HIGHER-DIMENSIONAL ABSOLUTE VERSIONS OF SYMMETRIC, FROBENIUS, AND QUASI-FROBENIUS ALGEBRAS

MITSUYASU HASHIMOTO

ABSTRACT. In this paper, we define and discuss higher-dimensional and absolute versions of symmetric, Frobenius, and quasi-Frobenius algebras. In particular, we compare these with the relative notions defined by Scheja and Storch. We also prove the validity of codimension two-argument for modules over a coherent sheaf of algebras with a 2-canonical module, generalizing a result of the author.

1. INTRODUCTION

(1.1) Let \((R, m)\) be a semilocal Noetherian commutative ring, and \(\Lambda\) a module-finite \(R\)-algebra. In [6], we defined the canonical module \(K_\Lambda\) of \(\Lambda\). The purpose of this paper is two fold, each of which is deeply related to \(K_\Lambda\).

(1.2) In the first part, we define and discuss higher-dimensional and absolute notions of symmetric, Frobenius, and quasi-Frobenius algebras and their non-Cohen–Macaulay versions. In commutative algebra, the non-Cohen–Macaulay version of Gorenstein ring is known as quasi-Gorenstein rings. What we discuss here is a non-commutative version of such rings. Scheja and Storch [7] discussed a relative notion, and our definition is absolute in the sense that it depends only on \(\Lambda\) and is independent of the choice of \(R\). If \(R\) is local, our quasi-Frobenius property agrees with Gorensteinness discussed by Goto and Nishida [1], see Proposition 3.6 and Corollary 3.7.

(1.3) In the second part, we show that the codimension-two argument using the existence of 2-canonical modules in [4] is also still valid in non-commutative settings. For the definition of an \(n\)-canonical module, see (2.8). Codimension-two argument, which states (roughly speaking) that removing a closed subset of codimension two or more does not change the category of coherent sheaves which satisfy Serre’s \((S_2')\) condition, is sometimes used in algebraic geometry, commutative algebra and invariant theory. For example, information on the canonical sheaf and the class group is retained when we remove the singular locus of a normal variety over an algebraically closed field, and then these objects are respectively grasped as the top exterior...

Mathematics Subject Classification. Primary 16E65; Secondary 14A15.

Key words and phrases. canonical module, symmetric algebra, Frobenius algebra, quasi-Frobenius algebra, \(n\)-canonical module.
power of the cotangent bundle and the Picard group of a smooth variety. In [4], almost principal bundles are studied. They are principal bundles after removing closed subsets of codimension two or more.

We prove the following. Let \(X \) be a locally Noetherian scheme, \(U \) an open subset of \(X \) such that \(\text{codim}_X(X \setminus U) \geq 2 \). Let \(i : U \to X \) be the inclusion. Let \(\Lambda \) be a coherent \(\mathcal{O}_X \)-algebra. If \(X \) possesses a 2-canonical module \(\omega \), then the inverse image \(i^* \) induces the equivalence between the category of coherent right \(\Lambda \)-modules which satisfy the \((S'_2) \) condition and the category of coherent right \(i^*\Lambda \)-modules which satisfy the \((S'_2) \) condition. The quasi-inverse is given by the direct image \(i_* \). What was proved in [4] was the case that \(\Lambda = \mathcal{O}_X \). If, moreover, \(\omega = \mathcal{O}_X \) (that is to say, \(X \) satisfy the \((S_2) \) and \((G_1) \) condition), then the assertion has been well-known, see [3].

\section{2-canonical modules are ubiquitous in algebraic geometry.} If \(\mathcal{I} \) is a dualizing complex of a Noetherian scheme \(X \), then the lowest non-vanishing cohomology group of \(\mathcal{I} \) is semicanonical. A rank-one reflexive sheaf over a normal variety is 2-canonical.

