ON THE \((1 - C_2)\) CONDITION

LE VAN AN, NGUYEN THI HAI ANH AND NGO SY TUNG

Abstract. In this paper, we give some results on \((1 - C_2)\)-modules and \(1\)-continuous modules.

1. Introduction

All rings are associated with identity, and all modules are unital right modules. By \(M_R, (_R M)\) we indicate that \(M\) is a right (left) module over a ring \(R\). The Jacobson radical, the uniform dimension and the endomorphism ring of \(M\) are denoted by \(J(M), u - \text{dim}(M)\) and \(\text{End}(M)\), respectively. For a module \(M\) (over a ring \(R\)), we consider the following conditions:

\(1\) Every uniform submodule of \(M\) is essential in a direct summand of \(M\).
\(2\) Every submodule of \(M\) is essential in a direct summand of \(M\).
\(3\) Every submodule isomorphic to a direct summand of \(M\) is itself a direct summand of \(M\).
\(4\) For any direct summands \(A, B\) of \(M\) with \(A \cap B = 0, A \oplus B\) is also a direct summand of \(M\).

A module \(M\) is defined to be a \((1 - C_1)\)-module if it satisfies the condition \(1 - C_1\). If \(M\) satisfies \(C_1\), then \(M\) is said to be a \(CS\)-module (or an extending module). \(M\) is defined to be a continuous module if it satisfies the conditions \((C_1)\) and \((C_2)\). If \(M\) satisfies \((C_1)\) and \((C_3)\), then \(M\) is said to be a quasi-continuous module. We call a module \(M\) a \((C_2)\)-module if it satisfies the condition \((C_2)\). We have the following implications:

Injective \(\Rightarrow\) quasi-injective \(\Rightarrow\) continuous \(\Rightarrow\) quasi-continuous \(\Rightarrow\) CS \(\Rightarrow\) \((1 - C_1)\),

and \((C_2)\) \(\Rightarrow\) \((C_3)\).

For a set \(A\) and a module \(M\), \(M^{(A)}\) denotes the direct sum of \(|A|\) copies of \(M\). A module \(M\) is called a \((\text{countably})\) \(-\text{quasi-injective}\) if \(M^{(A)}\) (resp. \(M^{(\mathbb{N})}\) is a quasi-injective -module for every set \(A\) (note that \(\mathbb{N}\) denotes the set of all natural numbers). Similarly, a module \(M\) is called a \((\text{countably})\) \(-\text{(1-C1)}\) if \(M^{(A)}\) (resp. \(M^{(\mathbb{N})}\) is a \((1 - C_1)\)-module for every set \(A\).

Mathematics Subject Classification. Primary 16D50; Secondary 16P20.

Key words and phrases. injective module, continuous module, uniform module, UC module, distributive module.
In Section 2, we give several properties on the \((1-C_2)\)-modules, (strongly) 1-continuous modules, and discuss the question of when a 1-continuous module is continuous \((1-C_2)\)-module is \((C_2)\)-module)?

2. \((1-C_2)\) CONDITION

In this section, we consider the following condition for a module \(M\).

\((1-C_2)\) Every uniform submodule isomorphic to a direct summand of \(M\) is itself a direct summand of \(M\).

A module \(M\) is defined to be a \((1-C_2)\)-module if it satisfies the condition \((1-C_2)\). If \(M\) satisfies \((1-C_1)\) and \((1-C_2)\) conditions, then \(M\) is said to be a \((1-C_2)\)-continuous module. \(M\) is defined to be a strongly \((1-C_2)\)-continuous module if it satisfies the conditions \((C_1)\) and \((1-C_2)\). A ring \(R\) is called a right (left) \((1-C_2)\)-continuous ring if \(RR\) (resp. \(RR\)) is a \((1-C_2)\)-continuous module.

We have the following implications:

Continuous \(\Rightarrow\) strongly \(1\)-continuous \(\Rightarrow\) \(1\)-continuous, and \((C_2)\) \(\Rightarrow\) \((1-C_2)\).

