博士論文

テイラー・ディーン流れによる
低レイノルズ数流における混合促進

2016年9月

川邉 俊彦

岡山大学大学院
自然科学研究科
目次

第1章 序論 .. 5
 1.1 研究背景 ... 5
 1.2 研究内容 .. 7

第2章 マイクロミキサモデル ... 8
 2.1 ディーン渦 .. 8
 2.2 テイラー渦 .. 8
 2.3 テイラー・ディーン渦 .. 9
 2.4 実験と数値計算との比較 .. 10

第3章 実験装置と実験方法 ... 11
 3.1 実験装置 .. 11
 3.2 LIF 計測 .. 12
 3.3 マイクロミキサモデルの構造 .. 13
 3.4 実験で用いた無次元数および相似則 .. 14
 3.5 液体の流入条件 .. 15
 3.6 実験結果の評価方法 .. 16

第4章 数値計算 ... 17
 4.1 OpenFOAM について ... 17
 4.2 計算方法 ... 20
 4.2.1 数値計算モデル ... 20
 4.2.2 計算メッシュ .. 23
 4.3 計算条件 ... 25
 4.3.1 計算パラメータ ... 25
 4.3.2 流入条件 .. 25
 4.3.3 流路移動壁面 ... 26
 4.4 OpenFOAM による数値計算 .. 26
 4.4.1 流れ場の計算 .. 26
 4.4.2 混合場の計算 .. 26
 4.4.3 方程式の離散化 ... 27
 4.5 混合の性能評価 .. 31
 4.6 主流速度の評価 .. 31
 4.7 二次流れの評価 .. 31
第5章 実験および数値計算結果

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>流路入口から出口の各断面における混合の様子</td>
</tr>
<tr>
<td>5.1.1</td>
<td>$Tr = 0$ の場合</td>
</tr>
<tr>
<td>5.1.1.1</td>
<td>LIF計測結果</td>
</tr>
<tr>
<td>5.1.1.2</td>
<td>数値計算結果</td>
</tr>
<tr>
<td>5.1.2</td>
<td>$Tr = 3$ の場合</td>
</tr>
<tr>
<td>5.1.2.1</td>
<td>LIF計測結果</td>
</tr>
<tr>
<td>5.1.2.2</td>
<td>数値計算結果</td>
</tr>
<tr>
<td>5.1.3</td>
<td>$Tr = -3$ の場合</td>
</tr>
<tr>
<td>5.1.3.1</td>
<td>LIF計測結果</td>
</tr>
<tr>
<td>5.1.3.2</td>
<td>数値計算結果</td>
</tr>
<tr>
<td>5.1.4</td>
<td>まとめ</td>
</tr>
<tr>
<td>5.2</td>
<td>流入初期条件の影響</td>
</tr>
<tr>
<td>5.2.1</td>
<td>LIFによる計測結果</td>
</tr>
<tr>
<td>5.2.1.1</td>
<td>流入条件 I</td>
</tr>
<tr>
<td>5.2.1.2</td>
<td>流入条件 II</td>
</tr>
<tr>
<td>5.2.2</td>
<td>数値計算結果</td>
</tr>
<tr>
<td>5.2.2.2</td>
<td>流入条件 II</td>
</tr>
<tr>
<td>5.2.3</td>
<td>混合率</td>
</tr>
<tr>
<td>5.2.4</td>
<td>主流</td>
</tr>
<tr>
<td>5.2.5</td>
<td>二次流れ</td>
</tr>
<tr>
<td>5.2.6</td>
<td>まとめ</td>
</tr>
<tr>
<td>5.3</td>
<td>流路断面のアスペクト比と流入条件</td>
</tr>
<tr>
<td>5.3.1</td>
<td>LIFによる計測結果</td>
</tr>
<tr>
<td>5.3.1.1</td>
<td>流入条件 I</td>
</tr>
<tr>
<td>5.3.1.2</td>
<td>流入条件 II</td>
</tr>
<tr>
<td>5.3.2</td>
<td>数値計算結果</td>
</tr>
<tr>
<td>5.3.2.2</td>
<td>流入条件 II</td>
</tr>
<tr>
<td>5.3.3</td>
<td>混合率</td>
</tr>
<tr>
<td>5.3.4</td>
<td>主流</td>
</tr>
<tr>
<td>5.3.5</td>
<td>二次流れ</td>
</tr>
<tr>
<td>5.3.6</td>
<td>まとめ</td>
</tr>
<tr>
<td>5.4</td>
<td>流路壁面の回転効果</td>
</tr>
<tr>
<td>5.4.1</td>
<td>数値計算結果</td>
</tr>
<tr>
<td>5.4.1.1</td>
<td>境界条件 I</td>
</tr>
<tr>
<td>5.4.1.2</td>
<td>境界条件 II</td>
</tr>
</tbody>
</table>
5.4.1.3 境界条件 3 ... 94
5.4.1.4 境界条件 4 ... 95
5.4.2 混合率 .. 96
5.4.3 主流 ... 98
5.4.3.1 境界条件 1 ... 98
5.4.3.2 境界条件 2 ... 99
5.4.3.3 境界条件 3 ... 100
5.4.3.4 境界条件 4 ... 101
5.4.4 二次流れ ... 102
5.4.4.1 境界条件 1 ... 102
5.4.4.2 境界条件 2 ... 103
5.4.4.3 境界条件 3 ... 104
5.4.4.4 境界条件 4 ... 105
5.4.5 まとめ .. 106
5.5 流路のアスペクト比の影響 .. 107
5.5.1 数値計算結果 ... 108
5.5.2 混合率 ... 110
5.5.3 主流 ... 111
5.5.4 二次流れ ... 113
5.5.5 まとめ .. 114

第 6 章 カオス混合の評価 ... 115
6.1 カオスとは ... 115
6.2 カオスと流体混合 .. 118
6.3 カオス混合の可視化 ... 119
6.3.1 数値計算結果 ... 120
6.3.1.1 壁面の移動がない場合 .. 121
6.3.1.2 境界条件 1 ... 122
6.3.1.3 境界条件 2 ... 123
6.3.1.4 境界条件 3 ... 124
6.3.1.5 境界条件 4 ... 125
6.3.2 まとめ .. 126

第 7 章 結論 .. 127
7.1 流路入口から出口の各断面における混合の様子 127
7.2 流入初期条件の影響 ... 127
7.3 流路断面のアスペクト比と流入条件 128
7.4 流路壁面の回転効果 ... 129
7.5 流路のアスペクト比の影響 .. 129
7.6 カオス混合の可視化とラグラジアン・カオス...130
7.7 今後の課題 ...130

謝辞 ...131

参考文献 ...132
第1章 序論

1.1 研究背景

近年、化学やバイオなどの分野においてμTAS（Micro Total Analysis Systems）あるいはLOC（Lab on a Chip）と呼ばれる超小型分析・合成装置の開発が注目されている。さまざまなマイクロ流体素子やセンサなどを小さなチップ上に集積したこの装置は、混合、攪拌、反応、分離や抽出などの一連の化学操作を微小領域内で行う。装置の小型化を実現することで省スペース化や、装置を容易に持ち運ぶことが可能となり、場所を選ばず化学操作を行うことができるために、医療で用いる場合は検査者の負荷の低減にも寄与できる。さらに、使用する試薬の量が少量であるため、試薬のコストおよび廃液も低減され、環境負荷低減にもつながる。しかし、装置内の流路は構造上、微小な流路（マイクロチャネル）であり、粘性力が支配的となるために、流路内の流れは低レイノルズ数（レイノルズ数＝慣性力／粘性力）の層流状態となる。このため、流体輸送の圧力損失係数は非常に増大することに加えて、乱流による混合・攪拌や熱移動が期待できないことから、マイクロチャネル内での流体の混合・攪拌は困難とされる。そのため、低レイノルズ数流れにおいても効率よく混合・攪拌されるマイクロ流体デバイスが必要とされており、マイクロミキサに関連した多くの研究事例が報告されている。

動壁面の角速度の関係によって複雑に流れが遷移することから、大変興味深いものがあり、
本研究では、この流れ路の一部が回転する曲がり流路内流れの特性を利用し二次流れを複
雑化させ、混合・攪拌の促進を図るマイクロミキサの開発を目的とする。

また、層流の混合には、与えられた速度場を移動する流体粒子の振る舞いをカオス化す
るラグラジアン・カオスが用いられる。このラグラジアン・カオスはカオスの解が初期値
に対する敏感な依存性を示すことを利用し、混合する流体界面のすみやかな引き伸ばし、
折り畳みにより短時間で混合を達成するものである[15],[16]。そして、ラグラジアン・カオス
を利用したマイクロミキサに関する研究がいくつか報告されている。Niu ら[17]や Tabeling ら
[18]は流入する流体に周期的な攪乱を与えるラグラジアン・カオスを利用したマイクロミキ
サを報告し、二次流れを利用した方法に比べて、短い流路距離で混合できることを示して
いる。さらに、境界条件として周期的な変動を与えたもの[16]を、空間的に周期的な形状を
繰り返し与えるもの[19],[20]などが提案されている。その他にも流路内に動的な外力を与える
もの[21],[22]なども提案されている。しかし、流入させる流量と攪乱の関係や装置が比較的複
雑となる問題がある。マイクロミキサの実用化においては、装置構成や運転条件をシンプル
にする必要がある。一方、テイラー・ディーン流れの場合は、特別に攪乱を与える必
要はなく、流動パラメータである圧力勾配と移動壁面の角速度の関係によってラグラジア
ン・カオスを利用したカオス混合も可能となる。しかし、ラグラジアン・カオスを利用し
たカオス混合だけでは流体全体を完全に均一にすることはできず、不均一性を残してしまう。そのため本研究はテイラー・ディーン流れとすることで、二次流れとラグラジアン・
カオスを利用したカオス混合により、混合率の高いマイクロミキサの開発を目指している。
1.2 研究内容

本研究は、テイラー・ディーン流れを利用したマイクロミキサの混合特性および流動特性を明らかにするため、流路内の流れの可視化を行った。実験手法としてレーザ誘起蛍光法（Laser Induced Fluorescence: LIF）を用いて2液の混合の様子を定量的に評価した。そして、数値計算としてOpenFOAM（Open source Field Operation And Manipulation）を用いた数値流体力学（Computational Fluid Dynamics: CFD）を行い、2液の混合と3次元流れ場の関係を評価した。

本論文では、上記のLIF計測による実験手法とOpenFOAMによる数値計算から得られた結果より、2液の流入条件、流路断面のアスペクト比、移動する壁面の場所や数が混合特性と流動特性にどのような影響を与えるかを調べ、混合性能を向上させる条件を見出した。詳細については次章以降で論じる。

本論文は、本章および以下の6つの章で構成する。

第2章 マイクロミキサモデルでは、本研究で提案したマイクロミキサの構造および原理や特徴を述べる。

第3章 実験装置と実験方法では、本研究で使用した実験装置および計測システムについて詳細を示し、実験におけるLIF計測方法と原理について説明する。

第4章 数値計算では、本研究で使用したOpenFOAMについて説明し、計算モデル、計算条件および方法について述べる。

第5章 実験および数値計算結果では、LIF計測結果とOpenFOAMによる数値計算結果から、2液の流入条件、流路断面のアスペクト比、移動する壁面の場所や数が混合特性と流動特性に与える影響について述べる。

第6章 カオス混合の可視化では、ポアンカレ断面を用いてラグラジアン・カオスと混合性能の関係について述べる。

第7章 結論では、最終章として本研究の結論を述べる。
第2章 マイクロミキサモデル

本研究では、曲がり管内流れであるディーン流れと同軸回転二重円筒内流れであるテイラー流れを組み合わせたテイラー・ディーン流れを利用し、二次流れを複雑化させ、低流量における混合・攪拌の促進を図るマイクロミキサの開発を目指している。そこで、本章ではまず二次流れについて説明し、どのような二次流れの利用を狙ったものであるかを示す。そして、本研究で検討したマイクロミキサの流路について説明する。

2.1 ディーン渦

曲がり管内流れをDeanの行った研究[23]、[24]の功績からディーン流れと呼ばれ、発生する二次流れはディーン渦と呼ばれている。曲がり流路内の流体は、流路の曲がりにより遠心力が作用する。特に流路壁から離れた中心軸付近の流体は、流速が速いため大きな遠心力を受け、曲がりの外側に向かって流れが発生する。また、遠心力によって曲がりの外側は圧力が高いため、流れしてきた中心軸付近の流体は流路壁に沿って内側に向かって戻る。これを繰り返すことで図2.1.1に示すような渦対を形成し、この渦をディーン渦という。本論文では、曲がり流路の特性である、曲率半径に対する流量の違いを考慮するために、流量の無次元数であるディーン数[23][24][25]を用いて比較を行っている。

![図2.1.1 ディーン渦](image)

2.2 テイラー渦

テイラー渦とは、一般的によく知られる図2.1.2に示すような同軸回転二重円筒内流れで発生する二次流れであり、同軸回転二重円筒内流れのことをテイラー流れと呼んでいる。テイラー渦は、内円筒が回転することにより変化する流れであり、Taylor[26]の発表以来多くの研究がなされている。この渦も、ディーン渦と同様に遠心力と圧力の関係から発生する。本論文では、回転壁面および静止壁面にて構成される曲がり流路を用いて、テイラー渦を発生させている。回転する壁面の影響については、次章で述べる回転壁面の角速度の無次元数であるテイラー数[9]を用いて比較を行っている。
2.3 テイラー・ディーン渦

テイラー・ディーン流れとは、流路軸方向に圧力勾配のある正方形断面あるいは矩形断面の曲がり流路において一部の壁面が回転し、それ以外の壁面が静止している場合に発生する流れであり、その二次流れをテイラー・ディーン渦と呼んでいる。すなわち、同軸回転二重円筒内流の二次流れであるテイラー渦と、流路軸方向に圧力勾配のある曲がり流路内の二次流れであるディーン渦を組み合わせたものであり、本研究で取り扱っている二次流れである。

本研究において用いるマイクロミキサの流路のモデルを図2.1.3に示す。流路構造としては、流入部に直管を設け、流れを定常化させたのち曲がり流路部へと流入させる。曲がり流路部では、遠心力により二次流れが誘起され、そこに曲がりの内側とそれに接する上壁面が曲がり流路の曲率中心を中心として回転する。これにより断面方向においては二次流れが、主流方向には流体の流入による流れと壁面の移動による流れが発生し、曲がり部においては3次元的に複雑化した流れが期待できる構造となっている。
2.4 実験と数値計算との比較