\section{Section 2 is for preliminaries. Section 3 is devoted to the discussion of the first theme mentioned in the paragraph (1.2), while Section 4 is for the second theme mentioned in (1.3).}

\section{Acknowledgments:} Special thanks are due to Professor Osamu Iyama for valuable advice and discussion.

The essential part of this paper has first appeared as [5, sections 9–10]. When it is published as [6], they have been removed after the requirement to shorten the paper (also, the title has been changed slightly). Here we revive them as an independent paper.

\section{Preliminaries}

\section{Throughout this paper, \(R \) denotes a Noetherian commutative ring. For a module-finite \(R \)-algebra \(\Lambda \), a \(\Lambda \)-module means a left \(\Lambda \)-module. \(\Lambda^{\text{op}} \) denotes the opposite algebra of \(\Lambda \), and thus a \(\Lambda^{\text{op}} \)-module is identified with a right \(\Lambda \)-module. A \(\Lambda \)-bimodule means a \(\Lambda \otimes_R \Lambda^{\text{op}} \)-module. The category of finite \(\Lambda \)-modules is denoted by \(\Lambda \text{-mod} \). The category \(\Lambda^{\text{op}} \text{-mod} \) is also denoted by \(\text{mod} \Lambda \).

\section{Let \((R, \mathfrak{m}) \) be semilocal and \(\Lambda \) be a module-finite \(R \)-algebra. For an \(R \)-module \(M \), the \(\mathfrak{m} \)-adic completion of \(M \) is denoted by \(\hat{M} \). For a finite \(\Lambda \)-module \(M \), by \(\dim M \) or \(\dim_{\Lambda} M \) we mean \(\dim_R M \), which is independent of the choice of \(R \). By \(\text{depth}_M \) or \(\text{depth}_{\Lambda} M \) we mean \(\text{depth}_R(\mathfrak{m}, M) \), which is independent of \(R \). We say that \(M \) is globally Cohen–Macaulay (GCM for
short) if \(\dim M = \text{depth} M \). We say that \(M \) is globally maximal Cohen–Macaulay (GMCM for short) if \(\dim \Lambda = \text{depth} M \). If \(R \) happens to be local, then \(M \) is GCM (resp. GMCM) if and only if \(M \) is Cohen–Macaulay (resp. maximal Cohen–Macaulay) as an \(R \)-module.

\[(2.3)\] For \(M \in \Lambda \text{mod} \), we say that \(M \) satisfies \((S'_n)_{\Lambda,R} \) or \((S'_n)_{R} \) if \(\text{depth}_{R^P} M_P \geq \min(n, \text{ht}_P) \) for every \(P \in \text{Spec} R \) (this notion depends on \(R \)).

\[(2.4)\] Let \(X \) be a locally Noetherian scheme and \(\Lambda \) a coherent \(\mathcal{O}_X \)-algebra. For a coherent \(\Lambda \)-module \(M \), we say that \(M \) satisfies \((S'_n)_{\Lambda,X} \) or \((S'_n)_{X} \) if \(\text{depth}_{\mathcal{O}_{X,x}} M_x \geq \min(n, \text{dim} \mathcal{O}_{X,x}) \) for every \(x \in X \).

\[(2.5)\] Assume that \((R, \mathfrak{m})\) is complete semilocal, and \(\Lambda \neq 0 \) a module-finite \(R \)-algebra. Let \(\mathbb{I} \) be a normalized dualizing complex of \(R \). The lowest non-vanishing cohomology group \(\text{Ext}^{-s}_{R^?}(\Lambda, \mathbb{I}) \) (\(\text{Ext}^{i}_{R}(\Lambda, \mathbb{I}) = 0 \) for \(i < -s \)) is denoted by \(K_{\Lambda} \), and is called the canonical module of \(\Lambda \). If \(\Lambda = 0 \), then we define that \(K_{\Lambda} = 0 \). For basics on the canonical modules, we refer the reader to [6]. Note that \(K_{\Lambda} \) depends only on \(\Lambda \), and is independent of \(R \).

