Immune-mediated anti-tumor effect by type 2 diabetes drug, metformin

Shingo Eikawa¹, Mikako Nishida¹, Shusaku Mizukami¹, Chihiro Yamazaki¹, Eiichi Nakayama² and Heiichiro Udono¹.

S.E. and M.N. equally contributed to this work.

¹Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
²Faculty of Health and Welfare, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama 701-0193, Japan.

Corresponding author:
Heiichiro Udono, MD, PhD,
Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences.
2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
Phone:+81-86-235-7187 Fax: +81-86-235-7193
E-mail: udono@cc.okayama-u.ac.jp
Abstract

Metformin, a prescribed drug for type 2 diabetes, has been reported to have anti-cancer effects; however, the underlying mechanism is poorly understood. Here we show that this mechanism may be immune-mediated. Metformin enabled normal but not T cell-deficient SCID mice to reject solid tumors. In addition, it increased the number of CD8⁺ tumor-infiltrating lymphocytes (TILs) and protected them from apoptosis and exhaustion characterized by decreased production of IL-2, TNFα, and IFNγ. CD8⁺ TILs capable of producing multiple cytokines were mainly PD-1⁻Tim-3⁺, an effector memory subset responsible for tumor rejection. Combined use of metformin and cancer vaccine improved CD8⁺ TIL multifunctionality. The adoptive transfer of antigen-specific CD8⁺ T cells treated with metformin concentrations as low as 10 µM showed efficient migration into tumors while maintaining multifunctionality in a manner sensitive to the AMP-activated protein kinase (AMPK) inhibitor compound C. Therefore, a direct effect of metformin on CD8⁺ T cells is critical for protection against the inevitable functional exhaustion in the tumor microenvironment.
Significance

The multifunctional ability of CTLs is downregulated by interaction between immune-checkpoint molecules expressed on CTLs and their ligands expressed on cancer cells, referred to as immune-exhaustion. The antibody-mediated, immune-checkpoint blockade turned out to a promising method for immunotherapy against advanced melanoma. Metformin, a drug prescribed for patients with type 2 diabetes, has been recognized to have anti-cancer effect. We found that CD8$^+$ tumor infiltrating lymphocytes (TILs) is a target of metformin. CD8$^+$ TILs inevitably undergo immune-exhaustion, characterized by diminished production of multiple cytokines such as IL-2, TNFα and IFNγ, followed by elimination with apoptosis. Metformin is able to counter the state. Along with conventional therapy, treatment of cancer patients with metformin may have a great advantage for cancer therapy.
Introduction

In chronic infectious diseases and cancer, CD8\(^+\) T cells specific for viral and/or tumor antigens undergo repeated TCR stimulation because of persistent pathogens or cancer cells and gradually lose their ability to secrete IL-2, TNF\(\alpha\), and IFN\(\gamma\), eventually undergoing apoptotic elimination in a process known as immune exhaustion\((1)\). This worsening immune function is accompanied by phenotypic changes in CD8\(^+\) T cells, including the expression of exhaustion markers such as PD-1 and Tim-3\((2)\). Anti-tumor immunity is enhanced in mice deficient in PD-1 or its ligands PDL-1 and PDL-2 \((2-4)\). Galectin 9, a Tim-3 ligand, is secreted by many tumor cells as well as by FoxP3-expressing regulatory T cell (Treg) and inhibits Tim-3-expressing Th1 cells \((5)\). An anti-Tim-3 antibody that blocks the galectin 9-Tim-3 pathway was found to accelerate anti-tumor immunity \((6)\). Furthermore, the administration of blocking antibodies against both PD-1 and Tim-3 induced a more profound tumor rejection in comparison with that achieved with either antibody alone \((7)\). The management of functional T cell exhaustion within tumor tissues is currently an extensive focus in tumor immunotherapy \((8,9)\), together with efforts to neutralize immune-inhibitory Treg and myeloid-derived suppressor cell (MDSC).

Metformin (dimethylbiguanide) has been widely prescribed for type 2 diabetes. Its unique pharmacological features include its anti-hyperglycemic efficacy, which counters insulin resistance \((10,11)\). Early metformin use increases the survival of patients with obesity-involved type 2 diabetes and/or cardiovascular disease \((12)\). In
addition, recent reports have described the unexpected anti-cancer effects of metformin in patients with type 2 diabetes (13). Insulin-based diabetes treatment is associated with an increased cancer risk (14-17), whereas metformin use has been shown to decrease the frequency of specific cancers (18-21). Two independent meta-analyses of epidemiological studies concluded that compared with other treatments, metformin is associated with a 30%-40% reduction in the incidence of cancer among patients with type 2 diabetes, indicating the need to investigate the anti-cancer mechanisms of metformin and conduct long-term randomized controlled trials (RCTs) (22,23).

In the HER-2/neu transgenic mouse breast cancer model, metformin treatment decreased the tumor burden and was associated with an increased life span (24). Combined use of metformin with chemotherapeutic agents such as cisplatin has also yielded clinical benefits (25,26). Regarding the anti-cancer mechanism, metformin appears to preferentially kill cancer-initiating/stem cells from glioblastoma (27), breast (28) and ovarian cancers (29) via AMP-activated protein kinase (AMPK) activation.

In contrast to the inhibitory action of metformin on tumor cells, here we demonstrate the direct effects of metformin on CD8\(^+\) T cells, which eventually results in tumor growth inhibition. Metformin protects CD8\(^+\) tumor-infiltrating lymphocytes (TILs) from apoptosis, and the multifunctionality of exhausted PD-1\(^-\)Tim-3\(^-\)CD8\(^+\) TILs is restored via a shift from a central memory (T\(_{CM}\)) to an effector memory T cell (T\(_{EM}\)) phenotype. This metformin-induced anti-tumor mechanism is therefore linked to marked changes in the characteristics of CD8\(^+\) TILs within the tumor microenvironment.
Results

Metformin-induced tumor rejection depends on CD8\(^+\) T cells

As metformin has been reported to decrease the rate of cancer incidence in type II diabetic patients, we at first examined whether the drug could protect mice from methylcholanthrene-induced skin carcinogenesis. BALB/c mice were injected with 200 \(\mu\)g methylcholanthrene on the right back and given 5 mg/ml metformin dissolved in the drinking water throughout the experiment. Significant inhibition of tumor development was observed in metformin-treated non-diabetic mice (Fig.S1A). We next attempted to determine whether metformin would be effective against an established solid tumor. Mice were intradermally injected with X-ray-induced RLmale1 leukemia cells and were provided oral metformin beginning on day 7. The tumors were gradually and completely rejected with no reappearance after metformin withdrawal. A re-challenge with more than twice the original number of the same tumor cells did not yield mass formation (Fig.1A, left panel), suggesting the generation of an immunologic memory response. Moreover, the anti-tumor effect was completely abrogated in SCID mice (Fig.1A, right panel), clearly demonstrating the necessity of T and/or B cells. Cytotoxic T lymphocytes (CTLs) specific for the tumor antigen peptide pRL1a (30) were generated in mice that rejected the tumor (Fig.S1B). Growth inhibition was observed with a metformin dose as low as 0.2 mg/ml (Fig.S1C). Of note, a previous report identified the achievement of plasma metformin concentrations of 0.45 and 1.7 \(\mu\)g/ml using 1 and 5 mg/ml of metformin, respectively, in drinking water (31); these plasma
concentrations are similar to those in patients with diabetes treated using metformin (0.5–2 µg/ml). Administration of metformin beginning on day 0, the time point of tumor inoculation, resulted in more effective rejection than on day 7. Beginning treatment on day 10 and 13 was also effective, although the effect was less than on day 0 (Fig.S1D). Finally, as expected, CD8⁺ but not CD4⁺ T cells were proven to be responsible for the anti-tumor effect, since their depletion by mAb completely abrogated the response (Fig.1B). Complete rejection by metformin was also observed with Renca (renal cell carcinoma), although partial but significant growth inhibition was observed with other tumors, 3LL (non small cell lung carcinoma), Colon 26 (intestinal carcinoma) and 4T1 (breast cancer) (Fig.S1E-H).