本論文では、前節で示した数値計算モデルを用いた CFD により、曲がり流路内の混合特性および流動特性を把握する。一方、曲がり流路における二次流れの可視化実験も併せて実施し、可視化した画像の LIF 計測結果と、数値計算結果を比較検討する事により、マイクロミキサの混合特性を明らかにする。
第3章 実験装置と実験方法

本章では、本研究で使用した実験装置および計測システムについて述べる。具体的には、本実験におけるLIF計測方法と原理、評価方法について説明する。そして、実験で用いたマクロミキサモデルの構造と寸法についても説明する。

3.1 実験装置

実験装置の概略図を以下の図3.1.1に示す。まず、リザーバータンク①、②にそれぞれ作動流体（グリセリン水溶液70 wt%とグリセリン水溶液にレーザー蛍光染料であるローダミンBを濃度2.5 ppmで溶解したもの）をため、チューブポンプ（WELCO 社：WP1000-P4.8L2-W6-B）③、④によりオーバーフロータンク⑤、⑥へそれぞれ送られる。2液は⑦で合流し、試験部の曲がり流路である⑨へと流れ込みバブル⑩で流量を調整し排水される。流量は、出口から流出する重量を測定し、重量法により算出した。流路はポリアセタール製のロータとアクリル製のケーシングで形成しており、流路上壁と内壁がロータ（可動部分）となっている。試験部⑨のロータの駆動には、モータ（オリエンタルモーター株式会社：5GU18K）⑧を用いた。⑪は可視化の際に光の屈折を緩和し二次流れを見やすくするためのビューイングブロックである。また、グリセリン水溶液の粘度は、実験開始前と終了後に精密回転式粘度計（英弘精機株式会社：ビスコテスターVT550）を用いて測定し、粘度変化がないことを確認している。そして、グリセリン水溶液の密度は比重計（有限会社若色計器製作所）を用いて算出している。

図3.1.1 実験装置概略図
3.2 LIF計測

レーザ誘起蛍光法（Laser Induced Fluorescence: LIF）とは、液体に溶解した蛍光染料をレーザーシート光などで励起させ、その蛍光強度分布を割り出すことで、液体内の蛍光染料を溶解した液体の濃度分布や温度分布を算出する方法である。励起される蛍光強度は液体の濃度や温度に比例するため、濃度分布算出や温度計測に利用可能である。本研究においては、蛍光染料にローダミン B（励起波長 550 nm、蛍光波長 580 nm）を使用し、光源として波長 532 nm の連続波発振（Continuous Wave: CW）レーザーシートを用いている。

本研究における LIF 計測方法を、図 3.2.1 に示す。流路側面から、波長 532 nm の CW レーザーシート（LaVision 社：CW-532-3W）で照射し、流路断面における蛍光強度の変化をハイパスフィルタ（透過波長 570 nm 以上）を取り付けることで、ローダミン B の蛍光のみを取得し、Davis7.2（LaVision 社）を用いて濃度分布を算出した。

図 3.2.1 LIF 計測方法概略図
3.3 マイクロミキサモデルの構造

本研究で使用したマイクロミキサモデルの構造を図 3.3.1 に示す。図に示すように装置構成はロータとケーシングのみのシンプルな構成であり、実用化においても有利である。曲がり流路はロータとケーシングで形成しており、流路上壁面と内壁面がロータ（移動壁面）となっている（図 3.3.1(c)参照）。曲がり流路に圧力勾配を与え、ロータを回転させることでテイラー・ディーン流れを発生させる。曲がり流路入口から出口までの角度は $\theta = 225^°$ である。その他の流路寸法については次節において説明する。
3.4 実験で用いた無次元数および相似則

本研究では流路を流れる流量 Q [mm3/s], ロータの角速度 Ω [rad/s]から, レイノルズ数 Re, テイラー数 Tr を求める. これらの無次元数は, それぞれ以下の式で表される.

レイノルズ数

$$Re = \frac{q \cdot d_h}{\nu} \quad (3.1)$$

テイラー数

$$Tr = \frac{2\sqrt{2\delta \Omega a^2}}{\delta v} \quad (3.2)$$

ここで,

q : 流路内平均流速 $q = \frac{Q}{4ab} \quad [\text{m/s}] \quad (3.3)$

d$_h$: 水力直径 $d_h = \frac{4ab}{(a+b)} \quad [\text{mm}] \quad (3.4)$

ν : 作動流体の動粘度 $[\text{mm}^2/\text{s}]$

δ : 流路の無次元曲率 $\delta = \frac{a}{R} \quad (3.5)$

$2a$: 流路幅 $[\text{mm}]$

$2b$: 流路高さ $[\text{mm}]$

R : 流路の曲率半径 $[\text{mm}]$

である.

Tr は作動流体が流れる方向と同方向にロータを回転させる場合を正とする. また, 曲がり流路において δ の違いによる流量の違いを考慮するために, 曲がり流路層流パラメータであるディーン数 De [23]~[25] を用いた.

ディーン数

$$De = Re \sqrt{\delta} \quad (3.6)$$

本研究で使用した曲がり流路の寸法を表 3.4.1 に示す. $\gamma = b/a$ は流路断面のアスペクト比, $l \ [\text{mm}]$ は流路全体である.

<table>
<thead>
<tr>
<th>表 3.4.1 曲がり流路の寸法</th>
</tr>
</thead>
<tbody>
<tr>
<td>断面形状</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td>V</td>
</tr>
</tbody>
</table>
相似則は、飛行機や車など非常に大きなもの、あるいは逆に非常に小さいものなど実験が実施しにくい対象を扱いやすい模型に置き換えて実験し、現象や性能などの予測に適用されるものである。ここで相似則は幾何学的、運動学的および力学的に相似である必要がある。飛行機や車のような物体周りなどの外部流れ、あるいはポンプ、管内流などの固体壁で囲まれた内部流れのように粘性力、慣性力の2つの力が支配的となる流れにおいては、式(3.1)で示しているレイノルズ数が等しい場合、相似な流れとなる。

例えば、大きさの違う幾何学的に相似な物体に同様な流れを作った場合、流体の粘性あるいは流速を調整してレイノルズ数を等しくすることで、実際の対象に対する流れの様子や力は、幾何学的あるいは力学的倍率をかけることにより算出できる。

本研究では、マイクロサイズ流路の低レイノルズ数の流れをミリメートルサイズの流路において高粘度流体であるグリセリン水溶液を用いることで再現し、マイクロサイズでの流れの様子を予測する実験を行っている。

3.5 液体の流入条件

2液を流入させる条件を図3.5.1に示す。図において黒色がグリセリン水溶液、白色がローダミンBで染色されたグリセリン水溶液を表している。図3.5.1(a)の流入条件Iは、2液が流路断面において縦に2層となるように同量流入させた場合であり、ローダミンBで染色されたグリセリン水溶液が曲がりの内側（ロータ側）に来るようにしている。図3.5.1(b)の流入条件II、2液が流路断面において横に2層となるように同量流入させた場合であり、ローダミンBで染色されたグリセリン水溶液が下側に来るようにしている。

図3.5.1 2液の流入条件
3.6 実験結果の評価方法

図 3.6.1 に示すのは、(a) ローダミン B を 2.5 ppm で染色したグリセリン水溶液のみの取得画像を濃度 100 %、(b) 染色したグリセリン水溶液と染色されてないグリセリン水溶液を 1：1 で混合させたときの取得画像を濃度 50 %、(c) 染色されてないグリセリン水溶液のみの取得画像を濃度 0 %としている。また Concentration はローダミン B で染色されたグリセリン水溶液の濃度を示し、画像の濃度 50 %付近の領域が増加すると良好な混合が得られたと評価する。また、図 3.6.2 に示す画像は、断面形状 I の Tr = 0, De = 1 における LIF 計測画像である。図 3.6.1 と図 3.6.2 を比較すると、図 3.6.2 では濃度 0 %の領域と 100 %の領域で明確に分かれていることがわかる。この状態では 2 液が混合されているとはいえない。つまり濃度 50 %付近の領域が大きいほど、2 液が混合されていると評価できる。

(a) 濃度 100 % (b) 濃度 50 % (c) 濃度 0 %

図 3.6.1 ローダミン B で染色されたグリセリン水溶液の濃度

図 3.6.2 LIF 計測画像例
第4章 数値計算

4.1 OpenFOAMについて

数値計算用として、オープンソースソフトウェアであるOpenFOAMを用いた。OpenFOAMは、古くは1989年頃から、イギリスのImperial Collegeにて開発が始まり、1999年にはナブラ社から商用コードFOAMという名前で販売された。2004年には、開発元のOpenCFD社よりオープンソース化され、いくつかの買収を経て、現在ESI Group傘下のOpenCFD社の商標となっている。

OpenFOAMは、GPLライセンスの元で配布がなされており、オブジェクト指向プログラミング言語C++で記述されたコンパイル済みライブラリにて構成される。それらは、二つのライブラリ（ソルバ、ライブラリ）に分けられており、ユーザは、標準で搭載されているソルバやライブラリユーティリティの中から、必要なものを選んで実行する手順を踏む（図4.1.1）。市販のCFDコードであるANSYS社のFluentやCFX、CD-adapco社のSTAR-CCM+などが、GUIに優れた統合開発環境が準備されているのに対して、OpenFOAMでは先のツールを選択的に使用し、かつLinuxベースで実行する必要があり、境界条件および計算条件の設定をCUIベースで行わなければならない、使い勝手の点では難がある。またサポートが限定的であるため、ユーザグループによるコミュニティベースの情報源を利用する、有料サービスを利用する事となる。OpenFOAMのGUIを実現するツールとして、Helyx-OS、TreeFoamなど、またOpenFOAMに必要なソフトウェアを集めたDEXCS[27]などがあり、開発環境の改善が図られている。

近年、計算モデルの大規模化や計算期間の短縮化といった課題に対して、市販コードにおいて、ライセンス費用の増大がネックとなっている。このようなケースでは、オープンソースソフトウェアの利点が最大限生かされるため、簡単に並列処理の実行が可能なOpenFOAMへの注目が高まっている。

OpenFOAMによる計算の手順を、図4.1.2示す。計算モデルの作成は、3D-CADを用いる。Meshの作成は、数値計算の収束性や計算速度に影響するため、高品質なもののが要求される。簡単な計算モデルであれば、OpenFOAM標準ライブラリユーティリティの中の、blockMeshやsnappyHexMeshといったツールを利用すれば良い（図4.1.3）。複雑な計算モデルにすると、ANSYS社CFX-MeshやICEMといった商用コードの利用が現実的で選択肢となる。商用コードにて作成されたMeshは、OpenFOAM標準ライブラリユーティリティに準拠されている、ansysToFoam、cfx4ToFoam、fluent3DMeshToFoamなどを利用すると、簡単にMesh変換を行う事ができる。以上をプリ処理と呼ぶ、計算に必要な設定を行い、標準ライブラリソルバから適切なソルバを選択し、計算を実行する。OpenFOAMにはポスト処理（可視化）の機能が標準で準備されていない。そのため、別途ポスト処理用のツールを導入する必要がある。商用のポスト処理ソフトもあるが、OpenFOAMではオープンソースソフトウェアであるParaVIEWが採用されている。本研究では、同図赤枠で示す統合開発環境DEXCSを使用して計算を行った。
図 4.1.1 OpenFOAM の全体的な構造[28]

図 4.1.2 計算の流れ
図 4.1.3 代表的な標準ライブラリソルバ

<table>
<thead>
<tr>
<th>基本</th>
<th>非圧縮性流れ</th>
<th>多層流</th>
</tr>
</thead>
<tbody>
<tr>
<td>• laplacianFoam</td>
<td>• icoFoam</td>
<td>• cavitatingFoam</td>
</tr>
<tr>
<td>• potentialFoam</td>
<td>• pisoFoam</td>
<td>• interFoam</td>
</tr>
<tr>
<td>• scalarTransportFoam</td>
<td>• simpleFoam</td>
<td>• multiphaseEulerFoam</td>
</tr>
</tbody>
</table>

図 4.1.4 代表的な標準ライブラリユーテリティ

<table>
<thead>
<tr>
<th>直接シミュレーション</th>
<th>粒子追跡流</th>
<th>電磁流体</th>
</tr>
</thead>
<tbody>
<tr>
<td>• dnsFoam</td>
<td>• reactingParcelFilmFoam</td>
<td>• electrostaticFoam</td>
</tr>
<tr>
<td></td>
<td>• reactingParcelFoam</td>
<td>• mhdFoam</td>
</tr>
</tbody>
</table>

前処理

<table>
<thead>
<tr>
<th>前処理</th>
</tr>
</thead>
<tbody>
<tr>
<td>• mapFields</td>
</tr>
<tr>
<td>• setFields</td>
</tr>
</tbody>
</table>

メッシュ生成

<table>
<thead>
<tr>
<th>メッシュ生成</th>
</tr>
</thead>
<tbody>
<tr>
<td>• blockMesh</td>
</tr>
<tr>
<td>• snappyHexMesh</td>
</tr>
</tbody>
</table>

メッシュ変換

<table>
<thead>
<tr>
<th>メッシュ変換</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ansysToFoam</td>
</tr>
<tr>
<td>• cfx4ToFoam</td>
</tr>
<tr>
<td>• fluent3DMeshToFoam</td>
</tr>
</tbody>
</table>

メッシュの操作

<table>
<thead>
<tr>
<th>メッシュの操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>• checkMesh</td>
</tr>
<tr>
<td>• mergeMeshes</td>
</tr>
<tr>
<td>• refineMesh</td>
</tr>
</tbody>
</table>

並行処理

<table>
<thead>
<tr>
<th>並行処理</th>
</tr>
</thead>
<tbody>
<tr>
<td>• decomposePar</td>
</tr>
<tr>
<td>• reconstructPar</td>
</tr>
</tbody>
</table>

後処理

<table>
<thead>
<tr>
<th>後処理</th>
</tr>
</thead>
<tbody>
<tr>
<td>• foamCalc</td>
</tr>
<tr>
<td>• foamListTimes</td>
</tr>
<tr>
<td>• ptot</td>
</tr>
</tbody>
</table>
4.2 計算方法

4.2.1 数値計算モデル

数値計算で使用する曲がり流路のモデル形状を図4.2.1に示す。曲がり流路の断面が正方形となる断面形状Iを基本形状とし、アスペクト比の異なる合計5つのモデルを用いて、2液の混合に及ぼす影響を数値計算により調べる。数値計算モデルの各寸法は実験で用いる流路寸法の表3.4.1と同様であり、流路の断面形状を図4.2.2に示す。

![数値計算モデル](image)

図4.2.1 数値計算モデル

![流路の断面形状](image)