\[(2.6)\] Assume that \((R, \mathfrak{m})\) is semilocal which may not be complete. We say that a finitely generated \(\Lambda \)-bimodule \(K \) is a canonical module of \(\Lambda \) if \(\hat{K} \) is isomorphic to the canonical module \(R^P \otimes_R \Lambda \) for any \(P \in \text{supp} \mathcal{O}_\omega \).

\[(2.7)\] We say that \(\mathcal{O}_\omega \) is an \(R \)-semicanonical right \(\Lambda \)-module if for any \(P \in \text{Spec} R \), \(R_P \otimes_R \mathcal{O}_\omega \) is the right canonical module \(R_P \otimes_R \Lambda \) for any \(P \in \text{supp}_R \mathcal{O}_\omega \).

\[(2.8)\] Let \(C \in \text{mod} \Lambda \). We say that \(C \) is an \(n \)-canonical right \(\Lambda \)-module over \(R \) if \(C \in (S'_n)^R \), and for each \(P \in \text{Spec} R \) with \(\text{ht} P < n \), we have that \(C_P \) is an \(R_P \)-semicanonical right \(\Lambda_P \)-module.

3. **Symmetric and Frobenius algebras**

\[(3.1)\] Let \((R, \mathfrak{m})\) be a Noetherian semilocal ring, and \(\Lambda \) a module-finite \(R \)-algebra. Let \(K_{\Lambda} \) denote the canonical module of \(\Lambda \), see [6].

We say that \(\Lambda \) is quasi-symmetric if \(\hat{\Lambda} \) is the canonical module of \(\Lambda \). That is, \(\Lambda \cong K_{\Lambda} \) as \(\Lambda \)-bimodules. It is called symmetric if it is quasi-symmetric and GCM. Note that \(\Lambda \) is quasi-symmetric (resp. symmetric) if and only if \(\hat{\Lambda} \) is so. Note also that quasi-symmetric and symmetric are absolute notion,
and is independent of the choice of R in the sense that the definition does not change when we replace R by the center of Λ, because K_Λ is independent of the choice of R.

(3.2) For (non-semilocal) Noetherian ring R, we say that Λ is locally quasi-symmetric (resp. locally symmetric) over R if for any $P \in \text{Spec} R$, Λ_P is a quasi-symmetric (resp. symmetric) R_P-algebra. This is equivalent to say that for any maximal ideal m of R, Λ_m is quasi-symmetric (resp. symmetric), see [6, (7.6)].

In the case that (R,m) is semilocal, Λ is locally quasi-symmetric (resp. locally symmetric) over R if it is quasi-symmetric (resp. symmetric), but the converse is not true in general.

Lemma 3.3. Let (R,m) be a Noetherian semilocal ring, and Λ a module-finite R-algebra. Then the following are equivalent.

1. Λ_Λ is the right canonical module of Λ.
2. Λ_Λ is the left canonical module of Λ.

Proof. We may assume that R is complete. Then replacing R by a Noether normalization of $R/\text{ann}_R \Lambda$, we may assume that R is regular and Λ is a faithful R-module.

We prove $1 \Rightarrow 2$. By [6, Lemma 5.10], K_Λ satisfies $(S'_2)^R$. By assumption, Λ_Λ satisfies $(S'_2)^R$. As R is regular and $\dim R = \dim \Lambda$, $K_\Lambda = \Lambda^* = \text{Hom}_R(\Lambda, R)$. So we get an R-linear map

\[\varphi : \Lambda \otimes_R \Lambda \to R \]

such that $\varphi(ab \otimes c) = \varphi(a \otimes bc)$ and that the induced map $h : \Lambda \to \Lambda^*$ given by $h(a)(c) = \varphi(a \otimes c)$ is an isomorphism (in mod Λ). Now φ induces a homomorphism $h' : \Lambda \to \Lambda^*$ in Λ mod given by $h'(c)(a) = \varphi(a \otimes c)$. To verify that this is an isomorphism, as Λ and Λ^* are reflexive R-modules, we may localize at a prime P of R of height at most one, and then take a completion, and hence we may further assume that $\dim R \leq 1$. Then Λ is a finite free R-module, and the matrices of h and h' are transpose each other. As the matrix of h is invertible, so is that of h', and h' is an isomorphism.

