glycan, contributing to luteolysis by reducing galectin-1 effect of luteal cell 

viability in cattle. 

 Overall results suggest that that the interaction between galectins and glycan 

play a critical role in the regression of bovine CL. Moreover, PGF controlled the change 

in the expression of galectin-3 and the level of α2,6-sialylation, contributing to 

structural luteolysis. 
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ABSTRACT IN JAPANESE 

ウシ黄体における糖鎖および糖鎖結合性タンパク質 galectin の役割に関する 

研究 

 

羽柴 一久 

ウシを含む多くの哺乳動物において、排卵後に形成される黄体は妊娠の維持

と成立に必須の progesterone (P4) を分泌する一過性の内分泌器官である。妊娠

が成立しなかった際には、主に子宮からの prostagrandin F2α (PGF) の作用によ

り黄体は退行する。黄体の退行は P4 分泌の衰退する機能的退行と黄体組織の

死滅する構造的退行の 2 つの側面から成り、構造的退行は黄体を構成する細胞

のアポトーシスおよび卵巣外への流出により起こる。さまざまな組織において

アポトーシスに免疫応答が関与することが明らかにされており、退行期のウシ

黄体において急激な免疫細胞の増加が認められることから、黄体におけるアポ

トーシスに免疫応答の関与する可能性が示唆されている。構造的退行において

免疫細胞が分泌する tumor necrosis factor α (TNF) や interferon γ (IFNG) などの

サイトカインおよび血管内皮細胞が分泌する NO がアポトーシスを誘導する

ことが知られており、様々な因子により黄体の退行は制御されている。 

 糖鎖修飾は、タンパク質のフォールディング、安定性およびリガンド結合な

ど生理的および生物学的な現象に関与している。細胞膜表面受容体を含む多く

の細胞膜タンパク質は、糖鎖修飾を受けておりそのタンパク質の機能に重要で

ある。しかしながら、黄体における糖鎖修飾の役割について詳細な報告はない。 

 Galectin は細胞内外に局在する糖鎖結合性のタンパク質であり、糖鎖中の β 

型結合した galactose に結合するレクチンである。細胞外 galectin は細胞表面の

糖タンパク質の糖鎖に結合することで、そのタンパク質を細胞膜上に保ち、機

能を維持することが報告されている。Galectin には 15 種類のサブタイプが同定

されており、ウシおよびマウス黄体では galectin-1 および -3 が周期的な変化を

伴いながら発現することが報告されているが、その役割は明らかではない。 

Galectin-3 は細胞質、細胞膜表面および細胞外マトリックスに発現し、アポト

ーシスを制御している。Galectin-3 には細胞質型および細胞外型が存在し、細胞

質型 galectin-3 は糖鎖を介さずリン酸化され抗アポトーシスに働く。一方、細

胞から分泌された細胞外型 galectin-3 は β1 integrin を含む膜タンパク質受容体

の糖鎖と結合し細胞のアポトーシスを誘導することが報告されている。本研究

では、ウシ黄体における galectin-3 の役割を解明するために以下の研究を行っ

た。 
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1) 卵巣を肉眼的所見により、排卵日を 0 日として、排卵後の日数で五つの周

期 (黄体初期: Days 2-3、黄体形成期: Days 5-6、黄体中期: Days 8-12、黄体後期: 