(a)断面形状I (b)断面形状II (c)断面形状III (d)断面形状IV (e)断面形状V

図4.2.2 流路の断面形状
表 3.4.1 に示した断面形状 I ～ V の計算モデルを作成することになるが、ここでは、断面形状 I の形状を例に、メッシュ生成までの作成手順を示す。数値計算環境としては、Linux OS（Ubuntu）上に、統合開発環境 DEXCS を構築して利用した。

3D モデルの作成には、FreeCAD を用いた（図 4.2.3）。作成した断面形状 I のモデルは、solid model となっている。次工程の計算用メッシュの作成過程においては、各壁面にメッシュの作成条件を与える必要があるため、solid model を surface model に変換し、各 surface に流入境界（inlet）や壁面（wall）というようにわかりやすく名前を付けて保存しておく。

DEXCS に搭載されている FreeCAD には、cfMesh を作成するための条件設定ファイルを出力するマクロ（makeCfMeshSetting.py）が組み込まれている。図 4.2.4 はマクロを立ち上げた状態を、図 4.2.5 は cfMesh 設定の詳細を示す。ここでは、maxCellSize や minCellSize、patch type や Boundary Layer など、メッシュ作成に必要な項目を設定する事ができる。設定完了後には、マクロの実行により、cfMesh の設定ファイルが作成される。

メッシュの作成には、cfMesh を使用する。DEXCS には、前処理を GUI にて行うユーティリティとして TreeFoam が登録されており、メニュー「十徳ナイフ」タブから、「cfMesh（cartesianMesh）の実行」を選択することにより（図 4.2.6）、メッシュが作成される（図 4.2.7）。

図 4.2.3 FreeCAD による 3D モデル化
図 4.2.4 マクロによる cfMesh 設定
図 4.2.5 cfMesh の設定
図 4.2.6 TreeFoam による cfMesh の実行

図 4.2.7 作成されたメッシュ（ParaVIEW）
4.2.2 計算メッシュ

OpenFOAM に搭載されている標準ライブラリソルバは、商用コードと比較してロバスト性が悪く、収束しにくい特徴がある。収束性への良否について、メッシュの品質や精度に影響を受けるため、試行錯誤により作成を繰り返す事も多い。表 4.2.1 に、一般的に使用されるメッシュの特徴を示す。本研究では、Cartesian Mesh を採用した。

数値計算を行う際、粗いメッシュを用いて計算を行い、その結果を初期条件として与える事で、計算速度を向上させる事ができる。そこで、初期計算用、および、本計算用の 2 種類のメッシュを作成する事にした。断面形状 I ～ V のメッシュの詳細を、表 4.2.2 に示す。

メッシュの品質向上のため、作成したメッシュを OpenFOAM 標準ライブラリユーティリティ「checkMesh」を用いて確認する。このユーティリティを使用することで、対象となるメッシュのセル数を確認したり、品質に問題となるエラーを検出する事ができる。表示される項目の中で最も重要なパラメータとして、non-orthogonality（非直交性）があげられる。

non-orthogonality は、隣接するセルの中心とを結んだベクトルと、セル間で接している面の法線ベクトルとのなす角度を表しており、面とセル中心とを結ぶ線の直交性的度合いを示している。Cartesian Mesh を作成する場合、セルサイズの指定の仕方によっては歪んだメッシュが生成されることはあり、Max-non-orthogonality を値を参考に、メッシュを切りなおす。 図 4.2.8 は、checkMesh 実行後の出力結果を抜粋したものであるが、メッシュ情報に加えて、非直行性に関する情報が表示されている。示された Max-non-orthogonality の値を元に、セル界面の法線方向の勾配に関するラプラスアンスキームを調整する。表 4.2.3 に、Max-non-orthogonality の値に対応するスキームの指標を示す。

<table>
<thead>
<tr>
<th>種類</th>
<th>tetra</th>
<th>cartesian</th>
</tr>
</thead>
<tbody>
<tr>
<td>品質</td>
<td>良</td>
<td>良</td>
</tr>
<tr>
<td>メッシュ数</td>
<td>多い</td>
<td>やや多い</td>
</tr>
<tr>
<td>計算時間</td>
<td>長い</td>
<td>やや長い</td>
</tr>
<tr>
<td>その他</td>
<td>作成が困難</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesh stats</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>points</td>
<td>850,584</td>
<td>912,484</td>
<td>1,649,430</td>
<td>771,300</td>
<td>676,859</td>
</tr>
<tr>
<td>faces</td>
<td>2,445,446</td>
<td>2,570,366</td>
<td>4,699,591</td>
<td>2,198,761</td>
<td>1,910,857</td>
</tr>
<tr>
<td>internal faces</td>
<td>2,322,284</td>
<td>2,408,554</td>
<td>4,456,421</td>
<td>2,072,781</td>
<td>1,782,515</td>
</tr>
<tr>
<td>cells</td>
<td>797,424</td>
<td>829,820</td>
<td>1,526,002</td>
<td>713,888</td>
<td>617,200</td>
</tr>
<tr>
<td>Mesh non-orthogonality Max</td>
<td>69.964</td>
<td>36.491</td>
<td>63.391</td>
<td>46.568</td>
<td>47.792</td>
</tr>
</tbody>
</table>

表 4.2.1 メッシュの特徴

表 4.2.2 メッシュの詳細
図 4.2.8 checkMesh 出力結果の一例

表 4.2.3 Max-non-orthogonality とスキームの調整

<table>
<thead>
<tr>
<th>Max-non-orthogonality</th>
<th>セル界面の法線方向勾配 (SnGrid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>～5</td>
<td>uncorrected orthogonal</td>
</tr>
<tr>
<td>5～60</td>
<td>corrected</td>
</tr>
<tr>
<td>60～</td>
<td>limited 0.3</td>
</tr>
<tr>
<td></td>
<td>limited 0.333</td>
</tr>
<tr>
<td>80～</td>
<td>Uncorrected</td>
</tr>
</tbody>
</table>

Overall number of cells of each type:

- hexahedra: 962263
- prisms: 5866
- wedges: 0
- pyramids: 15074
- tet wedges: 0
- tetrahedra: 6630
- polyhedra: 30886

Mesh non-orthogonality Max: 62.2036 average: 4.86427
Non-orthogonality check OK.
Face pyramids OK.
Max skewness = 2.87605 OK.
4.3 計算条件

4.3.1 計算パラメータ

実験結果と比較を行うため、計算パラメータには3.4節で定義したディーン数 De およびテイラーナ数 Tr を用いた。

境界条件として、流路入口に各 De に応じた一様流速の流入を、流路出口には圧力0 Pa（大気圧）を与えている。また、ロータの回転による壁面の移動は、回転壁面として Tr に応じた角速度 Ω を与えた。

4.3.2 流入条件

テイラー・ディーン流れによる混合においては、流路入口の流入条件により、混合の促進に影響が現れる事が考えられる。本研究では、あらかじめ流入条件に合わせて、濃度の異なる2種類の液体を配置し、計算で求めた速度場に濃度マッピングを施し、時間経過と共に流体が輸送されていく様子を観察する。図4.3.1において、(a)の流入条件Iは縦2層で流入する場合、(b)の流入条件IIは横2層で流入する場合を示している。
4.3.3 流路移動壁面

壁面移動の影響を検討するため、曲がり流路の一部を移動壁面とし、数値計算を行う。曲がり流路断面は矩形であるため、図 4.3.2 (a)～(d) に示す条件について計算を実施する。断面は上流から見たものであり、赤線で示す箇所が移動壁面を表す。

(a) 境界条件 1 (b) 境界条件 2 (c) 境界条件 3 (d) 境界条件 4
図 4.3.2 移動壁面（境界条件）

4.4 OpenFOAM による数値計算

4.4.1 流れ場の計算

流れ場の計算には、OpenFOAM 標準ライブラリソルバから、非圧縮非定常層流計算用の「icoFoam」を用いた。基礎方程式を、以下に示す。

\[\nabla \cdot \mathbf{v} = 0 \quad (4.1) \]

\[\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{v} \quad (4.2) \]

ここで、\(\mathbf{v} \) は速度ベクトル、\(t \) は時間、\(p \) は圧力、\(\rho \) は密度、\(\nu \) は動粘度を示す。

4.4.2 混合場の計算

混合場の計算には、OpenFOAM 標準ライブラリソルバから、非圧縮非定常パッシブスカラの輸送方程式を解く「scalarTransportFoam」を用いた。このソルバは、前項であらかじめ計算しておいた速度場に passivescalar 粒子（例えば煙などの粒子）を乗せ、粒子が拡散していく様子を観察する事ができる。パッシブスカラの輸送方程式は、次式で表される。
\[
\frac{\partial T}{\partial t} + \nabla \cdot (Tv) = \nabla^2 (DT)
\] (4.3)

ここで、\(T \) は濃度, \(t \) は時間, \(v \) は速度ベクトル, \(D \) は拡散係数を示す。

4.4.3 方程式の離散化

メッシュは、各セルをつくる面の数に制限のない任意非構造メッシュで作られる。OpenFOAM でのパラメータは図 4.4.1 に示すように、セル中心である \(P \) で従属変数及び物理量は保存される[29]。セルは、一般に \(f \) とラベル付けされる平らな面で境界付けられる。

図 4.4.1 有限体積法の離散化におけるパラメータ[29]

OpenFOAM における偏微分方程式の各項は、ガウスの定理により、その体積を囲んでいるセル表面の面積分に変換される。

\[
\int_{V} \nabla \cdot \phi \, dV = \int_{S} dS \cdot \phi
\] (4.4)

ここで \(S \) は表面積ベクトル, \(\phi \) は任意のテンソル場, そして \(\cdot \) はテンソル任意の乗算, 例えば内積, 外積, クロス積, およびそれぞれの微分, 発散 \(\nabla \cdot \phi \), 勾配 \(\nabla \phi \) および回転 \(\nabla \times \phi \) を表している。以下にガウスの発散定理を用いた各項の有限体積法による離散化を示す。
①ラプラシアン項

ラプラシアンの項は以下のように検査体積で積分・線形化される。

\[\int_D \nabla \cdot (I \nabla \phi) \, dV = \sum_f \int_{S_f} \mathbf{f} \cdot (I \nabla \phi) \, dS_f = \sum_f \Gamma_f S_f \cdot (\nabla \phi)_f \] \hspace{1cm} (4.5)

見ているセル \(P \) の中心と隣のセル \(N \) の中心の間の長さベクトル \(\mathbf{d} \) がそのフェイス面に垂直、すなわち \(S_f \) に平行ならば、面の勾配の離散化は陰的になる。

\[S_f (\nabla \phi)_f = |S_f| \frac{\phi_N - \phi_P}{|\mathbf{d}|} \] \hspace{1cm} (4.6)

非直交メッシュの場合、セル中心勾配の内挿によって評価される陽的な項が加わる。

②対流項

対流項は以下のようにしてコントロールボリュームで積分・線形化される。

\[\int_D \nabla \cdot (\rho U \phi) \, dV = \sum_f \int_{S_f} \mathbf{f} \cdot (\rho U \phi) \, dS_f = \sum_f F_f \phi_f \] \hspace{1cm} (4.7)

③発散

発散項は、2.4.2項の対流項とは区別される完全に陽的な項である。つまり対流項は、速度とある従属変数の積の発散ではない。この項は以下のように検査体積で積分・線形化される。

\[\int_D \nabla \cdot \phi \, dV = \int_D dS \cdot \phi = \sum_f S_f \cdot \phi_f \] \hspace{1cm} (4.8)

④勾配

勾配の項は様々な方法で評価できる陽的な項である。

・ガウス積分

\[\int_D \nabla \cdot \phi \, dV = \int_D dS \cdot \phi = \sum_f S_f \phi_f \] \hspace{1cm} (4.9)
・最小二乗法
1. 点 P における値を、点 P における勾配を使って隣の点 N に外挿する。
2. 点 N に外挿された値を、点 N における実際の値と比較、この差が誤差となる。
3. 点 P の付近の全ての点における誤差を、それぞれの勾配で重み付けして二乗した総和を最小化すれば、勾配の良い近似値が得られる。

この離散化は、まず全ての点 P において、その近隣の点 N での総和を求めて、テンソル G を計算する。

$$ G = \sum_f w_N^2 dd $$

(4.10)

ここで d は P から N へのベクトルであり、重み関数は $w_N = 1/|d|$ である。勾配は以下のように評価される。

$$ (\nabla \phi)_P = \sum_f w_N^2 G^{-1} \cdot d (\phi_N - \phi_P) $$

(4.11)

⑤面に垂直な勾配

面に垂直な勾配 $n \cdot (\nabla \phi)$ はセルの面において以下のスキームを使って評価できる。

$$ (\nabla \phi)_f = \frac{\phi_N - \phi_P}{|d|} $$

(4.12)

このスキームはラプラシアンの離散化スキームと似た方法で直接評価され、また同じように非直交メッシュの場合には、この面の勾配の精度を高めるために補正が加えられる。

⑥時間の離散化

時間微分の離散化については、もし A を任意の空間微分演算子、例えばラプラシアン、として、あらゆる空間微分を $A\phi$ で表すとすれば、非定常の偏微分方程式を積分型で以下のように表記できる。

$$ \int_{t^i}^{t^{i+1}} \left[\frac{\partial}{\partial t} \int_V \rho \phi dV + \int_V A \phi dV \right] dt = 0 $$

(4.13)

オイラー陰解法を使うと、第 1 項は次のように書ける。
第2項は次のように書ける。

\[
\int_{t}^{t+\Delta t} \left[\int_{V} \rho \phi dV + \int_{V} A dV \right] dt = \int_{t}^{t+\Delta t} \left(\frac{\partial}{\partial t} (\rho \phi V) + \int_{V} A dV \right) dt = \frac{1}{\Delta t} \left(\int_{t}^{t+\Delta t} \left(\rho \phi V \right) - \left(\rho \phi V \right)_{0} \Delta t \right)
\]

(4.14)

ここで

\[
\int_{t}^{t+\Delta t} \left[\int_{V} A dV \right] dt = \int_{t}^{t+\Delta t} A^{*} \phi dt
\]

(4.15)

ここで

\[A^{*}\text{は空間で離散化した}\ A\ を表す。時間積分は三つの方法で離散化できる。\

⑦オイラー陽解法

空間については陽解法で離散化し、したがって前の時刻の値 \(\phi^{0}\) をとる。

\[
\int_{t}^{t+\Delta t} A^{*} \phi dt = A^{*} \phi^{0} \Delta t
\]

(4.16)

これは時間について1次精度であり、もしクーラン数 \(C_{0}\) が1より大きければ不安定である。クーラン数は以下のように定義される。

\[
C_{0} = \frac{U_{f} \cdot d}{|d| \cdot \Delta t}
\]

(4.17)