$2 \Rightarrow 1$ follows from $1 \Rightarrow 2$, considering the opposite ring. □

Definition 1. Let (R,m) be semilocal. We say that Λ is a pseudo-Frobenius R-algebra if the equivalent conditions of Lemma 3.3 are satisfied. If Λ is GCM in addition, then it is called a Frobenius R-algebra. Note that these definitions are independent of the choice of R. Moreover, Λ is pseudo-Frobenius (resp. Frobenius) if and only if $\hat{\Lambda}$ is so. For a general R, we say that Λ is locally pseudo-Frobenius (resp. locally Frobenius) over R if Λ_P is pseudo-Frobenius (resp. Frobenius) for $P \in \text{Spec} R$.
Lemma 3.4. Let \((R, \mathfrak{m})\) be semilocal. Then the following are equivalent.

1. \((K_\mathfrak{A})_\mathfrak{A}\) is projective in \(\text{mod } \mathfrak{A}\).
2. \(\mathfrak{A}(K_\mathfrak{A})\) is projective in \(\mathfrak{A}\text{ mod}\),

where \(\mathfrak{A}\) denotes the \(\mathfrak{m}\)-adic completion.

Proof. We may assume that \((R, \mathfrak{m}, k)\) is complete regular local and \(\Lambda\) is a faithful \(R\)-module. Let \(\bar{}\) denote the \(\mathfrak{m}\)-adic completion. Then \(\bar{\Lambda}\) is a finite dimensional \(k\)-algebra. So \(\text{mod } \bar{\Lambda}\) and \(\bar{\Lambda}\text{ mod}\) have the same number of simple modules, say \(n\). An indecomposable projective module in \(\text{mod } \Lambda\) is nothing but the projective cover of a simple module in \(\text{mod } \bar{\Lambda}\). So \(\text{mod } \Lambda\) and \(\bar{\Lambda}\text{ mod}\) have \(n\) indecomposable projectives. Now \(\text{Hom}_R(?, R)\) is an equivalence between \(\text{add}(K_\Lambda)\Lambda\) and \(\text{add}_\Lambda \Lambda\). It is also an equivalence between \(\text{add}_\Lambda (K_\Lambda)\) and \(\text{add}_\Lambda \Lambda\). So both \(\text{add}(K_\Lambda)\Lambda\) and \(\text{add}_\Lambda (K_\Lambda)\) also have \(n\) indecomposables. So 1 is equivalent to \(\text{add}(K_\Lambda)\Lambda = \text{add}_\Lambda \Lambda\). 2 is equivalent to \(\text{add}_\Lambda (K_\Lambda) = \text{add}_\Lambda \Lambda\). So 1\(\iff\)2 is proved simply applying the duality \(\text{Hom}_R(?, R)\). \(\Box\)

(3.5) Let \((R, \mathfrak{m})\) be semilocal. If the equivalent conditions in Lemma 3.4 are satisfied, then we say that \(\Lambda\) is pseudo-quasi-Frobenius. If it is GCM in addition, then we say that it is quasi-Frobenius. These definitions are independent of the choice of \(R\). Note that \(\Lambda\) is pseudo-quasi-Frobenius (resp. quasi-Frobenius) if and only if \(\bar{\Lambda}\) is so.

Proposition 3.6. Let \((R, \mathfrak{m})\) be semilocal. Then the following are equivalent.

1. \(\Lambda\) is quasi-Frobenius.
2. \(\Lambda\) is GCM, and \(\text{dim } \Lambda = \text{idim}_\Lambda \Lambda\), where \(\text{idim}\) denotes the injective dimension.
3. \(\Lambda\) is GCM, and \(\text{dim } \Lambda = \text{idim } \Lambda\Lambda\).