Metformin prevents apoptosis of CD8⁺TILs, irrespective of expression of PD-1 and Tim-3

Injection of a vaccine consisting of antigen (Ag) and adjuvant primes and generates specific T cell immunity, mainly in draining lymph nodes near the injection site. However, we did not inject tumor antigens with any kind of adjuvant in Fig.1. Therefore, it is possible that a unique process occurs at the tumor site and leads to anti-tumor immunity. Based on this notion, we focused on TILs throughout the experiment in order to clarify the associated mechanism. We found that total numbers of TILs dramatically increased when metformin administration was started on day 7, and that both CD8⁺ and CD4⁺ T cells were involved in the increment (Fig.1C-E).
particular, the number of CD8$^+$ TILs increased nearly 4-fold. We considered the possibility that metformin may suppress expression of the immune exhaustion markers PD-1 and Tim-3 on CD8$^+$ TILs, thus avoiding immune exhaustion. Therefore, we investigated the expression of these markers on CD8$^+$ TILs derived from individual tumor-bearing mice (Fig.S2A). The number of PD-1$^-$Tim-3$^-$ CD8$^+$ TILs decreased from day 7 to 10, irrespective of metformin use (Fig.S2B). The PD-1$^-$Tim-3$^-$CD8$^+$ TIL population increased progressively, whereas PD-1$^+$Tim-3$^-$ and PD-1$^+$Tim-3$^+$CD8$^+$ TILs remained stable. Metformin did not affect any subset populations (Fig.S2B-E).

However, we surprisingly found that a significant proportion of CD8$^+$TILs underwent apoptosis, detected by Annexin V (Fig.1F, Fig.S3A), and that metformin suppressed apoptosis induction in all subsets, including PD-1$^-$Tim-3$^+$CD8$^+$ TILs (Fig.S3B-E). Of note, the physiologically essential apoptotic process of CD4$^+$CD8$^+$ thymocytes, which depends on a mitochondrial pathway (32), was not downregulated by metformin (Fig.S4), suggesting that an apoptotic mechanism unique to the tumor microenvironment is metformin-sensitive.

We next examined the metformin effects in another tumor system. MO5 is a sub-clone of B16 melanoma cells expressing ovalbumin (OVA) (33). Metformin administration induced significant anti-tumor activity (Fig.2A). OVA- and TRP2-specific CD8$^+$ TILs were identified by specific tetramers. Both TIL populations in untreated mice decreased gradually from day 7 to 13; in contrast, metformin administration maintained or
increased these populations (Fig. 2B). CD8⁺ TILs again underwent apoptosis, which was suppressed by metformin administration (Fig. S5A,B). The Annexin V-positive populations among OVA tetramer-positive and -negative (includes TRP-2 positive population) CD8⁺ TILs were near 80% at day 10; however, metformin suppressed this rate to <20%–40% (Fig. S5C, D). These results are consistent with those observed in the RLMale1 model. Next, to examine the functional state of antigen-specific TILs, magnet-purified CD8⁺ TILs isolated from tumor tissues were incubated with DC-like DC2.4 cells that had been pulsed with an epitope peptide (OVA₂₅₇₋₂₆₄); TILs were later examined for their cytokine production capacity. Only IFNγ-producing cells or very small populations producing both IFNγ and TNFα or IL-2 could be identified in untreated mice, whereas a marked increase in the population producing both IFNγ and TNFα was observed with metformin (Fig. 2C).

Influence of metformin on the T_{CM}/T_{EM} ratio of CD8⁺ TILs

CD8⁺ TILs in the context of memory T cells are poorly understood. Elegant studies with an acute viral infection model have proposed classification of memory T cells into central memory (T_{CM}; CD44⁺, CD62L^{high}) and effector memory (T_{EM}; CD44⁺,CD62L^{low}) (34,35). T_{CM} were shown to mediate viral-specific recall responses. Based on this model, we investigated T_{CM} and T_{EM} CD8⁺ TILs. Without metformin, the staining of CD8⁺ TILs from an RLMale1 tumor using antibodies against CD62L and CD44 revealed that proportions of T_{CM} and T_{EM} were nearly equal on day 7 and 10 but
shifted to T_{CM} dominance on day 13. In contrast, metformin maintained T_{EM} dominance from day 10 to day 13 (Fig.3A). Further dissection of the TIL compartment based on CD62L and KLRG1 expression revealed that short-lived effector T cells (T_{E}; CD62L^{low} KLRG1^{high}) were visible on day 7 but gradually decreased by day 13. In contrast, metformin yielded increases in both T_{EM} and T_{E} populations on day 13 (Fig.3B), coinciding with tumor regression (Fig.1A). In the MO5 model, metformin again caused T_{EM} dominant over T_{CM} (Fig.3C,D). At this stage, we concluded that T_{EM} and/or T_{E} are more responsible than T_{CM} for tumor rejection.

Metformin induced multifunctional CD8^{+} T_{EM} expressing the exhaustion marker Tim-3

We next investigated the capacity for triple cytokine (IL-2, TNFα, IFNγ) production or the multifunctionality of CD8^{+} TILs in the context of T_{CM}/T_{EM} classification. CD8^{+} TILs recovered from RLmale1 tumor masses were stimulated with PMA/ionomycin for 6 h *in vitro* and monitored for cytokine production. Without metformin, the cytokine-producing cells on day 10 were mainly identified as T_{CM} (Fig.4A). In contrast, with metformin, triple cytokine-producing cells appeared in correlation with the increased population of T_{EM} (Fig.4A). The populations with various cytokine producing patterns in the presence and absence of metformin are summarized in Fig.4B. Metformin markedly changed the multifunctionality of CD8^{+} TILs. Taking these results together, we concluded that metformin-induced T_{EM} capable of producing multiple
(triple and double) cytokines are most important for tumor rejection. We next classified CD8$^+$ TILs on the basis of their expression of PD-1 and Tim-3, followed by intracellular cytokine staining. We found that CD8$^+$ TILs with triple cytokine-producing abilities belonged exclusively to the PD-1$^-$Tim-3$^+$ subset, which was the supposedly exhausted population in the RLmale1 tumor model (Fig.S6). We further confirmed this notion using adoptive transfer experiments. MO5-inoculated mice were adoptively transferred with OT-I CD8$^+$ T cells. The transferred T cells had been previously shown to undergo vigorous division and were thus cross-primed \textit{in vivo} via the adjuvant-free administration of a fusion protein comprising OVA and \textit{Mycobacterium} heat shock protein 70 (OVA-mHSP70) as a vaccine (36,37). OVA-mHSP70 injection significantly enhanced the migration of the transferred CD45.1$^+$OT-I CD8$^+$ T cells into the tumor tissues; however, the cytokine-producing abilities of these cells were poor (Fig.5A). In contrast, injection of the fusion protein together with oral metformin administration apparently improved the multifunctionality of the migrated T cells, which were classified as the Tim-3$^+$ population (Fig.5A).