ここで \(U_{f}\) は代表速度、例えば波面の速度、流れの速度などである。

⑧クランク・ニコルソン法

空間の項の離散化に台形公式を使い、したがって現在の値 \(\phi^{N}\) と前の時刻の値 \(\phi^{0}\) の平均値をとる。

\[
\int_{t}^{t+\Delta t} A^{*} \phi dt = A^{*} \left(\frac{\phi^{N} + \phi^{0}}{2} \right) dt
\]

(4.18)

これは時間について2次精度であり、無条件で安定であるが、有界性は保証されない。
4.5 混合の性能評価

数値計算の結果を用いて、観察したい流路断面における混合率を算出する。混合の効果を定量的に評価するためには、式 (4.19) にて定義される混合率 \(\sigma \) を用いる。

\[
\sigma = 1 - \sqrt{\frac{1}{N(1 - \rho_A)} \sum_{i=1}^{N} (\rho_{Ai} - \rho_A)}
\] (4.19)

ここで \(\rho_{Ai} \) は、流体の占める領域を \(N \) 個の小領域に分割した時に \(i \) 番目の小領域で流体の占める割合を、また \(\rho_A \) は式 (4.20) で表される。

\[
\rho_A = \frac{V_A}{V_A - V_R}
\] (4.20)

2 流体が完全に混合された場合は \(\sigma = 1 \)，逆に混合が行われていない場合には \(\sigma = 0 \) となる。

混合率 \(\sigma \) の算出過程は、以下の通りである。
・混合の性能評価を行いたい流路断面をスライスする。
・流路断面上の各メッシュセル中心における数値（濃度 \(T \)）を、csv ファイルに出力する。
・csv ファイルから濃度 \(T \) の値を読み込み、式 (4.19) の \(\rho_{Ai} \) に代入し、混合率 \(\sigma \) を計算する。

4.6 主流速度の評価

観察したい流路断面に対して垂直な流れとなる主流速度を算出する。主流速度の方向は、曲がり流路上流から見て出口方向に向かう流れを正とする。

4.7 二次流れの評価

観察したい流路断面上の二次流れを算出する。
第5章 実験および数値計算結果

5.1 流路入口から出口の各断面における混合の様子

本節では、流路入口から出口各断面における混合の様子を、実験と数値計算により比較した結果について述べる。

図5.1.1 流入条件および移動壁面

図5.1.1に流入条件と移動壁面を示す。図5.1.1の赤線部分の右側および上側は、画像に対し垂直な方向に移動する移動壁面であり、左側および下側は静止壁面を表している。流体の流入・流出による流れは手前から奥側へ向かうものとし、同図の右側が曲がりの内側とする。図は、実験のLIF計測結果と同様に濃度1の場合を白色、濃度0の場合を黒とし、その間は濃度に応じて濃さが線形的に変わる。また、濃度1の流体が曲がりの内側（図の右側）へ来るように流入させている。

図5.1.2 観察断面

実験と数値計算の比較の対象は、断面形状1の曲がり流路である。Tr = 0、3、-3の各条件において、Deを変化させた時の、流路入口、曲がり角度θ = 0°、45°、90°、135°、180°、225°、出口に至る各流路断面における混合の様子を数値計算により求めた（図5.1.2）。

32
5.1.1 $Tr = 0$ の場合

5.1.1.1 LIF 計測結果

図 5.1.3 LIF 計測結果 ($Tr = 0$)

図 5.1.3 に、LIF 計測による 180° 断面の混合の様子を示す。$Tr = 0$ の場合は、流入する流れの影響のみとなる。De の増加に対して若干界面の変形の様子が見られるが、流入初期の濃度の占める割合がほとんどであり、中間濃度 0.5 の領域が見られない。したがって、本条件下においては、混合自体は促進されていないことがわかる。
5.1.1.2 数値計算結果

図 5.1.4 ～5.1.13 に、\(Tr = 0, \ De = 0.1 \sim 1.0 \) の場合における各断面の混合の数値計算結果を示す。

図 5.1.4 \(De = 0.1 \) の混合の様子 \((Tr = 0) \)

図 5.1.5 \(De = 0.2 \) の混合の様子 \((Tr = 0) \)
図 5.1.6 $De = 0.3$ の混合の様子 ($Tr = 0$)

図 5.1.7 $De = 0.4$ の混合の様子 ($Tr = 0$)

図 5.1.8 $De = 0.5$ の混合の様子 ($Tr = 0$)
図 5.1.9 $De = 0.6$ の混合の様子 ($Tr = 0$)

図 5.1.10 $De = 0.7$ の混合の様子 ($Tr = 0$)

図 5.1.11 $De = 0.8$ の混合の様子 ($Tr = 0$)
図 5.1.12 $De = 0.9$ の混合の様子 ($Tr = 0$)

図 5.1.13 $De = 1.0$ の混合の様子 ($Tr = 0$)

図 5.1.4 ～5.1.13 より、いずれの De の場合においても、濃度 0 と濃度 1 の領域がはっきりと分かれており、良好な混合が得られていないことがわかる。また、De が大きくなるにつれて、2 液の界面が同様な形に変形していく様子が確認できる。これは、曲がり流路による遠心力により、静止壁面側に引っ張られているような形になったと考えられ、180° の位置における $De = 1.0$ の場合の LIF 計測結果と比較しても、数値計算結果は、良く一致していることがわかる。

一方、180° と流路出口における 2 液の界面変形の様子は良く似ており、ほぼ同等な混合状態を示している。
5.1.2 $Tr = 3$ の場合

5.1.2.1 LIF 計測結果

図 5.1.14 LIF 計測結果（$Tr = 3$）

図 5.1.14 に、LIF 計測による 180° 断面の混合の様子を示す。$Tr = 0$ の場合とは異なり、濃度 0.5（50 %）の領域は中間濃度の領域が多く見られることがわかる。また De が小さくなるほど濃度 0.5 の領域が増加し、混合が促進されていることがわかる。
5.1.2.2 数値計算結果

図5.1.15～5.1.24に、$Tr = 3$、$De = 0.1$～1.0 の場合における各断面の混合の数値計算結果を示す。

図5.1.15 $De = 0.1$ の混合の様子（$Tr = 3$）

図5.1.16 $De = 0.2$ の混合の様子（$Tr = 3$）
図 5.1.17 $De = 0.3$ の混合の様子 $(Tr = 3)$

図 5.1.18 $De = 0.4$ の混合の様子 $(Tr = 3)$

図 5.1.19 $De = 0.5$ の混合の様子 $(Tr = 3)$
図 5.1.20 $De = 0.6$ の混合の様子 ($Tr = 3$)

図 5.1.21 $De = 0.7$ の混合の様子 ($Tr = 3$)

図 5.1.22 $De = 0.8$ の混合の様子 ($Tr = 3$)
数値計算における結果においても，De が小さくなるほど中間濃度の領域が増加し，混合が促進されることがわかる。また，De が 0.3 以下の場合において混合が促進されており，この De 付近に混合促進のしきい値が存在していることが考えられる。また混合の様子を良く見ると，いずれの De においても，入口~0°付近，45°~180°，225°~出口の位置で混合の形態が異なっている。特に，0°および225°の位置については，流路の拡大・縮小の影響，回転壁面の境界，更に逆流のある場合には折り返し場所になること等の理由から混合の様子に変化が現れたものと考えられる。

数値計算結果は，LIF 計測結果と比較的良好一致を示しており，De が小さくなるほど混合が促進されるなど，同様の傾向を示す結果が得られている。
5.1.3 $Tr = -3$ の場合

5.1.3.1 LIF 計測結果

図 5.1.25 LIF 計測結果（$Tr = -3$）

図 5.1.25 に、LIF 計測による 180° 断面の混合の様子を示す。$Tr = 3$ の場合と同様に、De が小さくなるほど濃度 0.5 の中間濃度領域が増加しており、混合が促進されていることがわかる。
5.1.3.2 数値計算結果

図 5.1.26〜5.1.35 に、$Tr = -3$, $De = 0.1\sim1.0$ の場合における各断面の混合の数値計算結果を示す。$Tr = -3$ の場合も同様に、数値計算における結果は、LIF 計測結果と比較的良い一致を示した。また、De が小さくなるほど混合が促進される傾向も一致している。

図 5.1.26 $De = 0.1$ の混合の様子 ($Tr = -3$)

図 5.1.27 $De = 0.2$ の混合の様子 ($Tr = -3$)
図 5.1.28 $De = 0.3$ の混合の様子（$Tr = -3$）

図 5.1.29 $De = 0.4$ の混合の様子（$Tr = -3$）

図 5.1.30 $De = 0.5$ の混合の様子（$Tr = -3$）
図 5.1.31 $De = 0.6$ の混合の様子 ($Tr = -3$)

図 5.1.32 $De = 0.7$ の混合の様子 ($Tr = -3$)

図 5.1.33 $De = 0.8$ の混合の様子 ($Tr = -3$)
数値計算における結果は、$Tr = 3$ の場合と同様に、De が小さくなるほど中間濃度の領域が増加し、混合が促進されることがわかる。また混合の様子においても、いずれの De で入口〜0°付近、45°〜180°、225°〜出口の位置で混合の形態が異なっている。理由についても、$Tr = 3$ の場合と同様であると考えられる。
5.1.4 まとめ

本節では、曲がり流路の入口から出口に至る各断面における混合の様子を調査した。その結果、以下のことが明らかとなった。

\(Tr = 0 \) の場合

\(\cdot \) LIF 計測結果と数値計算結果は混合の様子が良く一致している。
\(\cdot \) 180°断面と曲がり流路の出口での混合の様子は、同様な濃度分布となっている。
\(\cdot \) 壁面が静止している本条件では、界面の変形は見られるものの混合は促進されない。

\(Tr = 3 \) の場合

\(\cdot \) LIF 計測結果と数値計算結果は混合の様子が比較的一致している。
\(\cdot \) 入口〜0°、45°〜180°、225°〜出口の各領域では、混合の様子が異なる。
\(\cdot \) De が減少すると界面が消滅し混合が促進されている。
\(\cdot \) 180°断面と曲がり流路の出口では、混合の様子や濃度分布が異なっている。

\(Tr = -3 \) の場合

\(\cdot \) \(Tr = 3 \) の場合と同様の傾向が得られた。

以上の結果より、45°〜180° 断面の位置では、比較的同等な混合特性を示していることから、テイラー・ディーン流れの検討には、180° 断面の位置における LIF 計測結果と数値計算結果の比較検証を行うものとする。一方、流路出口において、混合の様子が異なることについては、流路の構造上の問題であり、実機実用化に向けた今後の検討課題である。
5.2 流入初期条件の影響

本節では、曲がり流路に流入させる2液の初期条件を変更した場合の影響について、LIF計測による実験とCFDによる数値計算により検討した結果について述べる。流入条件および移動壁面の境界条件を、図5.2.1に示す。検討に用いた曲がり流路は、表5.2.1に示す断面形状Ⅰである。

![流入条件 I](image)

![流入条件 II](image)

![移動壁面（境界条件3）](image)

図5.2.1 流入条件および移動壁面

表5.2.1 曲がり流路の寸法

<table>
<thead>
<tr>
<th>断面形状</th>
<th>(2a) [mm]</th>
<th>(2b) [mm]</th>
<th>(R) [mm]</th>
<th>(\delta)</th>
<th>(\gamma)</th>
<th>(l) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>0.1</td>
<td>1</td>
<td>58.9</td>
</tr>
</tbody>
</table>
5.2.1 LIF による計測結果

図5.2.2〜5.2.4および図5.2.5〜5.2.7に、流入条件Iおよび流入条件IIの流入条件におけるLIFによる計測結果を示す。各画像は上流側から見たもので、各画像の右端と上端がロータの回転に伴う移動壁面、左端と下端がケーシングの静止壁面である。流体の流入・流出による流れは手前から奥側へ向かうものとする。また、ローダミンBで染色されたグリセリン水溶液（白色）が画像の右側（流入条件I）か下側（流入条件II）へ来るように流入させ、画像の右隣にはローダミンBの濃度を示している。流入時のローダミンBで染色されたグリセリン水溶液のみの濃度を100%とすることで、50%付近の領域（灰色）の増加に伴い混合が促進されたと評価する。

5.2.1.1 流入条件I

図5.2.2 LIF計測結果（Tr = 0，流入条件I）

(i) $De = 0.1$

(ii) $De = 0.3$

(iii) $De = 1.0$

図5.2.3 LIF計測結果（Tr = 3，流入条件I）

(i) $De = 0.1$

(ii) $De = 0.3$

(iii) $De = 1.0$

図5.2.4 LIF計測結果（Tr = -3，流入条件I）

(i) $De = 0.1$

(ii) $De = 0.3$

(iii) $De = 1.0$
$Tr = 0$ の場合, De の増加に対して界面の変形の様子が見られるが, 流入初期の濃度の占める割合がほとんどであり, 中間濃度 50 %の領域が見られない. 従って, 本条件においては, 混合自体は促進されないことがわかる.

$Tr = 3$ の場合, $De = 0.1, 0.3$ において混合が大きく促進され, 濃度 50 %付近の領域が増加している. しかし, $De = 1.0$ に増加すると, $Tr = 0$ の場合と同様に, 界面の変形は見られないものの, それぞれの流体は分かれており混合がほとんど促進されていない.