Proof. 1\(\Rightarrow\)2. By definition, \(\Lambda\) is GCM. To prove that \(\text{dim } \Lambda = \text{idim}_\Lambda \Lambda\), we may assume that \(R\) is local. Then by [1, (3.5)], we may assume that \(R\) is complete. Replacing \(R\) by the Noetherian normalization of \(R/\text{ann}_R \Lambda\), we may assume that \(R\) is a complete regular local ring of dimension \(d\), and \(\Lambda\) its maximal Cohen–Macaulay (that is, finite free) module. As \(\text{add}_\Lambda \Lambda = \text{add}_\Lambda (K_\Lambda)\) by the proof of Lemma 3.4, it suffices to prove \(\text{idim}_\Lambda (K_\Lambda) = d\). Let \(\Pi_R\) be the minimal injective resolution of the \(R\)-module \(R\). Then \(\mathcal{J} = \text{Hom}_R(\Lambda, \Pi_R)\) is an injective resolution of \(K_\Lambda = \text{Hom}_R(\Lambda, R)\) as a left \(\Lambda\)-module. As the length of \(\mathcal{J}\) is \(d\) and

\[
\text{Ext}^d_\Lambda(\Lambda/\mathfrak{m}\Lambda, K_\Lambda) \cong \text{Ext}^d_R(\Lambda/\mathfrak{m}\Lambda, R) \neq 0,
\]

we have that \(\text{idim}_\Lambda (K_\Lambda) = d\).
2⇒1. We may assume that R is complete regular local and Λ is maximal Cohen–Macaulay. By [1, (3.6)], we may further assume that R is a field. Then Λ is injective. So $(K_\Lambda)_{\Lambda} = \text{Hom}_R(\Lambda, R)$ is projective, and Λ is quasi-Frobenius, see [8, (IV.3.7)].

$1\Leftrightarrow 3$ is proved similarly. □

Corollary 3.7. Let R be arbitrary. Then the following are equivalent.

1. For any $P \in \text{Spec } R$, Λ_P is quasi-Frobenius.
2. For any maximal ideal m of R, Λ_m is quasi-Frobenius.
3. Λ is a Gorenstein R-algebra in the sense that Λ is a Cohen–Macaulay R-module, and $\text{idim}_{\Lambda_P} \Lambda_P = \dim \Lambda_P$ for any $P \in \text{Spec } R$.

Proof. $1\Rightarrow 2$ is trivial.

$2\Rightarrow 3$. By Proposition 3.6, we have $\text{idim}_{\Lambda_m} \Lambda_m = \dim \Lambda_m$ for each m. Then by [1, (4.7)], Λ is a Gorenstein R-algebra.

$3\Rightarrow 1$ follows from Proposition 3.6. □

(3.8) Let R be arbitrary. We say that Λ is a quasi-Gorenstein R-algebra if Λ_P is pseudo-quasi-Frobenius for each $P \in \text{Spec } R$.

Definition 2 (Scheja–Storch [7]). Let R be general. We say that Λ is symmetric (resp. Frobenius) relative to R if Λ is R-projective, and $\Lambda^* := \text{Hom}_R(\Lambda, R)$ is isomorphic to Λ as a Λ-bimodule (resp. as a right Λ-module).

It is called quasi-Frobenius relative to R if the right Λ-module Λ^* is projective.

Lemma 3.9. Let (R, m) be local.

1. If $\dim \Lambda = \dim R$, R is quasi-Gorenstein, and $\Lambda^* \cong \Lambda$ as Λ-bimodules (resp. $\Lambda^* \cong \Lambda$ as right Λ-modules, Λ^* is projective as a right Λ-module), then Λ is quasi-symmetric (resp. pseudo-Frobenius, pseudo-quasi-Frobenius).