Remark 2.1. By [4, Corollary 7.8], let \(M\) be a right \(R\)-module with finite uniform dimension, \(M\) is a \((1-C_1)\)-module if and only if \(M\) is CS. Therefore, \(M\) has finite uniform dimension then \(M\) is a \((1-C_2)\)-continuous module if and only if \(M\) is strongly \(1\)-continuous. In general, if \(M\) satisfies the condition \((1-C_2)\), \(M\) may not satisfy the condition \((C_2)\). By the definitions \((1-C_2)\)-module, \(1\)-continuous module and strongly \(1\)-continuous module, we have:

Lemma 2.2. Let \(M\) be a right \(R\)-module and \(N\) is a direct summand of \(M\). If \(M\) is a \((1-C_2)\)-module \((1\)-continuous, strongly \(1\)-continuous\) then \(N\) is also \((1-C_2)\)-module \((1\)-continuous, strongly \(1\)-continuous\).

Theorem 2.3. Let \(U = \bigoplus_{i=1}^{n} U_i\) where each \(U_i\) is a uniform module, then the following conditions are equivalent:

(i) \(U\) is a \((C_2)\)-module;
(ii) \(U\) is a \((1-C_2)\)-module and \(U\) satisfies the condition \((C_3)\).

Proof. (i) \(\implies\) (ii). It is obvious.

(ii) \(\implies\) (i). We show that \(U\) is a \((C_2)\)-module, i.e., for two submodules \(X, Y\) of \(U\), with \(X \cong Y\) and \(Y\) is a direct summand of \(U\), \(X\) is also a direct summand of \(U\). Note that \(Y\) is a closed submodule of \(M\), there is a subset \(F\) of \(\{1, ..., n\}\) such that \(Y \oplus (\bigoplus_{i \in F} U_i)\) is an essential submodule of \(U\). But \(Y, \bigoplus_{i \in F} U_i\) are direct summands of \(U\) and \(U\) satisfies the condition \((C_3)\), we imply \(Y \oplus (\bigoplus_{i \in F} U_i) = U\). If \(F = \{1, ..., n\}\) then \(X = Y = 0\), as desired.

If \(F \neq \{1, ..., n\}\) and set \(J = \{1, ..., n\} \setminus F\), then \(U = Y \oplus (\bigoplus_{i \in F} U_i) = \bigoplus_{i \in J} U_i \oplus (\bigoplus_{i \in F} U_i)\). Hence, \(X \cong Y \cong U/ \bigoplus_{i \in F} U_i \cong \bigoplus_{i \in F} U_i = Z\). Suppose that \(J = \{1, ..., k\}\) with \(1 \leq k \leq n\), i.e., \(Z = U_1 \oplus \cdots \oplus U_k\). Let \(\varphi : Z \longrightarrow X\), and set \(X_i = \varphi(U_i)\) then \(X_i \cong U_i\) for any \(i = 1, ..., k\). We imply \(X = \varphi(Z) =\)
ON THE (1−C2) CONDITION

\[\varphi(U_1 \oplus \ldots \oplus U_k) = \varphi(U_1) \oplus \ldots \oplus \varphi(U_k) = X_1 \oplus \ldots \oplus X_k. \]

By \(X_i \) is a uniform submodule of \(U \), \(X_i \cong U_i \). Let \(L' = L \cap U_i \) and \(L'' \neq 0 \), hence \(U_j \) is not uniform module, a contradiction. Therefore \(U_i \) does not embed in a proper submodule of \(U_j \), proving (i). \(\square \)

Theorem 2.4. Let \(U = \bigoplus_{i=1}^n U_i \) where each \(U_i \) is a uniform module, then the following conditions are equivalent:

(i) \(U \) is a continuous module;

(ii) \(U \) is a \(1 \)-continuous module.

Proof. (i) \(\implies \) (ii). It is obvious.

(ii) \(\implies \) (i). We show that \(S = \text{End}(U_i) \) is a local ring for any \(i = 1, \ldots, n \).

We first prove a claim that \(U_i \) does not embed in a proper submodule of \(U_i \).

Let \(f : U_i \longrightarrow U_i \) be a monomorphism with \(f(U_i) \) is a proper submodule of \(U_i \). Set \(f(U_i) = V \), then \(V \neq 0 \), proper submodule of \(U_i \) and \(V \cong U_i \). By hypothesis, \(U_i \) is a \((1−C_2)\)-module, and hence \(V \) is a direct summand of \(U_i \), i.e., \(U_i \) is not uniform module, a contradiction. Therefore, \(U_i \) does not embed in a proper submodule of \(U_i \).