$Tr = -3$ の場合も, $Tr = 3$ の場合と同様の傾向が見られるが, 混合の様相は $Tr = 3$ の時と比べて大きく異なっていることがわかる.
5.2.1.2 流入条件 II

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

図 5.2.5 LIF 計測結果（$Tr = 0$，流入条件 II）

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

図 5.2.6 LIF 計測結果（$Tr = 3$，流入条件 II）

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

図 5.2.7 LIF 計測結果（$Tr = -3$，流入条件 II）

$Tr = 0$ の場合，流入条件 I の場合と同様に，De の増加に対して界面の変形の様子が見られるが，流入初期の濃度の占める割合がほとんどであり，中間濃度 50 % の領域が見られない。従って，本条件においても，混合自体は促進されないことがわかる。

$Tr = 3$ の場合，$De = 0.1, 0.3$ において混合が大きく促進され，濃度 50 % 付近の領域が増加しているが，$De = 1.0$ に増加すると，$Tr = 0$ の場合と同様に，界面の変形は見られるものの，それぞれの流体は分かれており混合がほとんど促進されていない。

$Tr = -3$ の場合も，$Tr = 3$ の場合と同様の傾向が見られるが，こちらも混合の様相は $Tr = 3$ の時と比べて大きく異なっている。
5.2.2 数値計算結果

図 5.2.8～5.2.10 および図 5.2.11～5.2.13 に，流入条件 I および流入条件 II の流入条件における数値計算結果を示す．各画像は LIF 計測同様に上流側から見たもので，各画像の右端と上端がロータの回転に伴う移動壁面，左端と下端がケーシングの静止壁面である．流体の流入・流出による流れは手前から奥側へ向かうものとする．また，LIF 計測においてローダミン B で染色されたグリセリン水溶液は，数値計算では赤色の領域に対応する．濃度割合については，赤色を 1（濃度 100 ％）とし，黄色→緑色→水色へと小さくなっていき青色で 0（濃度 0 ％）となる．緑色が濃度 50 ％の領域となり，緑色の領域の増加に伴い混合が促進されたと評価する．

5.2.2.1 流入条件 I

(i) $De = 0.05$

(ii) $De = 0.1$

(iii) $De = 0.2$

(iv) $De = 0.3$

(v) $De = 0.4$

(vi) $De = 0.5$

(vii) $De = 0.6$

(viii) $De = 0.7$

(ix) $De = 0.8$

(x) $De = 0.9$

(xi) $De = 1.0$

図 5.2.8 数値計算結果（$Tr = 0$，流入条件 I）
$Tr = 0$ の場合，De の増加に対して界面が変形していく様子が見られ，LIF 計測の結果とほぼ一致する結果となった。界面を境に初期に与えた濃度がそのまま残っており，混合が促進されてない事がわかる。
図 5.2.9 数値計算結果（$Tr = 3$、流入条件 1）

$Tr = 3$ の場合、De が小さくなる程、混合領域を示す緑色の領域が増加していることがわかる。一方、De が大きくなると、LIF 計測結果と同様に界面の変形部が現れ、未混合の領域が残っており、混合がほとんど促進されていない。
図 5.2.10 数値計算結果 (Tr = -3, 流入条件 I)

Tr = -3 の場合も, Tr = 3 の場合と同様の傾向が見られ, De が小さくなる程, 混合領域を示す緑色の領域が増加していることがわかる. De が大きくなった場合も同様, 界面の変形部が現れるが, 未混合の領域が残っており, 混合がほとんど促進されていない. 混合の様相については, Tr = 3 とは異なっており, 良好な混合を示す緑色の領域の分布状況に違いが見られる.
5.2.2.2 流入条件 II

(i) $De = 0.05$
(ii) $De = 0.1$
(iii) $De = 0.2$
(iv) $De = 0.3$
(v) $De = 0.4$
(vi) $De = 0.5$
(vii) $De = 0.6$
(viii) $De = 0.7$
(ix) $De = 0.8$
(x) $De = 0.9$
(xi) $De = 1.0$

図 5.2.11 数値計算結果 ($Tr = 0$, 流入条件 II)

$Tr = 0$ の場合、De の増加に対して、LIF 計測結果と傾向はほぼ一致するものの、界面の変化はあまり見られない結果が得られた。これは、曲がり流路に生じる遠心力の方向が、2液の分割界面と同方向である事が原因と思われる。本結果より、$Tr = 0$ の条件では、混合が促進されていない事がわかる。
図 5.2.12 数値計算結果（Tr = 3, 流入条件 II）

Tr = 3 の場合, $De \leq 0.3$ において, 混合領域を示す緑色の領域が占める割合が増加していることがわかる。一方, De が大きくなると, 未混合の領域が多く残っており, 混合がほとんど促進されていない。LIF 計測結果と比べて, 界面の変形の様子や濃度領域がほぼ一致していることもわかる。
図 5.2.13 数値計算結果（$Tr = -3$, 流入条件 II）

$Tr = -3$ の場合も, $Tr = 3$ の場合と同様の傾向が見られ, De が小さくなる程, 混合領域を示す緑色の領域が増加していることがわかる. De が大きくなった場合も同様, 界面の変形部が現れるが, 未混合の領域が残っており, 混合がほとんど促進されていない.
5.2.3 混合率

混合率 σ の変化を、各 Tr の流入条件の違いについて比較した結果を図5.2.14に示す。

図 5.2.14 流入条件による混合率の比較
$Tr = 0$ では、De の増大により、若干ながら混合率の上昇傾向が見られる。これは、De が増加すると遠心力の影響で 2 液の界面が変形するためであり、特にその影響が大きい流入条件 I において変形量が大きい。しかしながら単純な変形に留まっており、ほとんど混合には寄与しないと考えられる。

$Tr = 3$, -3 の回転を与えた場合には、回転を与えていない $Tr = 0$ の場合に比べて混合率が大きくなり混合が促進されている事がわかる。一方、回転方向の違いにより、入口流入条件の影響が見られることもわかる。

$Tr = 3$ の場合、流入条件 I および II ともに、De が小さくなると混合率 σ が上昇している。混合率については、De の範囲によって、流入条件 I および II のいずれかが大きくならないことがわかる。最も高い σ が得られたのは、$De = 0.05$ の流入条件 II の時で、$\sigma = 0.84$ であった。

$Tr = -3$ の場合、$Tr = 3$ の場合と同様、De が小さくなるほど混合率 σ の値が大きくなっており、σ の値は $Tr = 3$ の値に比べて小さいことがわかる。また、$Tr = 3$ の場合に見られた流入条件による σ の変動は見られない。

以上のことから、混合が促進される De と Tr の関係は、流入条件 I の $Tr = -3$ の場合を除いて $De \leq 0.1 |Tr|$ であることがわかった。次項から、速度分布を用いて混合促進のメカニズムについて考察していく。
図 5.2.4 主流

図 5.2.15 は，断面形状 1 の 180° 断面の主流速度分布を CFD で計算した結果である．壁面が静止している $Tr = 0$ の場合，De の増加に対して断面中央部分の流速が増加していく様子が見られる．流速分布には偏りが無く，直管内の速度分布に類似している．
図5.2.16 主流速度（Tr = 3）

図5.2.16は、図5.2.15においてTr = 3の時の主流速度分布結果である。移動壁面付近では、壁面の移動と共に出口へ向かう流れが発生している一方で、断面中央付近では逆流が発生しており、Deが小さい条件ほど逆流が増加している。この逆流が混合促進に関係していると考えられる。
図 5.2.17 主流速度（$Tr = -3$）

図 5.2.17 は、図 5.2.15 において $Tr = -3$ の時の主流速度分布結果である。本条件では、移動壁面付近で逆流が発生している様子が見て取れる。$Tr = 3$ の時と同様、この逆流が混合促進に関係していると考えられる。一方、断面中央付近の出口に向かう流れは、De が大きい条件ほど流れが速くなる傾向が確認できる。
5.2.5 二次流れ

図 5.2.18 は、図 5.2.15 の場合における二次流れの様子を示したものである。本状況では壁面の移動が無くディーン流れとなる。流路の曲がりによる遠心力の作用で、曲がり流路の外側に向かう二次流れが発生していることがわかる。
図 5.2.19 二次流れ（$Tr = 3$）

図 5.2.19 は、図 5.2.16 の場合における二次流れの様子を示したものである。本条件では移動壁面の影響により、$Tr = 0$ の時に見られた二次流れに比べて複雑な流れが生じている事がわかる。また De の範囲により、二次流れにより生じた渦の数が異なることがわかる。混合が促進される $De \leq 0.1$ の時においては、二つの大きな渦が発生しており、この二次流れが混合の促進に関係していると考えられる。この $Tr = 3$ において、De の値により入口流入条件によって混合率 σ が異なるのは、混合促進に寄与する主流の逆流と二次流れの関係によるものと考えられる。
図 5.2.20 二次流れ（Tr = -3）

図 5.2.20 は、図 5.2.17 の場合における二次流れの様子を示したものである。本条件についても Tr = 3 と同様に複雑な二次流れが生じており、De の増大に伴って渦の大きさも変化している。一方、渦発生の形態は De の全領域で共通しており、二つの大きな渦が大きさを変えながら現れていることが特徴的である。したがって、流入条件 II において De ≤ 0.1 |Tr| で混合が促進されるのは、主流の逆流が関係していると考えられる。
5.2.6 まとめ

本節では、2種類の流入条件において、曲がり流路壁面の一部を回転させることにより、混合に与える影響を調査した。その結果、以下の事項が明らかとなった。

・$De \leq 0.1 |Tr|$において、混合が促進される。
・最も高い混合を与える条件は、$Tr = 3, De = 0.05$、流入条件IIの場合である。
・同上、その時の混合率は$\sigma = 0.84$であった。
・混合促進に与える入口流入条件の影響は大きく、回転による逆流の発生と二次流れが関係している。
5.3 流路断面のアスペクト比と流入条件

本節では、曲がり流路断面のアスペクト比の影響について、LIF 計測による実験と CFD による数値計算により検討した結果について述べる。検討に用いた曲がり流路は、表 5.3.1 に示す断面形状 I 〜 III であり、流入条件と移動壁面は図 5.2.1 と同様である。

表 5.3.1 曲がり流路の寸法

<table>
<thead>
<tr>
<th>断面形状</th>
<th>$2a$ [mm]</th>
<th>$2b$ [mm]</th>
<th>R [mm]</th>
<th>δ</th>
<th>γ</th>
<th>l [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>0.1</td>
<td>1</td>
<td>58.9</td>
</tr>
<tr>
<td>II</td>
<td>4.5</td>
<td>2</td>
<td>22.5</td>
<td>0.1</td>
<td>0.44</td>
<td>88.4</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>4.5</td>
<td>10</td>
<td>0.1</td>
<td>2.25</td>
<td>39.3</td>
</tr>
</tbody>
</table>
5.3.1 LIF による計測結果

5.3.1.1 流入条件 I

図 5.3.1 断面形状 I (Tr = 0)
(i) $De = 0.3$ (ii) $De = 1.0$

図 5.3.2 断面形状 II (Tr = 0)
(i) $De = 0.3$ (ii) $De = 1.0$

図 5.3.3 断面形状 III (Tr = 0)
(i) $De = 0.3$ (ii) $De = 1.0$

図 5.3.1 ～5.3.3 に、Tr = 0 の LIF 計測による 180° 断面の混合の様子を示す。Tr = 0 の場合、De の増加に対して界面の变形の様子が見られるが、流入初期の濃度の占める割合がほとんどであり、中間濃度 50 % の領域が見られない。この傾向は、断面形状 I ～III すべてにおいて共通しており、混合が促進されていないことがわかる。
図 5.3.4 断面形状 I（Tr = 3）

(i) $De = 0.1$
(ii) $De = 0.2$
(iii) $De = 0.3$
(iv) $De = 1.0$

図 5.3.5 断面形状 II（Tr = 3）

(i) $De = 0.1$
(ii) $De = 0.2$
(iii) $De = 0.3$
(iv) $De = 1.0$
図 5.3.4～5.3.6 に, トランスフィクションが 3 の LIF 計測によく 180° 断面の混合の様子を示す. Tr = 3 の場合, 断面形状 I および III では, De = 0.1～0.3 において混合が大きく促進され, 濃度 50 %付近の領域が増加している. しかし, De = 1.0 に増加すると, Tr = 0 の場合と同様に, 界面の変形は見られるものの, それぞれの流体は分かれており混合がほとんど促進されていない. 一方, 断面形状 II においては, すべての De において, 未混合の領域が残っており, 他の流路形状に比べて, 混合の効果が得られていない事がわかる.
図 5.3.7 断面形状 I（Tr = -3）

(i) $De = 0.1$ (ii) $De = 0.2$

(iii) $De = 0.3$ (iv) $De = 1.0$

図 5.3.8 断面形状 II（Tr = -3）

(i) $De = 0.1$ (ii) $De = 0.2$

(iii) $De = 0.3$ (iv) $De = 1.0$
図 5.3.7～5.3.9 に，Tr = -3 の LIF 計測による 180° 断面の混合の様子を示す。Tr = -3 の場合も，Tr = 3 の場合と同様の傾向が見られるが，混合の様相は Tr = 3 の時と比べて大きく異なっていることがわかる。
5.3.1.2 流入条件 II

(i) $D_e = 0.1$
(ii) $D_e = 0.3$
(iii) $D_e = 1.0$

図 5.3.10 断面形状 I ($Tr = 0$)

(i) $D_e = 0.1$
(ii) $D_e = 0.3$
(iii) $D_e = 1.0$

図 5.3.11 断面形状 II ($Tr = 0$)

(i) $D_e = 0.1$
(ii) $D_e = 0.3$
(iii) $D_e = 1.0$

図 5.3.12 断面形状 III ($Tr = 0$)
図 5.3.10 ～ 5.3.12 に, \(Tr = 0 \) の LIF 計測による 180° 断面の混合の様子を示す。\(Tr = 0 \) の場合, 流入条件 I の場合と同様に, \(De \) の増加に対して界面の変形の様子が見られるが, 流入初期の濃度の占める割合がほとんどであり, 中間濃度の領域が見られない。この傾向は, 断面形状 I ～ III すべてにおいて共通しており, 混合が促進されていないことがわかる。
図 5.3.13 断面形状 I (Tr = 3)

図 5.3.14 断面形状 II (Tr = 3)

図 5.3.15 断面形状 III (Tr = 3)

図 5.3.13～5.3.15 に、Tr = 3 の LIF 計測による 180° 断面の混合の様子を示す。Tr = 3 の場合、断面形状 I および III では、De = 0.1～0.3 において混合が大きく促進され、濃度 50%付近の領域が増加している。しかし、De = 1.0 に増加すると、Tr = 0 の場合と同様に、界面の変形は見られるものの、それぞれの流体は分かれており混合がほとんど促進されていない。一方、断面形状 II においては、すべての De において、未混合の領域が残っており、他の断面形状に比べて、混合の効果が得られていない事がわかる。
図 5.3.16 断面形状 I（Tr = -3）

(i) De = 0.1
(ii) De = 0.3
(iii) De = 1.0

図 5.3.17 断面形状 II（Tr = -3）

(i) De = 0.1
(ii) De = 0.3
(iii) De = 1.0

図 5.3.18 断面形状 III（Tr = -3）

図 5.3.16〜5.3.18 に，Tr = -3 の LIF 計測による 180° 断面の混合の様子を示す。Tr = -3 の場合も，Tr = 3 の場合と同様の傾向が見られるが，混合の様相は Tr = 3 の時と比べて大きく異なっていることがわかる。
5.3.2 数値計算結果

流入条件 I および II における数値計算結果を、それぞれ図 5.3.19～5.3.20 と図 5.3.21～5.3.22 に示す。各画像は LIF 計測結果と同様に上流側から見たもので、各画像の右端と上端がロータの回転に伴う移動壁面、左端と下端がケーシングの静止壁面である。流体の流入・流出による流れは手前から奥側へ向かうものとする。また、LIF においてローダミン B で染色されたグリセリン水溶液は、数値計算では赤色の領域に対応する。濃度割合については、赤色を 1（濃度 100 %）とし、黄色→緑色→水色へと小さくなっていき青色で 0（濃度 0 %）となる。緑色は濃度 50 %の領域を示し、本領域の増加に伴い混合が促進されたと評価する。