2. Assume that R is Gorenstein. If Λ is symmetric (resp. Frobenius, quasi-Frobenius) relative to R, then Λ is symmetric (resp. Frobenius, quasi-Frobenius).

3. If Λ is nonzero and R-projective, then Λ is quasi-symmetric (resp. pseudo-Frobenius, pseudo-quasi-Frobenius) if and only if R is quasi-Gorenstein and Λ is symmetric (resp. Frobenius, quasi-Frobenius) relative to R.

4. If Λ is nonzero and R-projective, then Λ is symmetric (resp. Frobenius, quasi-Frobenius) if and only if R is Gorenstein and Λ is symmetric (resp. Frobenius, quasi-Frobenius) relative to R.

Proof. We can take the completion, and we may assume that R is complete local.
1. Let \(d = \dim \Lambda = \dim R \), and let \(\mathbb{I} \) be the normalized dualizing complex (see [6, (5.2)]) of \(R \). Then
\[
K_\Lambda = \text{Ext}_R^{-d}(\Lambda, \mathbb{I}) \cong \text{Hom}_R(\Lambda, H^{-d}(\mathbb{I})) \cong \text{Hom}(\Lambda, K_R) \cong \text{Hom}(\Lambda, R) = \Lambda^*
\]
as \(\Lambda \)-bimodules, and the result follows.

2. We may assume that \(\Lambda \) is nonzero. As \(R \) is Cohen–Macaulay and \(\Lambda \) is a finite projective \(R \)-module, \(\Lambda \) is a maximal Cohen–Macaulay \(R \)-module. By 1, the result follows.

3. The ‘if’ part follows from 1. We prove the ‘only if’ part. As \(\Lambda \) is \(R \)-projective and nonzero, \(\dim \Lambda = \dim R \). As \(\Lambda \) is \(R \)-finite free, \(K_\Lambda \cong \text{Hom}_R(\Lambda, K_R) \cong \Lambda^* \otimes_R K_R \). As \(K_\Lambda \) is \(R \)-free and \(\Lambda^* \otimes_R K_R \) is nonzero and isomorphic to a direct sum of copies of \(K_R \), we have that \(K_R \) is \(R \)-projective, and hence \(R \) is quasi-Gorenstein, and \(K_R \cong R \). Hence \(K_\Lambda \cong \Lambda^* \), and the result follows. 4 follows from 3 easily. \(\square \)

(3.10) Let \((R, m)\) be semilocal. Let a finite group \(G \) act on \(\Lambda \) by \(R \)-algebra automorphisms. Let \(\Omega = \Lambda^* \otimes_R \Lambda^* \) as \(\Lambda \)-bimodules, and the result follows.

(3.11) We simply call an \(RG \)-module a \(G \)-module. We say that \(M \) is a \((G, \Lambda)\)-module if \(M \) is a \(G \)-module, \(\Lambda \)-module, the \(R \)-module structures coming from that of the \(G \)-module structure and the \(\Lambda \)-module structure agree, and \(g(am) = (ga)(gm) \) for \(g \in G \), \(a \in \Lambda \), and \(m \in M \). A \((G, \Lambda)\)-module and an \(\Omega \)-module are one and the same thing.

(3.12) By the action \(((a \otimes a')g)a_1 = a(ga_1)a' \), we have that \(\Lambda \) is a \((\Lambda \otimes \Lambda^\text{op}) \ast G \)-module in a natural way. So it is an \(\Omega \)-module by the action \((ag)a_1 = a(ga_1)\). It is also a right \(\Omega \)-module by the action \(a_1(ag) = g^{-1}(a_1a) \). If the action of \(G \) on \(\Lambda \) is trivial, then these actions make an \(\Omega \)-bimodule.