Metformin-treated antigen-specific naïve CD8 T cells migrate into tumors and exert anti-tumor immunity following adoptive transfer

It is unknown whether plasma metformin concentrations as low as 10 µM (1.6 µg/ml) would directly influence the fate of T cells. To address this important question, we incubated CD8$^+$ T cells isolated from naïve OT-I mice with 10 µM metformin for 6 h in
the presence or absence of different doses of the AMPK inhibitor compound C (38) as indicated (Fig. 5B). After extensive washing, the cells were transferred into MO5-bearing mice. Two days later, splenic T cells and TILs were recovered and investigated for the presence and multifunctionality of donor-derived CD8$^+$ T cells. Metformin-treated CD8$^+$ TILs comprised up to 9.9% of all CD8$^+$ T cells and were identified as triple cytokine-producing cells (Fig. 5B). However, compound C treatment abrogated the migration, although donor CD8$^+$ T cells were present in the spleens of all groups (Fig. 5B). Accordingly, tumor growth inhibition was apparent in the metformin-treated group, although this effect was blocked by compound C (Fig. 5C). The weak but significant metformin-mediated increase in the phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase (ACC) and the abrogation of this effect by compound C were observed by western blot analysis (Fig. 5D). The results led us to conclude that the direct action of metformin on CD8$^+$ T cells, at least partly, reduced their exhaustion within the tumor microenvironment in a manner sensitive to the AMPK inhibitor compound C.

AMPK phosphorylation, enhanced Bat3 expression, and caspase-3 inhibition mediated by metformin

Finally, we examined the expression of CD8$^+$ TIL molecules that may possibly be influenced by metformin administration. After CD8$^+$ TIL purification on day 10, cell lysates were immediately prepared for candidate molecule detection via western blot
analysis and for caspase-3 activity measurement using a fluorescent substrate. The levels of phosphorylated AMPK\(\alpha\) and \(\beta\) were increased; a 2-fold increase in Bat3 expression was also observed, whereas Bcl2 and Bax expression were unaltered (Fig.S7A). As expected, caspase-3 activity was prominent without metformin but was completely abrogated in CD8\(^+\) TILs from metformin-treated mice (Fig.S7B), which offers a plausible explanation for apoptosis inhibition. To further examine the apoptotic cell populations, we evaluated the expression of active caspase-3 in T\(_{CM}\), T\(_{EM}\), and T\(_{E}\). Without metformin, T\(_{CM}\), T\(_{EM}\), and T\(_{E}\) all expressed active caspase-3 whereas with metformin, primarily T\(_{CM}\) expressed this activated enzyme (Fig. S7C). These results may explain the dominance of T\(_{CM}\) over T\(_{EM}\) in the absence of metformin and the dominance of T\(_{EM}\) and T\(_{E}\) in the presence of metformin. pS6, a downstream target of mTOR, was positive in T\(_{CM}\), T\(_{EM}\), and T\(_{E}\) without metformin but negative with metformin (Fig. S7D), indicating that metformin inhibits mTOR, possibly via AMPK activation.

Discussion

In this report, we showed that established solid tumors are regressed by oral administration of metformin, and that CD8\(^+\) T cells mediate this effect. The number of FoxP3 expressing CD4\(^+\) regulatory T cells (Treg) has been implicated as a critical component in suppressing tumor immunity (39). However, their numbers were not decreased, rather, transiently increased by metformin administration in RLMale 1 tumor
model (Fig.S8). Upon tumor rejection, the treated mice became resistant to re-challenge with the same tumor, providing proof of memory T cell generation. Because no protective effect was observed in SCID mice, the direct killing of tumor cells by metformin is negligible. It was also confirmed by immunohistochemistry (IHC) of tumors. Tumors of mice treated with metformin showed decreased expression of Ki-67 as a proliferation marker, accordingly, increased expression of active caspase 3 as an apoptosis marker; however, the effect was abrogated by CD8 T cell depletion (Fig.S9).

Our employed model systems comprised highly immunogenic tumors, and it is unclear whether metformin would have the same effect on less immunogenic tumors. Demonstration of a similar effect in an autochthonous tumor model would be required in the future. Nonetheless, metformin countered apoptotic induction and reduced cytokine production in CD8\(^+\) TILs and thus blocked immune exhaustion within the tumor tissues we tested. The adoptive transfer experiment shown in Fig. 5 further demonstrated that the direct effect of metformin on CD8\(^+\) T cells, even at a physiologically relevant low concentration, markedly altered the cells’ multifunctionality following migration into the tumor. Experiments with a genetic approach will be required to fully demonstrate whether this effect is mediated via AMPK activation in CD8\(^+\) T cells, since compound C is not highly specific for AMPK.

Dissection of TILs from the point of view of memory T cells in the context of multifunctionality provides mechanistic insight into metformin-induced anti-tumor
immunity. Memory T cells have been classified as TCM, migrating between lymphoid organs, and TEM, circulating principally in the blood, spleen and peripheral tissues (34, 35, 40). In acute virus infection models, as the virus is cleared, the population of TCM progressively increase, while the total numbers of TEM rapidly decrease (41). The naturally occurring proportional shift from TEM to TCM, however, was not associated with metformin-induced rejection in the tumor models. For example, in the absence of metformin in the RLmale1 model, the TCM population gradually increased to exceed the TEM population by day 13 (Fig. 3A, B); however, this proportional shift to TCM was associated with progressive tumor growth rather than tumor regression. Metformin possibly affects the TCM/TEM ratio by regulating TEM apoptosis (Fig. S7C). The consequent decreased TCM/TEM ratio was apparently associated with anti-tumor activity in both the RLmale1 and MO5 models.

Analysis of the cytokine-producing capacities of CD8+ TILs also revealed the importance of TEM over TCM. A significant proportion of the CD8+ TIL population was maintained by metformin and produced IL-2, TNFα, and IFNγ. These triple cytokine-producing CD8+ TILs were exclusively of the PD1−Tim3+ phenotype (Fig. S6), which are committed to a TEM rather than a TCM fate (Fig. 4). Moreover, although therapeutic vaccination with OVA-mHSP70 stimulated the migration of adoptively transferred OT-I CD8+ T cells into tumor tissues, these TILs lost multifunctionality (Fig.5A). Possibly, the cells were exhausted from the tumor microenvironment.
Co-administration of metformin, however, led to the activation of the migrated Tim-3^+ OT-I CD8^+ T cells and the production of multiple cytokines (Fig. 5A). Therefore, combined use of metformin and cancer vaccines may improve the efficacy of the vaccine. These findings provide novel insights into anti-cancer immunity. It is possible that tumor persistence stimulates the development of CD8^+ TILs into T_{CM} cells, which will immediately become useless against tumor growth because of immune exhaustion, and that metformin counters this situation, leading to the conversion of T_{CM} to activated-state T_{EM} that are fully active against tumors, despite exhibiting the surface phenotype of an exhausted cell (e.g., Tim-3 expression).