Let \(g \in S \) and suppose that \(g \) is not an isomorphism. It suffices to show that \(1−g \) is an isomorphism. Note that, \(g \) is not a monomorphism. Then, since \(Keg(g) \) is a nonzero submodule, it is essential in the uniform module \(U_i \). We always have \(Keg(g) \cap Keg(1−g) = 0 \), it follows that \(Ker(1−g) = 0 \), i.e. \(1−g \) is a monomorphism. But \(U_i \) does not embed in a proper submodule of \(U_i \), \(1−g \) must be onto, and so \(1−g \) is an isomorphism, as required.

Let \(U_{ij} = U_i \oplus U_j \) with \(i, j \in \{1, \ldots, n\} \) and \(i \neq j \). We show that \(U_{ij} \) satisfies the condition \((C_3)\), i.e., for two direct summands \(S_1, S_2 \) of \(U_{ij} \) with \(S_1 \cap S_2 = 0 \), \(S_1 \oplus S_2 \) is also a direct summand of \(U_{ij} \). Note that, since \(u−\dim(U_{ij}) = 2 \), the following cases are trivial:

1) Either one of the \(S'_i \) has uniform dimension 2, consequently the other \(S_i \) is zero, or

2) One of the \(S'_i \) is zero.

Hence we consider the case that both \(S_1, S_2 \) are uniform. We prove that \(U_i \) does not embed in a proper submodule of \(U_j \). Let \(h : U_i \longrightarrow U_j \) be a monomorphism with \(h(U_i) \) is a proper submodule of \(U_j \). Set \(h(U_i) = L \), then \(L \neq 0 \), proper submodule of \(U_j \) and \(L \cong U_i \). By hypothesis, \(U \) is a \((1−C_2)\)-module and \(U_{ij} \) is a direct summand of \(U \), \(U_{ij} \) is also \((1−C_2)\)-module. Note that \(L \) is a uniform submodule of \(U_{ij} \) and \(L \cong U_i \) with \(U_i \) is a direct summand of \(U_{ij} \), \(L \) is also direct summand of \(U_{ij} \). Set \(U_{ij} = L \oplus L' \), then by modularity we get \(U_j = L \oplus L'' \) with \(L'' = U_j \cap L' \). Note that \(L'' \) is also proper submodule of \(U_j \) and \(L'' \neq 0 \), hence \(U_j \) is not uniform module, a contradiction. Therefore \(U_i \) does not embed in a proper submodule of \(U_j \).
Similarly, U_j does not embed in a proper submodule of U_i. Note that, U_i (and U_j) does not embed in a proper submodule of U_i (resp. U_j).

Note that, $End(U_i)$ and $End(U_j)$ are local rings, by Azumaya’s Lemma ([1, 12.6, 12.7]), we have $U_{ij} = S_2 \oplus K = S_2 \oplus U_i$ or $S_2 \oplus K = S_2 \oplus U_j$. Since i and j can interchange with each other, we need only consider one of the two possibilities. Let us consider the case $U_{ij} = S_2 \oplus K = S_2 \oplus U_i = U_i \oplus U_j$. Then it follows $S_2 \cong U_j$. Write $U_{ij} = S_1 \oplus H = S_1 \oplus U_i$ or $S_1 \oplus H = S_1 \oplus U_j$.

If $U_{ij} = S_1 \oplus H = S_1 \oplus U_i$, then by modularity we get $S_1 \oplus S_2 = S_1 \oplus W$ where $W = (S_1 \oplus S_2) \cap U_i$. From here we get $W \cong S_2$, this means U_i contains a copy of $S_2 \cong U_j$. By U_j does not embed in a proper submodule of U_i, we must have $W = U_i$, and hence $S_1 \oplus S_2 = U_i \oplus U_j = U_{ij}$.

If $U_{ij} = S_1 \oplus H = S_1 \oplus U_j$, then by modularity we get $S_1 \oplus S_2 = S_1 \oplus W'$ where $W' = (S_1 \oplus S_2) \cap U_j$. From here we get $W' \cong S_2$, this means U_j contains a copy of $S_2 \cong U_j$. By U_j does not embed in a proper submodule of U_j, we must have $W' = U_j$, and hence $S_1 \oplus S_2 = U_{ij}$.