5.3.2.1 流入条件 I

図 5.3.19 数値計算結果（Tr = 3）
図 5.3.20 数値計算結果（$Tr = -3$）

図 5.3.19 および図 5.3.20 に，$Tr = 3$ と $Tr = -3$ の時の断面形状 I～III における混合の数値計算結果を示す。断面形状 I～III のすべての条件において，De が小さい場合は緑の領域が多くなっており，混合が促進されていると判断できる。一方，緑の領域の分布は，断面形状 III > I > II の順に多くなっており，流路断面のアスペクト比 $\gamma (\gamma = b/a)$ が大きい方が，より混合が促進されている事がわかる。
5.3.2.2 流入条件 II

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

(a) 断面形状 I

(ii) $De = 0.3$
(iii) $De = 1.0$

(b) 断面形状 II

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

(c) 断面形状 III

図 5.3.21 数値計算結果 ($Tr = 3$)
図5.3.21 ～5.3.22の流入条件 II の場合においても、断面形状 I および III では流入条件 I の場合と同様に、De が小さい場合は緑の領域が多くなっており、混合が促進されていると判断できる。一方、断面形状 II においては、界面の変形は見られるものの、混合が促進されていない点で、LIF 計測結果と同様の傾向が得られている。

以上のことから、2 液界面の面積の大きさより、アスペクト比の大きさが混合には影響することが明らかとなった。
5.3.3 混合率

図5.3.23 混合率（$Tr = 3$）
図 5.3.24 混合率（\(Tr = -3 \)）
混合率 σ を各断面形状および流入条件で比較したものを図 5.3.23 ～ 5.3.24 に示す。

図 5.3.23(a)の断面形状 I では、$0.3 \leq De \leq 0.6$ の領域において、流入条件の違いにより σ の値が逆転する現象が見られる。また De が小さくなる程、σ の値が大きくなる事が分かる。同図(b)の断面形状 II では、流入条件の影響による σ の変化はほとんど見られない。また σ の値も、断面形状 I および断面形状 III と比較して小さい事が確認できる。同図(c)の断面形状 III は、他の断面形状と比べて全体的に σ の値が小さい事が分かる。また、流入条件の違いによる混合率の影響も顕著に見られ、特に流入条件 I においては、全般的に σ の値が高い値で推移している様子が確認できる。

図 5.3.24(a)の断面形状 I では、De が小さくなる程、σ の値が大きくなっている。また、$De \leq 0.6$ の領域において、流入条件 II の σ の値が大きく混合性能が良好である。同図(b)の断面形状 II も断面形状 I と同様に、De が小さくなる程、また、$De \leq 0.6$ の領域において、流入条件 II の σ の値が大きくなるが、σ の値は断面形状 I よりも小さく混合性能では劣る。同図(c)の断面形状 III は、他の断面形状と比べて全体的に σ の値が大きい。また、$Tr = 3$ の場合と同様に、流入条件の違いによる混合率の影響も現れており、流入条件 I においては、全般的に σ の値が高い値で推移している様子が確認できる。図 5.3.23 および図 5.3.24 の混合率 σ を各断面形状および流入条件で比較したものを表 5.3.2 に示す。$\sigma \geq 0.9$ となる条件は、断面形状 III の流入条件 I の場合であった。

以上より、混合の促進にはアスペクト比の増大が有効である事、また 2 液が縦 2 層に流入する流入条件の方がより混合が促進されると考えられる。

<table>
<thead>
<tr>
<th>断面形状</th>
<th>流入条件</th>
<th>Tr</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>3</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>I</td>
<td>3</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>3</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>I</td>
<td>3</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>3</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>0.54</td>
<td></td>
</tr>
</tbody>
</table>
5.3.4 主流

図 5.3.25 主流速度（$Tr = 3$）

図 5.3.25 は, $Tr = 3$ の断面形状 I ～ III の 180° 断面における主流速度分布を CFD で計算した結果である。同図より、良好な混合がなされた断面形状 I と断面形状 III には強い逆流が発生していることがわかる。この逆流が発生する原因としては、ロータの回転によって出口付近の圧力が上昇し、逆圧力勾配が発生することによるものだと考えられる。そして、この逆流が発生することで混合は促進され、断面形状の中で $De = 1.0$ でも強い逆流が発生している断面形状 III においては, $0.05 \leq De \leq 1.0$ で混合が促進されている。
図 5.3.26 主流速度（$Tr = -3$）

同様に、図 5.3.26 は、$Tr = -3$ の時の計算結果である。同図より、断面形状 I と断面形状 III には壁面付近に強い逆流が発生していることが分かる。$Tr = 3$ の時と同様、この強い逆流が混合促進に関係していると考えられる。
5.3.5 二次流れ

図5.3.27に$Tr=3$の二次流れの計算結果を示す。全体的にはロータからケーシングへと向かう流れであるが、断面形状Iと断面形状IIIには3つの渦が確認できる。ロータ壁面付近の上端に1渦、逆流が発生した部分に2渦が発生している。この3つの渦が、混合の促進に関係しており、3つの渦が効果的に作用する流入条件の流入条件Iにおいて良好な混合が得られたと考えられる。
図 5.3.28 二次流れ（$Tr = -3$）

図 5.3.28 に $Tr = -3$ の二次流れの計算結果を示す。断面形状 I では、大きな 2 つの渦が、また断面形状 III には縦に並ぶ 3 つの渦が確認できる。特に、断面形状 III の流入条件 I では、この 3 つの渦が 2 液界面を乱すことにより混合が促進されたと考えられる。
5.3.6 まとめ

本節では、曲がり流路断面のアスペクト比と2液の流入条件を変更した場合の影響について、LIF計測による実験とCFDによる数値計算により検討した結果、以下のことことが明らかとなった。

・2液界面の面積の大きさより、アスペクト比の大きさが混合には影響する。
・アスペクト比の増加により、主流の逆流が増加して混合は促進される。
・二次流れが効果的に作用する流入条件でなければ、良好な混合は得られない。
5.4 流路壁面の回転効果

本節では、曲がり流路の移動壁面が混合に及ぼす影響について、CFD による数値計算により検討した結果について述べる。流入条件および移動壁面の境界条件を、図 5.4.1 および表 5.4.1 に示す。検討に用いた曲がり流路は、表 5.4.2 に示す断面形状 I～III である。

![図 5.4.1 流入条件 I](image)

<table>
<thead>
<tr>
<th>表 5.4.1 移動壁面の種類</th>
</tr>
</thead>
<tbody>
<tr>
<td>境界条件1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>top</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表 5.4.2 曲がり流路の寸法</th>
</tr>
</thead>
<tbody>
<tr>
<td>断面形状</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
</tbody>
</table>
5.4.1 数値計算結果

5.4.1.1 境界条件 1

(a) 断面形状 I

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

(b) 断面形状 II

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

(c) 断面形状 III

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

図 5.4.2 数値計算結果 ($Tr = 3$)

図 5.4.2 の境界条件 1 の場合、断面形状 I～III すべてのケースにおいて、赤および青の領域とその境界部が残っていることから、混合が促進されているとは言い難い。特に断面形状 I～IIにおいては、De の変化に対して界面の変形があまり変化していないことがわかる。最も混合が促進されているのは、緑の領域が多い断面形状 III のケースであり、De が小さくなると混合が促進されている。
5.4.1.2 境界条件 2

(a) 断面形状 I

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

(b) 断面形状 II

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

(c) 断面形状 III

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

図 5.4.3 数値計算結果 ($Tr = 3$)

図 5.4.3 の境界条件 2 の場合、境界条件 1 の場合と比較して、断面形状 I ～ III すべてのケースにおいて緑の領域が多く見られ、混合が促進されていることがわかる。特に、断面形状 III においては、De の広い範囲で緑の領域が多く占めており、前節の結果と同様、アスペクト比が大きい断面形状において良い混合特性を示している。
5.4.1.3 境界条件 3

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

(a) 断面形状 I

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

(b) 断面形状 II

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

(c) 断面形状 III

図 5.4.4 数値計算結果 ($Tr = 3$)

図 5.4.4 の境界条件 3 の場合、断面形状 I〜III すべてのケースにおいて、界面の変形が複雑となっており、混合が促進されていることがわかる。境界条件 2 の場合と同様に、断面形状 III においては、De の広い範囲で緑の領域が多く占めているが、特に De が小さくなると、良い混合特性を示している。
5.4.1.4 境界条件 4

(a) 断面形状 I
(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

(b) 断面形状 II
(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

(c) 断面形状 III
(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$

図 5.4.5 数値計算結果（$Tr = 3$）

図 5.4.5 の境界条件 4 の場合, 移動壁面が 3 面と最も多く, 界面の収縮も複雑化している. しかししながら、青および赤で示される未混合部も残っており, 混合特性は境界条件 2 および 3 と比較して劣っている. 一方, アスペクト比が大きくなる程, 混合特性が良くなる傾向はここでも見られており, 図 5.4.2～図 5.4.4 と同様に, De が小さい場合は緑色の領域が多くなっており, 混合が促進されていると判断できる.
5.4.2 混合率

图 5.4.6 混合率（$T_r = 3$）
混合率 \(\sigma \) を各断面形状および境界条件で比較したものを図 5.4.6 に示す。

図 5.4.6(a)～(c)に示す断面形状 I～IIIにおいて、すべての境界条件で、\(De \) が小さくなる程 \(\sigma \) の値が大きくなることがわかる。図(b)の断面形状 II では、境界条件の影響による \(\sigma \) の変化はほとんど見られない。また \(\sigma \) の値も、断面形状 I および断面形状 III と比較して小さい。

また図(c)の断面形状 III は、他の断面形状と比べて全体的に \(\sigma \) の値が大きく、境界条件 1 の条件を除いて、広い \(De \) 範囲で高い \(\sigma \) の値を示していることがわかる。

図 5.4.6(a)の断面形状 I では、内壁面が移動する境界条件 2 のケースが良い混合特性を示した。しかしながら、\(0.5 \leq De \) の条件では、\(\sigma \) の値が低下しており、\(0.7 \leq De \) の領域で境界条件 4 の混合特性と逆転している。これらの結果から、断面形状 I のケースでは、境界条件 2 の \(De \leq 0.5 \) の領域において、混合が促進される。

図 5.4.6(b)の断面形状 II においても、境界条件 2 の混合特性が良好であるが、その範囲は \(De \leq 0.2 \) とごく限られた範囲のみであり、全体的に \(\sigma \) の値も小さい。

図 5.4.6(c)の断面形状 III では、他の断面形状に比べて広い \(De \) 範囲で \(\sigma \) の値は大きく、良好な混合特性を示している。中でも他の境界条件と同様、境界条件 2 の混合特性が良好で、\(\sigma \) の値も大きい。

以上より、縦 2 層で 2 液を流入させる流入条件 I の場合において、各断面形状に適した移動壁面の境界条件が存在することを確認した。また、高アスペクト比の断面形状では、移動壁面の条件にかかわらず混合が促進されることを確認した。
5.4.3 主流

5.4.3.1 境界条件 1

図 5.4.7 主流速度（$Tr = 3$）

図 5.4.7 は，境界条件 1 の断面形状 I～III における 180° 断面の主流速度分布を CFD で計算した結果である。全ての断面形状において，$De = 0.1$ の時にわずかであるが逆流の発生が確認できる。
5.4.3.2 境界条件 2

図 5.4.8 主流速度（Tr = 3）

図 5.4.8 は、境界条件 2 の断面形状 I～III における 180° 断面の主流速度分布を CFD で計算した結果である。同図より、良好な混合がなされた断面形状 I と断面形状 III には逆流が発生していることがわかる。そして、これまでの結果と同様、アスペクト比が増加すると逆流の大きさも増加している。
5.4.3.3 境界条件 3

(i) $De = 0.1$ (ii) $De = 0.3$ (iii) $De = 1.0$

(a) 断面形状 I

(b) 断面形状 II

(c) 断面形状 III

図 5.4.9 主流速度 ($Tr = 3$)

図 5.4.9 は、境界条件 3 の断面形状 I～III における 180° 断面の主流速度分布を CFD で計算した結果である。境界条件 2 の場合と同様、良好な混合がなされた断面形状 I と断面形状 III には逆流が発生しており、アスペクト比の増加とともにその逆流も増加している。
5.4.3.4 境界条件 4

図 5.4.10 主流速度 (Tr = 3)

図 5.4.10 は、境界条件 4 の断面形状 I ～ III における 180° 断面の主流速度分布を CFD で計算した結果である。境界条件 2 および 3 の場合と同様、良好な混合がなされた断面形状 I と断面形状 III には逆流が発生している。
5.4.4 二次流れ

5.4.4.1 境界条件 1

図 5.4.11 二次流れ（$Tr = 3$）

図 5.4.11 は，境界条件 1 の断面形状 I〜III における 180° 断面の二次流れを CFD で計算した結果である。断面形状 I の場合，De の増加に伴い渦が大きくなり，渦中心も移動壁面付近から中央部へ異動している様子が確認できる。断面形状 II では，$De = 0.1$ では渦が見られず，$De=1.0$ で断面全体を回る単一の渦となる。断面形状 III では，縦に 2〜3 個の渦が発生しており，混合が促進された $De = 0.1$ において，その渦が発達している。
5.4.4.2 境界条件 2

図 5.4.12 二次流れ（Tr = 3）

図 5.4.12 は、境界条件 2 の断面形状 I～III における 180° 断面の二次流れを CFD で計算した結果である。断面形状 II では、渦の発生は確認できない。一方、混合率の高い断面形状 I および III では、水平に対称な渦が発生している。この渦は、主流とその逆流によって発生したものだと考えられ、De = 0.1 ～ 1.0 において、その渦の形があまり変化していない断面形状 III では同 De の範囲で良好な混合が得られている。
5.4.4.3 境界条件 3

図 5.4.13 二次流れ（\(Tr = 3\)）

図 5.4.13 は，境界条件 3 の断面形状 I〜III における 180° 断面の二次流れを CFD で計算した結果である。混合率の低い断面形状 II においては，\(De = 0.1\) で小さな渦が確認できるものの，他の断面形状と比較して単純な流れとなっている。一方，混合率の高い断面形状 I および III では大きな渦が発生している。特に，\(De = 0.1\sim1.0\) において良好な混合が得られた断面形状 III には 3 つの渦が確認でき，ロータ壁面付近の上端に 1 渦，逆流が発生した部分に 2 渦が発生している。したがって，この 3 つの渦の効果によって混合が促進されたと考えられる。
5.4.4.4 境界条件 4