Days 15-17、黄体退行期: Days 19-21) に分類した。その後、各周期における黄体

組織の  galectin-3 の  mRNA およびタンパク質発現を定量的  RT-PCR 法、

Western blot 法によりそれぞれ検討した。また、発情周期を通じた黄体組織を用

いて、galectin-3 タンパク質の局在を免疫組織化学により検討した。2) ウシ中期

黄体から単離した黄体細胞を 24 h 培養後、新しい培養液と交換し以下の実験に

供した。黄体退行因子である TNF 2.3 nM、IFNG 2.5 nM、PGF 1.0 μM を単独ま

たは組み合わせて添加し、さらに 12、24、48、72 h 培養後の galectin-3 mRNA お

よびタンパク質発現を調べた。3) Galectin-3 の分泌に及ぼす PGF の影響を検討

するために、PGF を添加し 48 h 培養後、galectin-3 が結合する糖鎖と競合する 

lactose (100 μM) を添加し、さらに 4 h 後の galectin-3 タンパク質発現を調べた。

4) 発情周期を通じた黄体組織における β1 integrin mRNA およびタンパク質発

現を調べた。また、各発情周期における黄体組織および黄体細胞から免疫沈降

法を用いて β1 integrin タンパク質を回収後、その糖鎖構造を L4-PHA レクチン

を用いて調べ、galectin-3 の β1 integrin への結合能を overlay assay により検討

した。さらに、黄体細胞に β1 integrin 抗体 (1.0 ng/ml) 添加 1 h 後、galectin-3 

(1.0 μg/ml) を添加し 24 h 後の細胞生存率を調べた。 

1) 発情周期を通じた黄体組織において galectin-3 mRNA およびタンパク質

発現量は、他の周期と比較して退行期において有意に高かった。また、galectin-3 

タンパク質は黄体細胞に局在していた。2) Galectin-3 mRNA およびタンパク質

の発現量は、control と比較して PGF 添加 48 h 後において有意に増加した。ま

た、全ての時間において galectin-3 mRNA 発現量は TNF および IFNG 添加に

よって変化しなかった。3) PGF により増加した galectin-3 タンパク質発現量は 

lactose 添加により低下した。4) 発情周期を通じて β1 integrin mRNA およびタ

ンパク質発現量に変化はなく、β1 integrin は galectin-3 結合性の糖鎖を有してい

た。さらに、galectin-3 は β1 integrin に対する結合能を有していた。細胞生存率

は galectin-3 添加区と比較して、β1 integrin 抗体添加後 galectin-3 を添加した区

において有意に増加した。これらのことから、ウシでは子宮からの PGF により

黄体細胞の galectin-3 発現および分泌が促進され、galectin-3 が β1 integrin の糖

鎖に結合することで黄体細胞の死を誘導する可能性が示された。 

ウシにおいて、galectin-1 は機能的黄体に発現しており細胞膜糖タンパク質の

機能を調節することによって黄体細胞の生存率を増加させる。Galectin-1 の糖タ

ンパク質糖鎖への結合は、糖鎖の末端に存在する galactose に sialyltransferase 
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(ST6Gal-I) により α2,6-sialic acid が付加 (α2,6-sialylation) されることで阻害さ

れる。しかしながら、ウシ黄体において α2,6-sialylation の役割について詳細は

明らかではない。本研究では、黄体細胞における α2,6-sialylation が退行因子に

より増加し、増加した α2,6-sialic acid が galectin-1 および糖鎖との結合を阻害

することで、galectin-1 の生存シグナルを減少させるという仮説を立てた。この

仮説を証明するために、以下の研究を行った。 

1) 発情周期を通じた黄体組織における  ST6Gal-I mRNA 発現を定量的 

RT-PCR で調べ、糖タンパク質の α2,6-sialylation レベルを SSA レクチンを用

いたレクチンブロットにより解析すると共に局在についても調べた。2) 中期黄

体細胞に黄体退行因子である TNF、IFNG、PGF を単独または組み合わせて添

加し、さらに  24、 48 および  72 h 培養後の  ST6Gal-I mRNA ならび 

α2,6-sialylation レベルを調べた。 3) 培養中期および後期黄体細胞の 

α2,6-sialylation レベルを調べ、それぞれの細胞に galectin-1 (1000 ng/ml) を添加

し 24 h 後の細胞生存率を測定した。また、後期黄体細胞に sialic acid 分解酵素

である neuraminidase (10 units/ml) を添加し 1 h 後さらに galectin-1 を添加し 

24 h 後の α2,6-sialylation レベルおよび細胞生存率を調べた。 

1) 発情周期を通じて ST6Gal-I mRNA 発現量は、形成期および中期と比較し

て退行期において増加した。糖タンパク質の α2,6-sialylation レベルもまた、退

行期に増加しており、黄体細胞の細胞膜にその局在が認められた。2) 黄体細胞

における ST6Gal-I mRNA 発現量および α2,6-sialylation レベルは PGF 添加後 

72 h において有意な増加が認められたが、 TNF および IFNG の単独または組

み合わせ添加区における 24、48 および 72 h の培養では変化は認められなかっ

た。3) 後期黄体細胞における α2,6-sialylation レベルは、中期黄体細胞と比較し

て高かった。また、galectin-1 は中期黄体細胞の生存率を増加させたが、後期黄

体細胞の生存率は増加させなかった。Neuraminidase は、後期黄体細胞の 

α2,6-sialylation レベルを減少させ、galectin-1 は neuraminidase 処理した後期黄

体細胞の生存率を増加させた。これらのことから、黄体細胞において PGF によ

り増加した α2,6-sialylation は、galectin-1 および糖鎖の結合を阻害することで、

galectin-1 の誘導する生存シグナルを減少させ、黄体退行に関与することが示唆

された。 

本研究より、ウシにおいて galectin および糖鎖の相互作用が黄体退行を調節

していることが示された。さらに PGF は黄体における galectin-3 発現および 

α2,6-sialylation を増加させることで構造的黄体退行を促進することが明らかと

なった。 