Thus U_{ij} satisfies (C3). Note that, U_{ij} is a direct summand of U and U is a CS-module (by U has finite dimension and U is a $1 - C_1$-module, thus U is CS-module), U_{ij} is also CS-module, and hence U_{ij} is a quasi-continuous module for any $i, j \in \{1, \ldots, n\}$ and $i \neq j$.

Now, by [6, Corollary 11], thus U is a quasi-continuous module. By Theorem 2.3, U is a continuous module, proving (i). \qed

Corollary 2.5. Let $U = \oplus_{i=1}^{n} U_i$ where each U_i is a uniform module, then the following conditions are equivalent:

(i) U is a \sum-quasi-injective module;

(ii) U is a 1-continuous module, countably $\sum -(1 - C_1)$-module.

Proof. (i) \implies (ii). It is obvious.

(ii) \implies (i). By Theorem 2.4, U is a continuous module. By [7, Proposition 2.5], U is a \sum-quasi-injective module, proving (i). \qed

A right R-module M is called *distributive* if for any submodule A, B, C of M then $A \cap (B + C) = A \cap B + A \cap C$. We say that, M is a UC-module if each of its submodules has a unique closure in M.

Theorem 2.6. Let $U = \oplus_{i=1}^{n} U_i$ where each U_i is a uniform module. Assume that U is a distributive module, then the following conditions are equivalent:

(i) U is a (C_2)-module;

(ii) U is a $(1 - C_2)$-module.

Proof. (i) \implies (ii). It is obvious.

(ii) \implies (i). Similar proof of Theorem 2.4, U_i does not embed in a proper submodule of U_j for any $i, j \in \{1, \ldots, n\}$ and $S = End(U_i)$ is a uniform module for any $i \in \{1, \ldots, n\}$. We first prove a claim that, if S_1 and S_2 are direct summands of U with $u - dim(S_1) = 1$, $u - dim(S_2) = n - 1$...
and \(S_1 \cap S_2 = 0 \), then \(S_1 \oplus S_2 = U \). By Azumaya’s Lemma, we have \(U = S_2 \oplus K = S_2 \oplus U_i \). Suppose that \(i = 1 \), i.e., \(U = S_2 \oplus U_1 = (\oplus_{i=2}^n U_i) \oplus U_1 \).

Write \(U = S_1 \oplus H = S_1 \oplus (\oplus_{i \in I} U_i) \) with \(I \) being a subset of \(\{1, \ldots, n\} \) and \(\text{card}(I) = n - 1 \). There are cases:

Case 1. If \(1 \notin I \), \(U = S_1 \oplus (U_2 \oplus \ldots \oplus U_n) = U_1 \oplus (U_2 \oplus \ldots \oplus U_n) \). Then it follows from \(S_1 \cong U_1 \). By modularity we get \(S_1 \oplus S_2 = S_2 \oplus V \) where \(V = (S_1 \oplus S_2) \cap U_1 \). From here we get \(V \cong S_1 \), this means \(U_1 \) contains a copy of \(S_1 \cong U_1 \). By \(U_1 \) does not embed in a proper submodule of \(U_1 \), we must have \(V = U_1 \), and hence \(S_1 \oplus S_2 = S_2 \oplus U_1 = U \).

Case 2. If \(1 \in I \), there exist \(k \neq 1 \) such that \(k = \{1, \ldots, n\} \setminus I \), \(U = S_1 \oplus (\oplus_{i \in I} U_i) = U_k \oplus (\oplus_{i \in I} U_i) \). Then it follows \(S_1 \cong U_k \). By modularity we get \(S_1 \oplus S_2 = S_2 \oplus V' \) where \(V' = (S_1 \oplus S_2) \cap U_1 \). From here we get \(V' \cong S_1 \), this means \(U_1 \) contains a copy of \(S_1 \cong U_k \). By \(U_k \) does not embed in a proper submodule of \(U_1 \), we must have \(V' = U_1 \), and hence \(S_1 \oplus S_2 = U \) as required.