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$
(a) 断面形状 I

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$
(b) 断面形状 II

(i) $De = 0.1$
(ii) $De = 0.3$
(iii) $De = 1.0$
(c) 断面形状 III

図 5.4.14 二次流れ ($Tr = 3$)

図 5.4.14 は，境界条件 4 の断面形状 I ～III における 180° 断面の二次流れを CFD で計算した結果である。断面形状 I ～III のすべてで水平に対称な渦構造を有している。断面形状 II では境界条件 3 と同様，渦の大きさ自体は他に比較しては小さく，残りの部分は単純な流れとなっている。一方，混合率の高い断面形状 I および III では，二次流れも複雑であり，特に断面形状 III においては，界面付近に 4 つの渦が並ぶなど，混合促進に強い影響を与えていると考えられる。
5.4.5 まとめ

本節では，曲がり流路の移動壁面の組み合わせが混合に及ぼす影響について調査した。その結果，以下の事項が明らかとなった。

・内側壁面が移動する境界条件のパターンで，最も混合が促進される結果が得られた。
・$Tr = 3$ の場合，最も高い混合率は $\sigma = 0.96$ であり，その条件は，境界条件 4, $De = 0.05$ の時である。
・混合促進に与える移動壁面の影響は大きい。また，その効果が大きくなるのは，回転による逆流の発生と二次流れが複雑に組み合わさった場合である。
5.5 流路のアスペクト比の影響

本節では、曲がり流路断面のアスペクト比を変更した場合の影響について、数値計算により検討した結果について述べる。流入条件および移動壁面の境界条件を、図5.5.1に示す。また検討に用いた曲がり流路は、表5.5.1に示す断面形状1〜Vである。

図5.5.1 流入条件および移動壁面

表5.5.1 断面形状

<table>
<thead>
<tr>
<th>断面形状</th>
<th>$2a$ [mm]</th>
<th>$2b$ [mm]</th>
<th>R [mm]</th>
<th>δ</th>
<th>γ</th>
<th>l [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>0.1</td>
<td>1</td>
<td>58.9</td>
</tr>
<tr>
<td>II</td>
<td>4.5</td>
<td>2</td>
<td>22.5</td>
<td>0.1</td>
<td>0.44</td>
<td>88.4</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>4.5</td>
<td>10</td>
<td>0.1</td>
<td>2.25</td>
<td>39.3</td>
</tr>
<tr>
<td>IV</td>
<td>2.25</td>
<td>4</td>
<td>11.25</td>
<td>0.1</td>
<td>1.78</td>
<td>44.2</td>
</tr>
<tr>
<td>V</td>
<td>1.8</td>
<td>5</td>
<td>9</td>
<td>0.1</td>
<td>2.78</td>
<td>35.3</td>
</tr>
</tbody>
</table>
5.5.1 数値計算結果

(i) $De = 0.1$
(ii) $De = 0.5$
(iii) $De = 1.0$

(a) 断面形状 I

(i) $De = 0.1$
(ii) $De = 0.5$
(iii) $De = 1.0$

(b) 断面形状 II

(i) $De = 0.1$
(ii) $De = 0.5$
(iii) $De = 1.0$

(c) 断面形状 III

(i) $De = 0.1$
(ii) $De = 0.5$
(iii) $De = 1.0$

(d) 断面形状 IV

(i) $De = 0.1$
(ii) $De = 0.5$
(iii) $De = 1.0$

(e) 断面形状 V

図 5.5.2 数値計算結果（$Tr = 3$）
数値計算により得られた混合場の様子を図 5.5.2 に示す。図中(a)〜(e)は、断面形状の異なる断面形状 I〜V の混合状況を表している。各画像は上流側から見たもので、画像の右端が回転に伴う移動壁面、上端と下端および左端がケーシングの静止壁面である。

各断面形状における混合の様子について見てみると、De が減少するにしたがって、緑色の領域が増加していることがわかる。また断面形状 III〜V では、De の全領域において緑色の領域が流路断面のほとんどを占めており、良好な混合が行われている。

流路断面のアスペクト比 γ に注目すると、γ の小さい断面形状 I, II では未混合領域が多く残っているのに対して、γ の大きい断面形状 III〜V で混合性能が良好である。特にアスペクト比の最も大きい断面形状 V においては、未混合領域がほとんど見られない、これらの結果から、De が小さくなるほど、また流路断面のアスペクト比 γ が大きくなるほど、良好な混合が得られる事が判明した。
5.5.2 混合率

図 5.5.3 は、各断面形状における混合率 σ を、De をパラメータとして計算した結果を示したものである。同図より、De の減少に伴い混合率 σ の値は増加し、混合が促進される様子が示されている。また $De \leq 0.5$ の範囲では、断面形状 II を除くすべての断面形状において混合が促進されており、特に断面形状 V において、最も良い混合が得られる事が判明した。

アスペクト比の違いにより、混合の促進に差異が見られたことから、流路断面の主流速度成分および二次流れを計算し、流動特性を調査した。その結果を次項に示す。
5.5.3 主流

(a) 断面形状 I

(i) $De = 0.1$
(ii) $De = 0.5$
(iii) $De = 1.0$

(b) 断面形状 II

(i) $De = 0.1$
(ii) $De = 0.5$
(iii) $De = 1.0$

(c) 断面形状 III

(i) $De = 0.1$
(ii) $De = 0.5$
(iii) $De = 1.0$

(d) 断面形状 IV

(i) $De = 0.1$
(ii) $De = 0.5$
(iii) $De = 1.0$

(e) 断面形状 V

图 5.5.4 主流速度 ($Tr = 3$)
図 5.5.4 は、境界条件 2 の断面形状 I〜V における 180° 断面の主流速度分布を CFD で計算した結果である。同図より、混合が促進された条件（断面形状 III〜V）では、流路中央部に強い逆流が発生していることがわかる。これは壁面が移動することにより流路出口付近の圧力が高まり、回転方向とは逆の圧力勾配が発生することによるものである。そして、アスペクト比の増加とともにこの逆流も増加しており、逆流の増加が混合の促進と関係していることがわかる。
5.5.4 二次流れ

図 5.5.5 主流速度（$Tr = 3$）
図 5.5.5 は、境界条件 2 の断面形状 I～V における 180° 断面の二次流れを CFD で計算した結果である。同図より、断面形状 II を除く各断面においては、上下に 2 つの渦が生じており、混合が促進された条件（断面形状 III～V）では、その大きさも大きい事がわかる。この影響により 2 液の界面が挾捾され、良好な混合が得られたと考えられる。一方、断面形状 I および II においては、他の断面形状と同様、逆流や二次流れの発生は確認できるものの、アスペクト比が小さい事が原因で、積極的な界面の挾捾が行われず、未混合の領域が残ったままとなり、混合性能が悪くなる結果となった。

5.5.5 まとめ

本節では、曲がり流路断面のアスペクト比を変更した影響について、CFD による数値計算により検討した。その結果、以下のことが明らかとなった。

・De ≤ 0.5 では、断面形状 II を除くすべての断面形状において、良好な混合が得られる。
・混合の促進にはアスペクト比が影響し、アスペクト比が大きくなるほど混合は促進される。
第6章 カオス混合の評価

6.1 カオスとは

カオスの定義に関しては研究者により定義は異なり、統一的な見解が得られていないのが現状である。しかしながら、カオスにはいくつかの特徴的な性質があり、それらの定義をもってカオスとする場合がほとんどである。そもそもカオスは、1961年に気象学者エドワード・ノートン・ローレンツが気象予報を正確に予測しようとした際に、わずかな誤差により未来の天気が大きく変わる事に気付き、1963年にローレンツモデルとして発表[31]されたことに始まる。その後、日々の温度変化、電気回路の電圧や電流、株価、物価、GDPなどの経済活動の指標、人の脳波、心電図、脈波などの生体信号、感染者数、工学プラントなどにおける振動など様々な場面で発見され、研究、応用されている。流体力学の分野でも、気象予測、乱流への足掛かりとして、そして、混合への応用へ向けてなど重要な研究対象となっている。

本論文では、カオスの定義として「決定的な法則に乗っているにもかかわらず、予測できない様な不規則で複雑な振る舞いを示すこと」としておく。これは、ローレンツが1963年に発表した論文[31]に「決定論的非周期な流れ（Deterministic Nonperiodic Flow）」とあるように、カオスとして取り扱われる現象は、何かしらの法則性に乗っており決定論として取り扱われるにもかかわらず、その振る舞いは非常に不規則で複雑となるためである。また、カオスの重要な性質には、以下のものがあげられる。

・初期値鋭敏性（誤差の指数関数的増大）
・有界である
・非周期的である

このような性質を一つ例を挙げながら説明していく。ここで、次のような簡単な数式を考えてみる。

\[y_{n+1} = ay_n(1 - y_n) \quad (n = 1, 2, 3, \ldots) \quad (6.1) \]

この式は、昆虫の数の変化を表す式で \(y_n \) は昆虫の最大値に対する割合 \((0 \leq y_n \leq 1) \)、\(n \) は世代、\(a \) は最大増殖率である。この式において、\(y \) の初期値 \(y_0 = 0.1 \) として固定し、\(a = 0.5 \) すると昆虫の数は、図6.1.1に示す様に減少して 0 となる。なお、同図は縦軸に昆虫の最大値に対する割合 \(y_n \)、横軸に世代 \(n \) をとったものである。また、\(a = 2 \) すると昆虫の数は、図6.1.2の様に世代を重ね \(y_n = 0.5 \) へと収束していく。しかし、\(a = 3.9 \) にするとその振る舞いは一転し不規則で複雑に変化する。その変化の仕方に統一性はなく、周期性も見られないうちがカオスの状態である。変化の仕方は複雑であるが範囲は必ず 0 から 1 の有界の範囲である。さらに、\(a = 3.9 \) のままで、初期値 \(y_0 = 0.1 \) を \(+0.000000001 \) だけ加えたものを示す。
したのが図 6.1.4 である。図中の赤の線で示したものが初期値を変えたものである。初期値の違いは、ほんのわずかでほとんど無い様なものであるが、世代を交代していくごとに y_0 は全く違ったものへと変化していく。これは、初期値鋭敏性でバタフライ効果とも呼ばれ初期値のほんのわずかなずれが未来の予測をほぼ不可能にしているということである。この例では、式 (6.1) という決定論的則に乗っているにもかかわらず、条件によっては複雑な振る舞いを示し、初期値鋭敏性、有界性、非周期性、などの性質を併せ持つ。これがいわゆるカオスである。

図 6.1.1 $a = 0.5$ の場合の昆虫数

図 6.1.2 $a = 2$ の場合の昆虫数
図 6.1.3 $a = 3.9$ の場合の昆虫数

図 6.1.4 y_0 を $+0.000000001$ 加えた場合の結果
6.2 カオスと流体混合

流体力学においては、通常、非圧縮性ニュートン流体の場合、ナビエ・ストークス方程式および連続の方程式を用いて流れ場を計算することができる。今、流体の速度場 \(u(x,t) \) が与えられれているとして流体粒子の振る舞いを考える。流体粒子の位置を \(X(t) \) とし、時刻 \(t \) において \(u(X(t),t) \) という速度ベクトルを持つとすると位置 \(X(t) \) は、

\[
\frac{dX(t)}{dt} = u(X(t),t) \tag{6.2}
\]

の 1 階連立常微分方程式に従って時間発展する。力学系の理論において 2 次元の非定常流（速度場が \(t \) に依存する）あるいは 3 次元の定常流（速度場が \(t \) に依存しない）では、流体粒子の位置 \(X(t) \) はカオスとなり得る。この式(6.2)はラグランジュ的記述法（各流体粒子の位置と速度の連続の時間変化を観察した流体変動の記述法）によるもので、流体粒子の位置 \(X(t) \) が示すカオスであることから、ラグランジュ・カオスと呼ばれる。このラグランジュ・カオスでは非常に近接した粒子であっても時間の経過で初期値鋭敏性の効果で徐々に粒子間隔は開いていくが、流体の流れる範囲は領域が決まっているために広がりきれない流体は折りたたまれて、また広がりそしてまた折りたたまれてと繰り返すようになる。その結果、図 6.2.1 に示すように最初は、非常に近接した粒子であっても時間の経過に伴い全く異なる位置に存在することとなる。このような現象が流れ場のいたる場所で起きることで、流体粒子は様々に拡散され、高効率な混合がなされる。これがラグランジュ・カオスの混合がよいとされる理由である。

図 6.2.1 ラグランジュ・カオスの場合の粒子の振る舞い
6.3 カオス混合の可視化

本節では、曲がり流路の移動壁面がカオス混合に及ぼす影響について、CFD による数値計算により検討した結果を報告する。検討に用いた曲がり流路は、表 6.3.1 に示す断面形状 I～III である。この時の流入条件と移動壁面は、図 6.3.1 および表 6.3.2 の通りである。

![図 6.3.1 流入条件](image)

(a) 流入条件 I

<table>
<thead>
<tr>
<th>断面形状</th>
<th>2a [mm]</th>
<th>2b [mm]</th>
<th>R [mm]</th>
<th>δ</th>
<th>γ</th>
<th>l [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>0.1</td>
<td>1</td>
<td>58.9</td>
</tr>
<tr>
<td>II</td>
<td>4.5</td>
<td>2</td>
<td>22.5</td>
<td>0.1</td>
<td>0.44</td>
<td>88.4</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>4.5</td>
<td>10</td>
<td>0.1</td>
<td>2.25</td>
<td>39.3</td>
</tr>
</tbody>
</table>

表 6.3.2 移動壁面の種類

<table>
<thead>
<tr>
<th>境界条件1</th>
<th>境界条件2</th>
<th>境界条件3</th>
<th>境界条件4</th>
</tr>
</thead>
<tbody>
<tr>
<td>top</td>
<td>inner</td>
<td>top+inner</td>
<td>top+inner +bottom</td>
</tr>
</tbody>
</table>

119
6.3.1 数値計算結果

混合促進のメカニズムを調査するため、流れのカオス性に着目し、ポアンカレ断面による評価を行った。ポアンカレ断面とは図6.3.2に示すように粒子の軌跡を描き、特定の固定された断面を通過するとき、その通過した点を長時間にわたってプロットする。そのプロットのことをポアンカレ断面といい、定常である場合には規則的あるいはプロットされないなどの状態となるが、カオス的である場合にはランダムにプロットされる。