A previous report found that metformin treatment following vaccination with attenuated *Listeria monocytogenes* expressing OVA (LmOVA) protected mice from challenge by tumor cells expressing OVA (42). This effect was caused by metformin-induced expansion of memory T cells after vaccination. As the tumor challenge occurred after metformin withdrawal, it is a matter of a prophylactic vaccination effect, which is different from the effects on immune exhaustion states in the tumor microenvironment.

mTOR inhibition is among the downstream consequences of AMPK signaling, which is activated by metformin. Therefore, rapamycin, an inhibitor of mTORC1, may share mechanistic effects with metformin. Rapamycin has been shown to promote the generation of memory T cells (42-44) particularly in viral infection models. A common
feature in the results was the increased population of T_{CM} over T_{EM} consequent to rapamycin treatment (45). In our tumor models, however, metformin treatment preferentially increased the T_{EM} population. It remains possible that additional pharmacological effects are involved in response to metformin versus rapamycin treatment. Further experiments will be required to elucidate cellular and molecular mechanism underlying metformin-induced reversion of exhausted CD8^{+}TILs.

Materials and Methods

Mice

BALB/c and C57BL/6 (B6) mice were purchased from CLEA Japan (Tokyo, Japan) and SLC (Shizuoka, Japan). Breeding pairs of CB-17 SCID mice were provided by Dr. K. Kuribayashi (Mie University School of Medicine, Mie, Japan).

Tumor cell lines

BALB/c radiation leukemia RLMale1, B6 OVA-gene introduced B16 melanoma MO5, B6 non-small cell lung carcinoma 3LL, BALB/c intestinal carcinoma Colon 26, BALB/c renal cell carcinoma Renca, and BALB/c breast cancer cell 4T1, were used for the tumor assay. 3LL, Colon 26, Renca and 4T1 were kindly provided by Dr. H. Yagita (Juntendo University School of Medicine, Japan).

Tumor growth assay

Mice were intradermally inoculated with 2x10^{5} tumor cells (in 0.2 ml) on the right back
with a 27-gauge needle. Before inoculation of tumor cells, the hair was cut with clippers. Mice were orally administrated metformin hydrochloride (Wako, Osaka, Japan) (5 mg/ml) or as indicated dissolved the drinking water. The diameter of the tumors was measured with Vernier calipers twice at right angles to calculate the mean diameter.

Acknowledgments

We thank Ms. Yamashita for technical assistance. We also thank Dr. Toshifumi Matsuyama for critical reading of the manuscript and discussion about this work. This work was supported by grants from the Projects for Development of Innovative Research on Cancer Therapeutics by the Ministry of Education, Culture, Sports, Science, and Technology of Japan; Health and Labor Sciences Research Grants; Research on Applying Health Technology in Japan; The Naito Foundation; Takeda Science Foundation; and The Secom Science and Technology Foundation.

Author contribution

S.E. and M.N. designed and performed experiments. S.M. and C.Y. provided help in performing experiments. E.N. contributed to critical manuscript reading. H.U. supervised the project, wrote and edited the manuscript.

Competing financial interests
The authors declare no competing financial interests.

Reference

(2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8⁺ T cells. Cancer Res 64, 1140-1145.

Figure Legends

Figure 1. Metformin suppressed tumor growth *in vivo*, depending on CD8+ T cells

(A) On day 0, BALB/c WT or SCID mice were intradermally inoculated with 2×10^5 RLmale1 cells on the right back. The mice received 5 mg/ml metformin (Met) or not (none) dissolved in the drinking water. The duration of Met administration is indicated by the shaded rectangle. The mean diameter of each tumor was measured every day and the data are plotted with standard error (SE). On day 45, Met-treated WT mice, all of which had rejected the tumor, were re-challenged with 5×10^5 RLmale1 cells. n=6 in each group. The results are representative of two independent experiments. (B) Mice inoculated with RLmale1 were treated with metformin (Met) or not (none), starting on day 7 and intravenously injected with anti-CD8 mAb and/or anti-CD4 mAb on the same day. Average tumor diameters are plotted with SE. n=5 in each group. (C-E) Mice inoculated with RLmale1 cells were treated with Met (+) or not (-) from day 7. On day 7, 10 and 13, the tumor mass was isolated and TILs were recovered. The numbers of TILs per tumor volume (mm^3) were calculated. The numbers of TIL (C), CD8+ (D) or CD4+ (E)/tumor volume are depicted. Also, the populations of CD8+TILs stained with Annexin V were plotted (F). All data were with SD (n=14 on day 7 and 10, n=5 on day 13). The horizontal bars indicate median values, and p values obtained by two-tailed Student’s t test are shown as *p<0.05, **p<0.01 n=5-14 in each group. Each symbol represents an individual mouse. The results depicted are a summary of three independent experiments.
Figure 2. Metformin improves the multifunctionality of antigen-specific CD8\(^+\) TILs in vivo.

Mice inoculated with \(2 \times 10^5\) MO5 cells were treated with or without metformin from day 7, as indicated by the shadowed rectangle, and tumor growth was monitored. The results are representative of 2 independent experiments. \(n = 5\) per group.

(B) On days 7, 10 and 13, TILs were recovered from tumor masses and examined for K\(^b\)-OVA\(_{257-264}\) and K\(^b\)-TRP2\(_{180-188}\) tetramer binding \((n = 7-13)\). (C) TILs recovered on days 7, 10, and 13 from 5 mice per group [with (+) or without (−) metformin] were pooled and stimulated with DC2.4 cells that had been prepulsed with OVA\(_{257-265}\) peptide \((10^{-6}\text{M})\) for 8 h; TIL cytokine-producing ability was later examined.

Figure 3
Influence of metformin on the T\(_{\text{CM}}\)/T\(_{\text{EM}}\) ratio of CD8\(^+\) TILs.

TILs were isolated on day 7, 10, and 13 from mice inoculated with RLMale1 (A,B, \(n=5\)) or MO5 (C,D, \(n=3-5\)) with (+) or without (-) metformin, and analyzed for CD8 and memory markers including CD44, CD62L, KLRG1. The proportion (%) of CD62L\(^{\text{high}}\) (H) and CD62L\(^{\text{low}}\) (L) among CD44\(^+\) cells in RLMale1 and MO5 models are shown in (A) and (C), respectively. The proportion (%) of CD62L\(^{\text{high}}\), KLRG1\(^{\text{low}}\) (central memory; CM) and CD62L\(^{\text{low}}\), KLRG1\(^{\text{low}}\) (effector memory; EM) and CD62L\(^{\text{low}}\), KLRG1\(^{\text{high}}\) (effector; E) in RLMale1 and MO5 are shown in (B) and (D), respectively. *\(p<0.05\), **\(p<0.01\)
Figure 4 Metformin-induced CD8⁺TILs with multifunctionality are T_{EM} rather than T_{CM}.