(3.13) Given an \(\Omega \)-module \(M \) and an \(RG \)-module \(V \), \(M \otimes_R V \) is an \(\Omega \)-module by \((ag)(m \otimes v) = (ag)m \otimes gv \). \(\text{Hom}_R(M, V) \) is a right \(\Omega \)-module by \((\varphi(ag))(m) = g^{-1}\varphi(a(gm)) \). It is easy to see that the standard isomorphism
\[
\text{Hom}_R(M \otimes_R V, W) \rightarrow \text{Hom}_R(M, \text{Hom}_R(V, W))
\]
is an isomorphism of right \(\Omega \)-modules for a left \(\Omega \)-module \(M \) and \(G \)-modules \(V \) and \(W \).

(3.14) Now consider the case \(\Lambda = R \). Then the pairing \(\phi : RG \otimes_R RG \rightarrow R \) given by \(\phi(g \otimes g') = \delta_{gg',e} \) (Kronecker’s delta) is non-degenerate, and induces
an RG-bimodule isomorphism $\Omega = RG \to (RG)^* = \Omega^*$. As $\Omega = RG$ is a finite free R-module, we have that $\Omega = RG$ is symmetric relative to R.

Lemma 3.15. If Λ is quasi-symmetric (resp. symmetric) and the action of G on Λ is trivial, then Ω is quasi-symmetric (resp. symmetric).

Proof. Taking the completion, we may assume that R is complete. Then replacing R by a Noether normalization of $R/\text{ann}_R \Lambda$, we may assume that R is a regular local ring, and Λ is a faithful R-module. As the action of G on Λ is trivial, $\Omega = \Lambda \otimes_R RG$ is quasi-symmetric (resp. symmetric), as can be seen easily. \square

(3.16) In particular, if Λ is commutative quasi-Gorenstein (resp. Gorenstein) and the action of G on Λ is trivial, then $\Omega = \Lambda G$ is quasi-symmetric (resp. symmetric).

(3.17) In general, $\Omega \Lambda \cong \Lambda \otimes_R RG$ as Ω-modules.

Lemma 3.18. Let M and N be right Ω-modules, and let $\varphi : M \to N$ be a homomorphism of right Λ-modules. Then $\psi : M \otimes_R RG \to N \otimes_R RG$ given by
\[
\psi(m \otimes g) = g(\varphi(g^{-1}m)) \otimes g
\]
is an Ω-homomorphism. In particular,
1. If φ is a Λ-isomorphism, then ψ is an Ω-isomorphism.
2. If φ is a split monomorphism in $\text{mod } \Lambda$, then ψ is a split monomorphism in $\text{mod } \Omega$.

Proof. Straightforward. \square

Proposition 3.19. Let G be a finite group acting on Λ. Set $\Omega := \Lambda \ast G$.

1. If the action of G on Λ is trivial and Λ is quasi-symmetric (resp. symmetric), then so is Ω.
2. If Λ is pseudo-Frobenius (resp. Frobenius), then so is Ω.
3. If Λ is pseudo-quasi-Frobenius (resp. quasi-Frobenius), then so is Ω.

Proof. 1 is Lemma 3.15. To prove 2 and 3, we may assume that (R, \mathfrak{m}) is complete regular local and Λ is a faithful module.

2.

\[(K_\Omega)_\Omega \cong \text{Hom}_R(\Lambda \otimes_R RG, R) \cong \text{Hom}_R(\Lambda, R) \otimes (RG)^* \cong K_\Lambda \otimes RG\]
as right Ω-modules. It is isomorphic to $\Lambda_\Omega \otimes RG \cong \Omega_\Omega$ by Lemma 3.18, 1, since $K_\Lambda \cong \Lambda$ in $\text{mod } \Lambda$. Hence Ω is pseudo-Frobenius. If, in addition, Λ is Cohen–Macaulay, then Ω is also Cohen–Macaulay, and hence Ω is Frobenius.

3 is proved similarly, using Lemma 3.18, 2. \square

Note that the assertions for Frobenius and quasi-Frobenius properties also follow easily from Lemma 3.9 and [7, (3.2)].
4. Codimension-two argument

(4.1) This section is the second part of this paper. In this section, we show that the codimension-two argument using the existence of 2-canonical modules in [4] is still valid in non-commutative settings, as announced in (1.3).