We aim show next that \(U \) satisfies the condition \((C_3)\), i.e., for two direct summands of \(X_1, X_2 \) of \(U \) with \(X_1 \cap X_2 = 0 \), \(X_1 \oplus X_2 \) is also direct summand of \(U \). By Azumaya’s Lemma, we have \(U = X_1 \oplus K = X_1 \oplus (\oplus_{i \in I} U_i) = (\oplus_{i \in F} U_i) \oplus (\oplus_{i \in J} U_i) \) (where \(F = \{1, \ldots, n\} \setminus J \) and \(U = X_2 \oplus L = X_2 \oplus (\oplus_{j \in E} U_j) \oplus (\oplus_{j \notin E} U_j) \) (where \(E = \{1, \ldots, n\} \setminus D \)).

We imply \(X_1 \cong \oplus_{i \notin F} U_i \) and \(X_2 \cong \oplus_{j \in E} U_j \). Suppose that \(E = \{1, \ldots, t\} \) and let \(\varphi : \oplus_{j=1}^t U_j \to X_2 \) be an isomorphism and set \(Y_j = \varphi(U_j) \), we have \(Y_j \cong U_j \) and \(X_2 = \oplus_{j=1}^t Y_j \). By hypothesis \(X_2 \) is a direct summand of \(U \), thus \(Y_j \) is also direct summand of \(U \) for any \(j \in \{1, \ldots, t\} \). We show that \(X_1 \oplus X_2 = X_1 \oplus (Y_1 \oplus \ldots \oplus Y_t) \) is a direct summand of \(U \).

We prove that \(X_1 \oplus Y_1 \) is a direct summand of \(U \). By Azumaya’s Lemma, we have \(U = Y_1 \oplus W = Y_1 \oplus (\oplus_{p \in P} U_p) = U_\alpha \oplus (\oplus_{p \in P} U_p) \), with \(P \) is a subset of \(\{1, \ldots, n\} \) such that \(\text{card}(P) = n - 1 \) and \(\alpha = \{1, \ldots, n\} \setminus P \). Note that, \(\text{card}(P \cap J) \geq \text{card}(J) - 1 = m \). Suppose that \(\{1, \ldots, m\} \subseteq (P \cap J) \), i.e., \(U = (X_1 \oplus (U_1 \oplus \ldots \oplus U_m)) \oplus U_\beta = Z \oplus U_\beta \) with \(\beta = J \setminus \{1, \ldots, m\} \) and \(Z = X_1 \oplus (U_1 \oplus \ldots \oplus U_m) \).

By \(U \) is a distributive module, we have \(Z \cap Y_1 = (X_1 \oplus (U_1 \oplus \ldots \oplus U_m)) \cap Y_1 = (X_1 \cap Y_1) \oplus ((U_1 \oplus \ldots \oplus U_m) \cap Y_1) = 0 \).

Note that, \(Z, Y_1 \) are direct summands of \(U \) with \(u - \text{dim}(Z) = n - 1 \) and \(u - \text{dim}(Y_1) = 1 \), \(U = Z \oplus Y_1 = (X_1 \oplus (U_1 \oplus \ldots \oplus U_m)) \oplus Y_1 = (X_1 \oplus Y_1) \oplus (U_1 \oplus \ldots \oplus U_m) \). Therefore, \(X_1 \oplus Y_1 \) is a direct summand of \(U \). By induction, we have \(X_1 \oplus X_2 = X_1 \oplus (Y_1 \oplus \ldots \oplus Y_t) = (X_1 \oplus Y_1 \oplus \ldots \oplus Y_{t-1}) \oplus Y_t \) is a direct summand of \(U \). Thus \(U \) satisfies the condition \((C_3)\).

Finally, we show that \(U \) satisfies the condition \((C_2)\). By hypothesis (ii) and \(U \) satisfies \((C_3)\), thus \(U \) is a \((1 - C_2)\)-module (see Theorem 2.3), proving (i). \(\square \)
Theorem 2.7. Let \(U_1, \ldots, U_n \) be uniform local modules such that \(U_i \) does not embed in \(J(U_j) \) for any \(i, j = 1, \ldots, n \). If \(U = \oplus_{i=1}^n U_i \) is a UC distributive module then it is a continuous module.