図6.3.2 ポアンカレ断面の描き方

図6.3.3に示すように、助走区間からの合流の影響を避け、曲がり流路入口から15°の位置の流路断面に、黒、緑、赤、青に色分けした約1600個の粒子を配置し、曲がり流路入口から180°の流路断面における粒子の軌跡をプロットした。粒子軌跡の長さは、粒子が断面を1000回（500 往復）通過する長さを想定し、断面形状I、II、IIIにおいて、それぞれ60m、88m、40mとしている。

(i) 断面形状I
(ii) 断面形状II
(iii) 断面形状III

図6.3.3 粒子の初期位置

120
6.3.1.1 壁面の移動がない場合

(a) 断面形状 I

(i) 15°
(ii) 180°
(iii) 混合の様子

(b) 断面形状 II

(i) 15°
(ii) 180°
(iii) 混合の様子

(c) 断面形状 III

(i) 15°
(ii) 180°
(iii) 混合の様子

図 6.3.4 壁面の移動がない場合のポアンカレ断面および混合の様子（Tr = 0, De = 0.1）

図 6.3.4 に、Tr = 0, De = 0.1 のポアンカレ断面と混合状態の濃度分布図を示す。図中(a)～(c)は、断面形状 I～III の結果を表している。各画像は上流側から見たものであるが、本条件では壁面は移動していないため、圧力勾配による流れのみとなる。15° の各断面と 180° の各断面を比較すると、180° 断面においてわずかに遠心力によるふくらみが見られるものの、流れ場は大きく変形せず、カオス性は見られないことがわかる。
6.3.1.2 境界条件 1

図 6.3.5 境界条件 1 のポアンカレ断面および混合の様子（Tr = 3, De = 0.1）

図 6.3.5 に Tr = 3, De = 0.1 および境界条件 1 のポアンカレ断面と混合状態の濃度分布図を示す。同図において、画像の上端がロータの回転に伴う移動壁面、左右側および下側がケーシングの静止壁面を示している。Tr = 0 のときと異なり、断面上には疎密のあるプロットが描かれている。プロットが密の箇所は、粒子が多く通過（往復）していることを示しており、初期の粒子の配置位置と比べて、混合が促進されていることを表している。本条件の断面形状 I～II では、Tr = 0 の時と同様、流れ場にあまり変化がないことがわかる。断面形状 III の場合は混合特性が良好であるが、ポアンカレ断面においても、プロットの粗密が確認でき、また各色が断面全体に散ったカオス性も確認できる。
6.3.1.3 境界条件 2

図 6.3.6 境界条件 2 のポアンカレ断面および混合の様子（Tr = 3, De = 0.1）

図 6.3.6 に Tr = 3, De = 0.1 および境界条件 2 のポアンカレ断面と混合状態の濃度分布図を示す。同図において、画像の右側がロータの回転に伴う移動壁面、上下および左側がケーシングの静止壁面を示している。本条件では、断面で幾何学的に上下対称となる分布が見られた。混合状態の濃度分布では、緑の割合が多い断面形状 III の混合特性が良いことがわかるが、ポアンカレ断面においてもプロットが最も密な分布となっており、各色が断面全体に散ったカオス性も確認できる。
6.3.1.4 境界条件 3

図 6.3.7 境界条件 3 のポアンカレ断面および混合の様子（Tr = 3, De = 0.1）

図 6.3.7 に Tr = 3, De = 0.1 および境界条件 3 のポアンカレ断面と混合状態の濃度分布図を示す。同図において、画像の上および右側がロータの回転に伴う移動壁面、下および左側がケーシングの静止壁面を示している。図 6.3.6 と比較すると、本条件では対称性が見られず、各色プロットが断面に散った、よりカオス性が強い分布となっていることがわかる。一方、混合状態の濃度分布では、断面形状 III における混合特性が良いことは変わらないものの、青い未混合領域が残ることから、境界条件 2 と比べその効果は若干劣るものと判断される。ポアンカレ断面を比較すると、プロットは境界条件 2 の方が密な分布となっていることもわかる。
6.3.1.5 境界条件 4

図 6.3.8 境界条件 4 のポアンカレ断面および混合の様子 $(Tr = 3, De = 0.1)$

図 6.3.8 に $Tr = 3, De = 0.1$ および境界条件 4 のポアンカレ断面と混合状態の濃度分布図を示す。同図において、画像の上下および右側がロータの回転に伴う移動壁面、左側がケーシングの静止壁面を示している。本条件では、断面で幾何学的に上下対称となる分布が見られた。そして、混合特性が良い断面形状 III においては、ポアンカレ断面においてもプロットが最も密な分布となっており、各色が断面全体に散ったカオス性も確認できる。
以上のことから、テイラー・ディーン流れにおいては、流れのカオス性よりも多くの流体粒子が往復する条件の方が、混合促進に効果があると考えられる。

6.3.2 まとめ

本節では、テイラー・ディーン流れを利用したマイクロミキサのカオス混合を CFD により可視化し、曲がり流路断面のアスペクト比および移動壁面の影響を調査した。その結果、以下の事項が明らかとなった。

・混合が促進されている条件では、流れはラグラジアン・カオスとなる。
・流れのカオス性よりも多くの流体粒子が往復する条件の方が、混合促進に効果がある。
第7章 結論

μTAS(Micro Total Analysis Systems)と呼ばれる超小型・化学分析装置では、低レイノルズ数流れにおいて効率よく混合可能なマイクロミキサが必要とされている。本研究では、流路の一部あるいは複数の壁面が移動し、また管軸方向に圧力勾配の加わった曲がり流路により3次元的に流れをカオス化させるテイラー・ディーン流れを利用したマイクロミキサにおいて、LIF計測および数値計算を行い、好適な混合条件を調査した。本研究で得られた結論を要約すると、以下の通りである。

7.1 流路入口から出口の各断面における混合の様子

マイクロミキサモデル入口から曲がり部を経て出口に至る各流路断面における混合状態を観察し、性能評価を行う流路断面の決定を行った。その際、移動する壁面が混合に及ぼす効果を見るため、壁面が静止している場合（Tr = 0）、壁面が流れと同方向に移動する場合（Tr = 3）、壁面が流れと反対に移動する場合（Tr = -3）について、混合の状況を確認した。その結果、以下のような結論が得られた。

(1) Tr = 0 の場合
・LIF計測結果および数値計算結果とは、混合の様子が良く一致する。
・曲がりの角度θが増加するにつれ、界面の変形が見られるようになり、Deの増加に伴い変形量は大きくなる。
・θ = 180°の混合の様子と曲がり流路出口での混合の様子は、同様な濃度分布となる。
・壁面が静止している本条件では、界面の変形は見られるものの、その程度は若干量であり、混合は促進されない。

(2) Tr = 3, Tr = -3 の場合
・LIF計測結果および数値計算結果とは、混合の様子が比較的一致する。
・流入～0°、45°～180°、225°～流出の各領域では、混合の様子がそれぞれ異なっている。
・Deが減少するに伴い界面が消減し、混合が促進されている。
・θ = 180°および曲がり流路出口では、混合の様子や濃度分布が異なっている。

7.2 流入初期条件の影響

混合させる2液体を、縦2層および横2層で流入させた場合の混合に及ぼす影響について、曲がり流路上面および内側壁面が移動するマイクロミキサモデルを用いて検討した。また、混合が促進される流入条件におけるDeおよびTrの関係について検討した。その結果、以下のような結論が得られた。

127
(1) 流入条件 I（縦 2 層で流入）
・$Tr = 0$ の場合，De の増加に伴って 2 液界面の変形は見られるものの，その程度は軽微であり，混合は促進されない。
・$Tr = 3$ の場合，De が小さい程，混合が大きく促進される。
・同上，De が 1.0 に近い条件では，部分的に界面が現れており，未混合の領域が残っている。
・$Tr = -3$ の場合，$Tr = 3$ の場合と同様に，De が小さい程，混合が大きく促進される。
・同上，De が 1.0 に近い条件では，部分的に界面が現れており，未混合の領域が残っている。
・最も高い混合を与える条件は，$Tr = 3$，$De = 0.05$ の場合で，その時の混合率は，$\sigma = 0.70$ となった。

(2) 流入条件 II（横 2 層で流入）
・$Tr = 0$ の場合，De が増加しても界面変形の様子は全く見られず，混合は促進されない。
・$Tr = 3$ の場合，De が小さい領域で混合が促進される。
・同上，特に $De \leq 0.3$ の条件では，混合が大きく促進される。
・同上，De が 1.0 に近い条件では，部分的に界面が現れており，未混合の領域が残っている。
・$Tr = -3$ の場合，$Tr = 3$ の場合と同様に，De が小さい程，混合が大きく促進される。
・De 全域に渡り，部分的に界面が残っており，未混合の領域が存在している。
・最も高い混合を与える条件は，$Tr = 3$，$De = 0.05$ の場合で，その時の混合率は，$\sigma = 0.84$ となった。

(3) まとめ
・混合促進に与える入口流入条件の影響は大きく，回転による逆流の発生と二次流れが関係している。

7.3 流路断面のアスペクト比と流入条件

アスペクト比の異なる 3 つのマイクロミキサモデルを用いて，2 液の流入条件を変化させた場合の De および Tr の関係について検討した。その結果，以下の様々な結論が得られた。

(1) 流入条件 I（縦 2 層で流入）
・$Tr = 0$ の場合，断面形状 I～III のすべてにおいて，De の増加に伴う 2 液界面の変形は見られるものの，その程度は軽微であり，混合は促進されない。
・$Tr = 3$ の場合，断面形状 I および III において，De が小さい程，混合が大きく促進される。
・同上，アスペクト比の高い断面形状 III において，De の広範囲に渡って高い混合促進が得られる。
・$Tr = -3$ の場合、$Tr = 3$ の場合と同様の傾向を示し、アスペクト比の高い順に、混合が促進される。

・最も高い混合を与える条件は、断面形状 III、$Tr = -3, De = 0.05$ の場合で、その時の混合率は、$\sigma = 0.93$ となった。

(2) 流入条件 II（横 2 層で流入）
・$Tr = 0$ の場合、De が増加しても界面変形の様子は全く見られず、混合は促進されない。
・$Tr = 3$ の場合、De が小さい領域で混合が促進されるが、流入条件 I の場合と比較すると、その効果は若干低い。
・同上、特に $De \leq 0.3$ の条件では、混合が大きく促進される。
・同上、De が 1.0 に近い条件では、部分的に界面が現れており、未混合の領域が残っている。
・$Tr = -3$ の場合、$Tr = 3$ の場合と同様に、De が小さい程、混合が大きく促進されるが、流入条件 I の場合と比較すると、その効果は若干低い。
・De 全域に渡り、部分的に界面が残っており、未混合の領域が存在している。
・最も高い混合を与える条件は、断面形状 I、$Tr = 3, De = 0.05$ の場合で、その時の混合率は、$\sigma = 0.82$ となった。

(3) まとめ
・2 液界面の面積の大きさより、アスペクト比の大きさが混合には影響する。
・二次流れが効果的に作用する流入条件でなければ、良好な混合は得られない。

7.4 流路壁面の回転効果

曲がり流路における移動壁面の組合せを変えた場合の混合に及ぼす影響について検討した。その結果、以下のような結論が得られた。

・De が小さい領域で、混合が促進される。
・内側壁面のみが移動する境界条件 2 では、$De \leq 0.6$ の広範囲において、高い混合特性を示す。
・$0.7 \leq De$ の範囲では、上面、内側、底面が移動する境界条件 4 において、混合性能が良好である。
・混合促進を与えられる移動壁面の影響は大きい。また、その効果が大きくなるのは、回転による逆流の発生と二次流れが複雑に組み合わさった場合である。

7.5 流路のアスペクト比の影響

7.1～7.4 節の検討により、最適混合が得られた移動壁面の組合せにおいて、アスペクト比の異なる 5 つのマイクロミキサモデルを用いて、混合の促進が得られる De および Tr の条
件を検討した。その結果、以下のような結論が得られた。

・De が小さい領域で、混合が促進される。
・断面形状 II を除いて、$De \leq 0.5$ の条件で良好な混合が得られる。
・混合の促進にはアスペクト比が影響し、アスペクト比が大きくなるほど混合は促進され る。
・アスペクト比が最も大きい断面形状 V では、De 全域において、高い混合特性を有する。

7.6 カオス混合の可視化とラグラジアン・カオス

実験および数値計算で得られた結果を、ラグラジアン・カオスの観点から評価を行った。具体的には、ポアンカレ断面を用いてラグラジアン・カオスと混合性能の関係について検 討した。その結果、以下のような結論が得られた。

・混合が促進されている条件では、流れはラグラジアン・カオスとなる。
・流れのカオス性よりも多くの流体粒子が往復する条件の方が、混合促進に効果がある。

7.7 今後の課題

前節における知見を得て、テイラー・ディーン流れによるマイクロミキサの最適混合に 関する条件を見出した。実用化に際しては、以下の事項が課題としてあげられる。

・流路断面アスペクト比の限界値の把握。
・密度や温度の異なる 2 液における混合特性の把握。
・2 液の混合部への投入および取り出し方法。
謝辞

本研究は、岡山大学大学院自然科学研究科 柳瀬 眞一郎 教授の御指導のもとに遂行されたものであり、終始懇切な御指導と御鞭撻を賜りました。ここに深甚なる感謝の意を表します。そして、本論文をまとめるにあたり、適切なアドバイスとご指導を賜りました岡山大学大学院自然科学研究科 富田 栄二 教授ならびに堀部 明彦 教授に深く感謝の意を表します。

また、本研究を進めるにあたり種々の御教示、御助言を頂きました岡山大学大学院自然科学研究科 河内 俊憲 准教授ならびに永田 靖典 助教に対して深く感謝致します。さらに、本研究における膨大な数値計算を実施するにあたり、適切なアドバイスと計算環境をご提供頂きました米子工業高等専門学校機械工学科 大塚 茂 教授ならびに権田 岳准教授に対して深くお礼申し上げます。そして、実験装置の製作や実験の遂行において、多大な御協力を頂きました米子工業高等専門学校機械工学科 早水 庚隆 准教授に対して厚くお礼申し上げます。

学位取得を勧めて頂きました株式会社鶴見製作所 片桐 健二 顧問に、感謝の意を表します。また、学位取得のご許可と多大なる支援を頂きました株式会社鶴見製作所 辻本 治 社長に深く感謝の意を表します。そして、株式会社鶴見製作所 技術部の皆さまには、業務上のご支援とご協力を頂きました。深くお礼申し上げます。

最後に、博士課程入学を誰よりも喜び支えてくれた妻 弥生、いつも屈託の無い笑顔で励ましてくれた子 幸と光太郎に心より感謝します。また、温かく家族を見守ってくれた両親に感謝します。

2016年9月 川邉 俊彦

[26] Taylor, G. I., Stability of a Viscous Liquid Contained between Two Rotating Cylinders,