(4.2) Let X be a locally Noetherian scheme, U its open subscheme, and Λ a coherent O_X-algebra. Let $i : U \hookrightarrow X$ be the inclusion.

(4.3) Let $M \in \text{mod } \Lambda$. That is, M is a coherent right Λ-module. Then by restriction, $i^* M \in \text{mod } i^* \Lambda$.

(4.4) For a quasi-coherent $i^* \Lambda$-module N, we have an action

$$i_* N \otimes_{O_X} \Lambda \xrightarrow{1 \otimes u} i_* N \otimes_{O_X} i_* i^* \Lambda \rightarrow i_* (N \otimes_{O_U} i^* \Lambda) \xrightarrow{u} i_* N,$$

where u is the unit map for the adjoint pair (i^*, i_*). So we get a functor $i^* : \text{Mod } i^* \Lambda \rightarrow \text{Mod } \Lambda$, where $\text{Mod } i^* \Lambda$ (resp. $\text{Mod } \Lambda$) denote the category of quasi-coherent $i^* \Lambda$-modules (resp. Λ-modules).

Lemma 4.5. Let the notation be as above. Assume that U is large in X (that is, $\text{codim}_X (X \setminus U) \geq 2$). If $M \in (S'_2)^{\Lambda^{\text{op}},X}$, then the canonical map $u : M \rightarrow i_* i^* M$ is an isomorphism.

Proof. Follows immediately from [4, (7.31)].

Proposition 4.6. Let the notation be as above, and let U be large in X. Assume that there is a 2-canonical right Λ-module. Then we have the following.

1. If $N \in (S'_2)^{i^* \Lambda^{\text{op}},U}$, then $i_* N \in (S'_2)^{i^* \Lambda^{\text{op}},X}$.
2. $i^* : (S'_2)^{i^* \Lambda^{\text{op}},X} \rightarrow (S'_2)^{i^* \Lambda^{\text{op}},U}$ and $i_* : (S'_2)^{i^* \Lambda^{\text{op}},U} \rightarrow (S'_2)^{i^* \Lambda^{\text{op}},X}$ are quasi-inverse each other.

Proof. The question is local, and we may assume that X is affine.

1. There is a coherent subsheaf Q of $i_* N$ such that $i^* Q = i^* i_* N = N$ by [2, Exercise II.5.15]. Let V be the Λ-submodule of $i_* N$ generated by Q.

That is, the image of the composite

$$Q \otimes_{O_X} \Lambda \rightarrow i_* N \otimes_{O_X} \Lambda \rightarrow i_* N.$$

Note that V is coherent, and $i^* Q \subset i^* V \subset i^* i_* N = i^* Q = N$.

Let C be a 2-canonical right Λ-module. Let $?^\dagger := \text{Hom}_{\Lambda^{\text{op}}} (? , C)$, $\Gamma = \text{End}_{\Lambda} C$, and $?^\ddagger := \text{Hom}_{\Gamma} (?) , C$. Let M be the double dual $V^{\dagger \ddagger}$. Then $M \in (S'_2)^{i^* \Lambda^{\text{op}},X}$, and hence

$$M \cong i_* i^* M \cong i_* i^* (V^{\dagger \ddagger}) \cong i_* (i^* V)^{\dagger \ddagger} \cong i_* (N^{\dagger \ddagger}) \cong i_* N.$$

So $i_* N \cong M$ lies in $(S'_2)^{i^* \Lambda^{\text{op}},X}$.
2 follows from 1 and Lemma 4.5 immediately. □

References

MITSUYASU HASHIMOTO
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
OKAYAMA UNIVERSITY
OKAYAMA, 700-8530 JAPAN
E-mail address: mh@okayama-u.ac.jp

(Received June 10, 2016)
(Accepted August 8, 2016)