(A) TILs were isolated on the indicated days from five mice per group inoculated with 2×10⁵ RLmale1. Met treatment was started (+) or not (-) from day 7. TILs were then pooled on indicated days and stimulated with PMA/ionomycin for 6 hours, stained for surface molecules including CD8, CD44, CD62L, followed by intracellular staining for IL-2, TNFα and IFNγ. CD8⁺TILs producing TNFα were further analyzed for expression of CD62L and CD44 to identify T_{CM} and T_{EM}. Also, in order to investigate multifunctionality, cytokine-producing CD8⁺TILs were further examined for production of IFNγ and IL-2. (B) Summary of the populations of cytokine producing CD8⁺TILs on day 10 is shown. Gated populations for CD8⁺IFNγ⁺, or CD8⁺TNFα⁺, or CD8⁺IL-2⁺ were further analyzed for their production of TNFα and IL-2, or IFNγ and IL-2, or IFNγ and TNFα. The gating strategy gives rise to some ranges for % populations of double and triple cytokine producing TILs. The numbers within parenthesis indicate numbers of corresponding CD8⁺TILs/tumor volume (mm³).

Figure 5.
Metformin use for combination with vaccine or cell therapy using CD8T cells

A) Combined use of cancer vaccines and metformin improves CD8⁺ TIL multifunctionality. B6 mice (CD45.2) inoculated with 3 × 10⁵ MO5 cells were adoptively transferred or not with 2 × 10⁶ CD45.1/OT-I CD8⁺ T cells on day 7 (n = 5).
Simultaneously, 10 µg of the OVA-mHSP70 fusion protein were intravenously injected along with or without the oral administration of 5 mg/ml metformin as indicated. Three days later, the right inguinal lymph nodes (LN)s and tumor masses were removed, prepared as single-cell suspensions. The cells were stimulated with PMA/ionomycin, followed by labeling with antibodies and were subjected to flow cytometric analysis. (B) Metformin-treated antigen-specific naïve CD8 T cells acquire multifunctionality within the tumor. B6 mice (CD45.2) inoculated with MO5 cells were adoptively transferred or not with 3×10^6 CD45.1/OT-1 CD8 T cells on day 7 (n = 5). The cells to be transferred were isolated from CD45.1 OT-1 mice and precultured with 10 µM metformin with or without compound C (5, 50 µM) for 6 h before transfer. Two days later, the spleen and tumor tissues were removed and prepared as single-cell suspensions. The cells were then investigated for migration and multifunctionality. (C) The mean tumor diameters were measured on days 7 and 9 after MO5 inoculation and were plotted with SE. (D) The western blot detection of AMPK, p-AMPK, and p-ACC in CD8$^+$ T cells treated with metformin in vitro. Anti-actin was used as a loading control. OT-1 CD8 T cells treated in (A) were lysed, titrated 1-, 1/2-, and 1/4-fold, and subjected to the assay.
Supporting Information

Materials and Methods

Methylchoranthrene-induced carcinogenesis assay
Mice were subcutaneously injected with methylcholanthrene (200 µg; Sigma-Aldrich Corporation, St. Louis, MO, USA) dissolved in peanut oil. Mice with tumor masses that exceeded 10 mm in diameter were recorded as tumor positive.

Antibody administration
The mice were anesthetized with ether, after which a 50-µl volume of anti-L3T4 ascites (CD4) or anti-Lyt-2.2 (CD8) mAbs diluted in PBS to a total dose of 200 µl/mouse was injected through the retrobulbar venous plexus.

Induction of CTLs and functional analysis
Splenocytes (1 × 10^7) from mice that had once rejected RLmale1 following metformin administration and were resistant to secondary tumor challenge were obtained on day 45 and cultured with 1 µM pRL1a (IPGLPLSL) for 5 days. The resulting CD8^+ T cells were isolated from the splenocytes via magnetic separation (Miltenyi Biotec, Bergisch Gladbach, Germany), and the cells (5 × 10^4) were stimulated with 0.1% paraformaldehyde-fixed cells from the mouse lymphoblast-like mastocytoma cell line P815 (5 × 10^3) prepulsed with graded doses of peptide in a 96-well round-bottom culture plate for 24 h at 37°C and 5% CO2. The stimulated culture supernatants were
collected, and the amount of secreted IFNγ was measured using ELISA.

Isolation of TILs

BALB/c or C57BL/6 mice were intradermally inoculated with 2×10^5 RLmale1 or MO5 cells on the right dorsal side. The tumor tissues were dissected from the mice and minced into small pieces in RPMI 1640 medium (Life Technologies, Carlsbad, CA, USA). TILs were harvested from the minced tumor tissues using the Medimachine system (AS ONE, Osaka, Japan). Lymphocytes (TILs) could be distinguished from tumor cells as their size is less than a half of tumor cells under microscope. Then, we stained all cells including TILs and tumor cells with indicated fluorescence-labeled antibodies and subjected them onto Flow cytometric analysis.

Flow cytometric analysis

Cells were washed and incubated with mAbs for 30 min at 4°C in 5 mM EDTA and PBS containing 2% FCS (FACS staining buffer). The following mAbs were used: APC-Cy7-conjugated anti-mouse CD8α (BD Biosciences, San Jose, CA, USA), PE-Cy7-conjugated anti-mouse CD4 (eBioscience, San Diego, CA, USA), PE-conjugated anti-mouse PD-1 (eBioscience), Alexa Fluor® 647-conjugated anti-mouse Tim-3 (BioLegend, San Diego, CA, USA), PE-conjugated anti-mouse CD62L (eBioscience), FITC-conjugated anti-mouse CD44 (eBioscience), and APC-conjugated anti-mouse KLRG1 (eBioscience) for cell surface marker staining as well as PE-Cy7-conjugated anti-mouse IL-2 (BD Biosciences), PerCP/Cy5.5-conjugated anti-mouse TNFα (BD Biosciences), and FITC-conjugated anti-mouse IFNγ (eBioscience) for intracellular cytokine staining. PE-labeled
anti-cleaved caspase-3 (Asp175) and Alexa Fluor® 647-conjugated anti-pS6 (S235/236) (Cell Signaling Technology, Boston, MA, USA) were used for the detection of early apoptosis and mTOR downstream signaling, respectively. Intracellular cytokine staining was performed with a Fixation/Permeabilization kit (BD Biosciences). Early apoptosis was detected using Annexin-V-FITC (Sigma-Aldrich). After treatment, the cells were washed, suspended in FACS staining buffer, and analyzed on a FACSCanto II flow cytometer (BD Biosciences). We determined a suitable gate for lymphocytes (TILs), compared to that of spleen cells. Tumor cells are always larger than TILs, as determined by FSC-A and SSC-A. The gated populations for lymphocytes (TILs) were identified as CD4⁺CD8⁺, CD4⁻CD8⁺, and double negative cells. On the other hand, the gate for RLmale1 tumor cells identified only CD4⁻CD8⁺ population, a unique phenotype of RLmale1 cells as thymus-derived radiation-induced leukemia cells (they also express CD3). The numbers of total TILs, CD8⁺TILs and CD4⁺TILs were calculated by the % populations of those cells and microscopically counted numbers of lymphocytes.