Proof. We first prove a claim that \(U \) is a CS module. Let \(A \) be a uniform closed submodule of \(U \). Let the \(X_i = A \cap U_i \) for any \(i \in \{1, \ldots, n\} \). Suppose that \(X_i = 0 \) for every \(i \in \{1, \ldots, n\} \) and \(A \cap U_i \neq 0 \). By property \(A \) and \(U_i \) are closed uniform submodules of \(U \), thus \(X_i \) is an essential submodule of \(A \) and \(X_i \) is also essential submodule of \(U_i \). Hence \(A \) and \(U_i \) are closure of \(X_i \) in \(U \), \(U \) is an UC module we get \(A = U_i \). This implies that \(A \) is a direct summand of \(U \), i.e., \(U \) is a \((1 - C_1) \)-module. By \(U \) has finite dimension, \(U \) is CS module (see [4, Corollary 7.8]), as required.

We aim to show next that \(S = \text{End}(U_i) \) is a local ring for any \(l \in \{1, \ldots, n\} \).

Let \(f \in S \) and suppose that \(f \) is not an isomorphism. It suffices to show that \(1 - f \) is an isomorphism.

Suppose that \(f \) is a monomorphism. Then \(f \) is not onto, and \(f : U_l \rightarrow J(U_l) \) is an embedding, a contradiction. Thus \(f \) is not a monomorphism.

Then, since \(\text{Ker}(f) \) is a nonzero submodule, it is essential in the uniform local module \(U_l \). Thus, since we always have \(\text{Ker}(f) \cap \text{Ker}(1 - f) = 0 \), it follows that \(\text{Ker}(1 - f) = 0 \), i.e., \(1 - f \) is a monomorphism. But, since \(U_l \) does not embed in \(J(U_l) \), \(1 - f \) must be onto, and so \(1 - f \) is an isomorphism. Thus, \(S \) is a local ring.

Now, we show that \(U \) is a \((1 - C_2) \)-module, i.e., for two uniform submodules \(V, W \) of \(U \), with \(V \cong W \) and \(W \) is a direct summand of \(U \), \(V \) is also a direct summand of \(U \). By Azumaya’s Lemma, we have \(U = W \oplus W' = W \oplus (\oplus_{j \in J} U_j) = U_k \oplus (\oplus_{j \in J} U_j) \) where \(J \) is a subset of \(\{1, \ldots, n\} \) with \(\text{card}(J) = n - 1 \) and \(k = \{1, \ldots, n\} \setminus J \). Hence \(V \cong W \cong U_k \). Let \(V^* \) be a closure of \(V \) in \(U \). By \(U \) is a CS module, thus \(V^* \) is a direct summand of \(U \). Similarly, there exists \(s \in \{1, \ldots, n\} \) such that \(V^* = U_s \), this means \(U_s \) contains a copy of \(W \cong U_k \). If \(V \) is a proper submodule of \(U_s \), then \(U_k \) embed in \(J(U_s) \), a contradiction. We must have \(V = U_s \), and hence \(V \) is a direct summand of \(U \). Thus, \(U \) is a \((1 - C_2) \)-module, i.e., \(U \) is a \(1 \)-continuous module (by \(U \) is a CS module).

Finally, by Theorem 2.4 thus \(U \) is a continuous module. \(\square \)

Corollary 2.8. Let \(U_1, \ldots, U_n \) be uniform local modules such that \(U_i \) does not embed in \(J(U_j) \) for any \(i, j = 1, \ldots, n \). If \(U = \oplus_{i=1}^n U_i \) is a UC distributive module then the following conditions are equivalent:

(i) \(U \) is a \(\sum \)-quasi-injective module;

(ii) \(U \) is a countably \(\sum \)-(1 - \(C_1 \))-module.

Proof. (i) \(\implies \) (ii). It is obvious.
(ii) \implies (i). By Theorem 2.7, U is a continuous module. By [7, Proposition 2.5], U is a \sum-quasi-injective module, proving (i). \square

ACKNOWLEDGEMENT

We would like thank the referee for carefully reading this note and for many useful comments.

REFERENCES

Le Van An
Department of Natural Education, Ha Tinh University, Ha Tinh, Vietnam
e-mail address: an.levan@htu.edu.vn, levanan_na@yahoo.com

Nguyen Thi Hai An
Department of Natural Education, Ha Tinh University, Ha Tinh, Vietnam
e-mail address: anh.nguyenthihai@htu.edu.vn

Ngo Sy Tung
Department of Mathematics, Vinh University, Nghe An, Vietnam
e-mail address: ngositung@yahoo.com

(Received June 20, 2013)
(Accepted June 18, 2015)