Multifunctional analysis of peptide-stimulated TILs

CD8⁺ T cells were isolated from TILs via magnetic separation. The purified CD8⁺ T cells (1 × 10⁵/well) were cultured with OVA_{257–264} peptide (SIINFEKL; 1 µM) or control peptide (NY-ESO-1_{91–98}: YLAMPFAT; 1 µM)-pulsed DC2.4 cells (5 × 10⁵/well) in a total volume of 200 µl per well of a 96-well plate for 8 h in the presence of a Golgi stop solution containing Monensin (BD Biosciences) at 37°C in a 5% CO₂ atmosphere.

After the stimulation culture, the cells were harvested and labeled with
APC-Cy7-conjugated anti-mouse CD8, PE-conjugated anti-mouse PD-1, and Alexa Fluor® 647-conjugated anti-mouse Tim-3, followed by intracellular cytokine staining for IL-2, TNFα, and IFNγ and flow cytometric analysis on a FACSCanto II.

Tetramer staining

TILs were harvested as described above and incubated with PE-conjugated H-2Kb OVA (SIINFEKL) and H-2Kb TRP2180-188 tetramers (Medical and Biological Laboratories, Nagoya, Japan) for 30 min at 4°C, followed by incubation with APC-Cy7-conjugated anti-mouse CD8α (Alpha Biomedical, Ontario, Canada; APC-Cy7 conjugation was performed in our laboratory) for 30 min at 4°C and analysis on a FACSCanto II.

Adoptive cell transfer experiment

CD45.1/OT-I CD8⁺ T cells were isolated from the splenocytes of OT-I transgenic mice via magnetic separation and were adoptively transferred (2 × 10⁶) on day 7 into B6 mice (CD45.2) that had been inoculated with 3 × 10⁵ MO5 cells on the right dorsal side. Simultaneously, 10 µg of the OVA-mHSP70 fusion protein was intravenously injected and 5 mg/ml of metformin was orally administered per mouse. Three days later, each right inguinal lymph node and each tumor tissue was resected, processed into single-cell suspensions, and pooled. These cells were stimulated with 1.25 ng/ml of PMA and 50 nM ionomycin for 6 h at 37°C and 5% CO₂ in the presence of Golgi stop, followed by staining with APC-Cy7-conjugated anti-mouse CD8, PE-conjugated anti-mouse CD45.1 (BD Biosciences), and Alexa Fluor® 647-conjugated anti-mouse Tim-3 and intracellular staining for IL-2, TNFα, and IFNγ. In another adoptive transfer experiment, the transferred OT-I CD8⁺ T cells were pretreated in vitro with metformin (10 µM) for 6 h
with or without compound C (5 and 50 µM). Two days after transfer, the cells were recovered from the spleens and tumors and subjected to a multifunctionality evaluation.

Intracellular FoxP3 staining

Intracellular FoxP3 staining was performed using an anti-mouse FoxP3-FITC (eBioscience) staining buffer set (eBioscience) according to the manufacturer’s instructions.

Immunoblot analysis

CD8^+^ T cells were purified from tumor tissues via a magnet-based purification system (Miltenyi Biotec), lysed, and subjected to immunoblot analysis. Lysates were prepared by suspending cells in lysis buffer (PBS, 1% NP-40, 1 mM PMSF). The lysates were cleared by centrifugation and subjected to electrophoresis on a sodium dodecyl sulfate (SDS)–polyacrylamide gel. The proteins were then transferred to nitrocellulose membranes, blocked with 1%–10% dry milk in TBS-T (TBS (10 mM Tris-HCl pH 7.5, 135 mM NaCl) + 0.05% Tween-20). Antigen–antibody complexes were visualized by chemiluminescence (ECL). Anti-AMPKα (1:1000 dilution), anti-pAMPKα (Thr172; 1:1000), anti-AMPKβ (1:1000), anti-pAMPKβ (Ser108; 1:1000), and anti-p-ACC (S79; 1:500) antibodies were purchased from Cell Signaling Technology. Anti-Bat3 (1:1000; Abcam, Cambridge, England, UK), anti-Bag1 (1:1000; Medical and Biological Laboratories), anti-Bcl2 (1:1000; Gene Tex, Irvine, CA, USA), and anti-Bax (1:1000; Gene Tex) were also used for western blot analysis. Immunoblot images were cut and rearranged to remove irrelevant information; however, all lanes were obtained from the same blot with the same levels of exposure and contrast.
Measurement of caspase-3 activation

Caspase-3 activity was measured in a colorimetric assay using tetrapeptide methyl cumaryl amide (MCA) substrates. CD8$^+$ T cells were purified from tumor tissues via a magnet-based purification system (Miltenyi Biotec), lysed, and subjected to an immunoblot analysis. Lysates were also prepared by suspending cells in lysis buffer (25 mM Tris-HCl pH 7.5, 250 mM sucrose, 1 mM PMSF, 1 mM DTT, 1% NP-40). The assays were performed in 96-well black plates by incubating 10 µL (1×10^5) of cell lysate with 89 µL of reaction buffer (25 mM Tris-HCl pH 7.5, 250 mM sucrose, 1 mM PMSF, 1 mM DTT) containing 1 µL of peptide substrate (10 mM). The assays incorporated Acetyl-Asp-Asn-Leu-Asp-MCA (Peptide Institute, Inc., Osaka, Japan). Absorbance at OD360/450 was monitored at 37°C for 3 h using a Powerscan HT (DS Pharma Biomedical Co., Ltd., Osaka, Japan). For certain experiments, the cell lysate was diluted in the assay buffer as indicated.

Immunohistochemistry

Tumor tissues were removed and fixed by 4% PFA for 48 hours. Consecutive 4 µm-thick sections were cut from each trimmed paraffin block. In brief, following deparaffinization, sections were re-hydrated, treated with citrate buffer at 96°C for 30 min, and treated with 3% H$_2$O$_2$. The sections were incubated for overnight at 4°C with specific antibodies to Ki-67 antigen (clone D3B5; Cell Signaling Technology(CST) Japan, Tokyo, Japan; 1:200) and cleaved caspase-3(Asp175) (clone 5A1E; CST Japan; 1:2000). The slides were incubated with secondary antibodies (goat anti-rabbit HRP conjugated, CST Japan). The immunostaining was visualized with
3,3’-diaminobenzidine tetrahydrochloride (DAB) for 1 – 3 minutes and counterstained with hematoxylin for 5 minutes. Staining controls were prepared by replacing the primary antibody to buffer solution. All analyses were performed under a light microscope (x4 or x40).

Statistical evaluation

Student’s t test was used for statistical evaluations of normally distributed data.

SI Figure Legends

Figure S1

Metformin prevented methylcholanthrene-induced carcinogenesis and suppressed growth of variety of tumor cells in vivo.

(A) BALB/c mice were subcutaneously injected methylcholanthrene (200µg per head) solved in peanut oil. At the same time, the mice were orally administrated metformin (Met) (5mg/ml) solved in free drinking water, throughout entire period of monitoring tumor incidence. Mice with a tumor mass whose diameter reached ≥ 10 mm were recorded as tumor positive. n=10 in each group.

(B) Three of the mice that had rejected the tumor as in Fig.1A were sacrificed and their spleen cells were *in vitro* stimulated with pRL1a peptide (10^{-6} M) for five days. The
resulting effector cells were purified as CD8+ T cells by magnet and re-stimulated with graded doses of pRL1a peptide pulsed P815 cells in triplicates, as indicated, for 24 hours and IFNγ secreted into the culture supernatant was measured by ELISA. The data was plotted with standard deviation (SD). Effector to target cell ratio was 10.

(C) Mice inoculated with 2×10^5 RLmale1 cells were treated with metformin at different concentrations (0, 0.2, 1, 5 mg/ml) as indicated from day 7. Average tumor diameters are plotted with SE. n=4 in each group.

(D) Mice inoculated with RLmale1 cells were treated with metformin (Met) or not (none), starting at day 0, 7, 10 and 13 as indicated. Average tumor diameters are plotted with SE. n=5 in each group.

(E-H) Renca (renal cell carcinoma, BALB/c) cells (E), 3LL (non small cell lung carcinoma, B6) cells (F), Colon 26 (intestinal carcinoma, BALB/c) cells (G), and 4T1 (breast cancer, B6) cells (H) were intradermally injected onto syngeneic mice and their average tumor diameters were monitored and plotted with standard error (SE). Free drinking water with or without metformin (5 mg/ml) was given to those mice. n=5 in each group in (E)-(H). The results are representative of two independent experiments.

Figure S2
FACS analysis of CD8⁺TILs on expressions of PD-1/Tim-3.

TILs were recovered on day 7, 10 and 13 from metformin-treated or not treated mice inoculated with 2 × 10^5 RLmale1 cells and labeled with antibodies to CD8, CD4, PD-1, Tim-3. Lymphocytes gated by FSC and SSC were analyzed by CD4 and CD8 expressions at first. And then, expressions of PD-1/Tim-3 (A) were investigated.

The populations of PD-1⁻Tim-3⁻ (B), PD-1⁺Tim-3⁻ (C), PD-1⁻Tim-3⁺ (D), PD-1⁺Tim-3⁺ (E) out of CD8⁺TILs were plotted. The horizontal bars indicate median values, and p values obtained by two-tailed Student’s t test are shown as *p<0.05, **p<0.01. n=5-14 in each group on day 7, 10 and 13 with (+) or without (-) metforimin.

Figure S3

FACS analysis of CD8⁺TILs on expressions of PD-1/Tim-3 and Annexin V binding.

TILs shown in Fig.S2 were examined for Annexin V binding. Lymphocytes gated as CD8⁻T cells were analyzed for their binding of Annexin V (A). The Annexin V (+) populations of PD-1⁻Tim-3⁻ (B), PD-1⁺Tim-3⁻ (C), PD-1⁻Tim-3⁺ (D), PD-1⁺Tim-3⁺ (E) among CD8⁻TILs were plotted. The horizontal bars indicate median values, and p values obtained by two-tailed Student’s t test are shown as *p<0.05, **p<0.01. n=5-14 in each group. Each symbol represents an individual mouse. The results
depicted are a summary of three independent experiments.

Figure S4

Physiologically essential apoptosis of CD4⁺CD8⁺ thymocytes are not inhibited by metformin administration.

BALB/c mice were orally administrated metformin (5mg/ml) and three days later, spleen cells (SP), lymph node cells (LN) and thymocytes (Thy) were obtained. The cells were stained with antibodies to CD4 and CD8, or Annexin V. CD8⁺T cells of SP and LN, and CD4⁺CD8⁺ thymocytes were investigated on binding to Annexin V. The FACS data is representative of three mice (A) and the results are shown as bar graphs (B), with the mean ± SD, n=3 in each group.

Figure S5

Metformin prevents antigen-specific CD8⁺ TILs from apoptosis.

Mice inoculated with 2 × 10⁵ MO5 cells were treated with (+) or without (−) metformin from day 7. (A) On days 7 and 10, TILs were recovered from the tumor masses, and CD8⁺ TILs were examined for Annexin V binding. The results are representative of 7 individual mice. (B) The percentages of Annexin V-positive cells among the CD8⁺ TILs
isolated from the 7 mice, as indicated in (A), were plotted. (C, D) TILs recovered on
days 7 and 10 were examined for anti-CD8 mAbs, OVA257–264-Kb tetramer, and
Annexin V binding. The percentages of Annexin V-positive cells among the CD8+ TILs
from each group [n = 4 for day 7 metformin (−), n = 4 for day 10 metformin (−), and n
= 5 for day 10 metformin (+)] were plotted in (D). The FACS data in (C) are
representative of (D). *p < 0.05, **p < 0.01.

Figure S6

Metformin-induced multifunctional CD8+ TILs are PD-1−Tim-3−. TILs were isolated on
day 10 from 5–6 mice per group that had been inoculated with RLmale1 cells on day 0
and treated with (+) or without (−) metformin beginning on day 7; the cells were pooled
and stimulated with PMA/ionomycin for 6 h, followed by staining for surface molecules
such as CD8, PD-1, and Tim-3 and intracellular staining for IL-2, TNFα, and IFNγ. (A)
FACS data indicating the cytokine production patterns of PD-1−Tim-3− (left panels),
PD-1+Tim-3− (middle panels), and PD-1+Tim-3+ (right panels) CD8+ TILs are shown in
the context of metformin (+) or (−). The numbers within the small squares indicate the
percentage of positive cells producing the indicated cytokines. (B) PD-1−Tim-3+ CD8+
TILs producing IL-2 (upper panel), TNFα (middle panel), or IFNγ (lower panel) were
further analyzed for the production of TNFα and IFNγ, IL-2 and IFNγ, and IL-2 and
TNFα, respectively. Of note, cells capable of producing triple cytokines (IL-2, TNFα, and IFNγ) belonged exclusively to the PD1−Tim3+ CD8+ TIL population.

Figure S7

AMPK phosphorylation, increased Bat3 expression, and downregulated caspase-3 activity in CD8+ TILs isolated from mice following metformin administration.

(A) CD8+ TILs were isolated on day 10 from 10 mice that had been inoculated with RLmale1 cells and treated with (+) or without (−) metformin beginning on day 7; the cells were pooled, lysed, and subjected to western blot analysis with the indicated antibodies. x1 is undiluted lysate from 1 × 10^5 CD8+ TILs and x1/2 is a 50% dilution. The band intensities in the left panels are shown as bar graphs in the right panels, as indicated. (B) Caspase-3 activity against a fluorescent substrate was investigated. Graduated amounts of cell lysates from CD8+ TILs generated as in (A) were examined for their caspase-3 activity using Powerscan HT. C (control)-1 and M (metformin)-1 indicate lysates from 1 × 10^5 CD8+ TILs isolated from mice without or with metformin, respectively. C-1/2 and M-1/2 indicate half amounts of C-1 and M-1, respectively, whereas C-1/4 and M-1/4 indicate quarter amounts, respectively. Expression levels of
cleaved caspase-3 (C) and pS6 (D) in CD8+ TIL isolated on day 13 from RLmale1 tumor-bearing mice that had been treated with or without metformin. The recovered TILs were surface stained with antibodies against CD8, CD62L, CD44, and KLRG1 and intracellularly stained with antibodies against cleaved caspase-3 and phosphorylated S6, followed by flow cytometric analysis.

Figure S8

The population of Foxp3+CD4+T cells (Treg) within tumor tissues is not suppressed by metformin administration.

On day 7, 10 and 13, TILs were recovered from mice inoculated with 2×10^5 RLmale1 cells and stained for CD4 and FoxP3.

(A) Representative contour plots showing FoxP3 expression on gated CD4+ T cells.

(B) Numbers of Treg per volume (mm3) of tumor. All data are expressed as the mean ± SD. n=5-14 in each group. p values were obtained by two-tailed Student’s t test. *p<0.05, **p<0.01.

Figure S9

Metformin administration decreased expression of Ki-67 and increased active caspase 3
of RL male 1tumor, which was completely abrogated by CD8T cell depletion.

Tumors were isolated at day 10 and 13 from mice treated with metformin or not, with or without anti-CD8 mAb injection. And analysis of immunohistochemistry was performed by KEYENCE BZ-9000 microscopy.

(A) Ki-67 and cleaved caspase 3 (CC-3) were immunostained as indicated, and shown along with negative staining control. Magnification: x 4.

(B) The surrounded area by a rectangle in each panel of (A) was shown in larger magnification (x 40).
Figure 1

A) Mean tumor diameter (mm) vs. days after tumor inoculation for WT and SCID mice. The graph shows the progression of tumor growth in WT and SCID mice under different treatment conditions. The shaded area indicates the secondary challenge period.

B) Graph depicting the number of TILs (CD8+ and CD4+ T cells) over time after tumor inoculation in different treatment groups. The y-axis represents the number of TILs (x10^4) and the x-axis represents days after tumor inoculation.

C) Graph showing the Annexin V positive cells as a percentage over time in different treatment groups. The y-axis represents the percentage of Annexin V positive cells, and the x-axis represents days after tumor inoculation.

D) Graph showing the TILs (CD8+ T cells) over time in different treatment groups. The y-axis represents the number of TILs (x10^3) and the x-axis represents days after tumor inoculation.

E) Graph showing the TILs (CD4+ T cells) over time in different treatment groups. The y-axis represents the number of TILs (x10^3) and the x-axis represents days after tumor inoculation.

F) Graph showing the total CD8+ T cells over time in different treatment groups. The y-axis represents the percentage of Annexin V positive cells, and the x-axis represents days after tumor inoculation.
Figure 2

A

Mean tumor diameter (mm)

days after tumor inoculation

B

% OVA tetramer positive

% TRP2 tetramer positive

d7 d10 d13

C

Met (-)

OVA peptide

control peptide

IFNγ

TNFα

IL-2

CD8

Met (+)

OVA peptide

control peptide

IFNγ

TNFα

IL-2

CD8

Eikawa et al.
Figure 3

(A) % proportion of CD62L

(B) % proportion of CD62L

(C) % proportion of CD62L

(D) % proportion of CD62L
Figure 4

Eikawa et al.

A

<table>
<thead>
<tr>
<th></th>
<th>d7</th>
<th>d10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>TNFα</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD8</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>CD62L</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>IL-2</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>TNFα</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IFNγ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IL-2</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>TNFα</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Met (-)</th>
<th>Met (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-2+TNFα+IFNγ+</td>
<td>-</td>
<td>4.6-7.2% (169-264)</td>
</tr>
<tr>
<td>IL-2+TNFα+IFNγ−</td>
<td>-</td>
<td>1.3-1.9% (48-69)</td>
</tr>
<tr>
<td>IL-2+TNFα−IFNγ+</td>
<td>-</td>
<td>5.3-7.2% (194-264)</td>
</tr>
<tr>
<td>IL-2−TNFα+IFNγ+</td>
<td>-</td>
<td>7.2-11.2% (264-411)</td>
</tr>
<tr>
<td>IL-2−TNFα−IFNγ−</td>
<td>2.0% (15)</td>
<td>1.7% (62)</td>
</tr>
<tr>
<td>IL-2−TNFα+IFNγ−</td>
<td>4.0% (30)</td>
<td>13.1% (480)</td>
</tr>
<tr>
<td>IL-2−TNFα−IFNγ+</td>
<td>9.0% (67)</td>
<td>36.0% (1320)</td>
</tr>
</tbody>
</table>
Figure 5

A

<table>
<thead>
<tr>
<th>Condition</th>
<th>LN Tumor</th>
<th>CD45.1 CD8+ TIL</th>
<th>CD45.1 CD8+ TIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0/100</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>OT-I CD8+ T</td>
<td>7.4/92.6</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>OT-I CD8+ T + OVA-mHSP70</td>
<td>10.0/89.9</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>OT-I CD8+ T + Met + OVA-mHSP70</td>
<td>9.2/90.7</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Condition</th>
<th>Spleen Tumor</th>
<th>CD45.1 CD8+ TIL</th>
<th>CD45.1 CD8+ TIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>2.2/0.9</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Met</td>
<td>2.2/9.9</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Met + CC5</td>
<td>2.0/0.9</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>Met + CC50</td>
<td>2.0/0.0</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

C

Eikawa et al.

D

<table>
<thead>
<tr>
<th>Condition</th>
<th>Met (10 μM)</th>
<th>CC (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Met + 5</td>
<td>+</td>
<td>5</td>
</tr>
<tr>
<td>Met + 50</td>
<td>+</td>
<td>50</td>
</tr>
</tbody>
</table>

sample load

AMPK

p-AMPK

p-ACC

β-actin
Supplementary Figure 1

A. Tumor-free mouse (%)

B. Mean tumor diameter (mm)

C. IFNγ (ng/ml)

D. pRL1a peptide (M)

E. Renca

F. 3LL

G. Colon 26

H. 4T1

Weeks after MCA injection

Mean tumor diameter (mm)

days after tumor inoculation
B

C

D

E

** PD-1—Tim-3—

** PD-1—Tim-3+

** PD-1—Tim-3+

** PD-1+ Tim-3+

** PD-1+ Tim-3+

% proportion

0 20 40 60 80 100

d7 d10 d13

d7 d10 d13

d7 d10 d13

d7 d10 d13

Supplementary Figure 3

Eikawa et al.

A

Total CD8

negative control d7 d10 d13

SSC

Annexin V

0 27.5 46.7 9.1 30.8 19.7

B

PD-1^- Tim-3^-

% Annexin V positive

0 20 40 60 80 100

d7 d10 d13

C

PD-1^+ Tim-3^-

% Annexin V positive

0 20 40 60 80 100

d7 d10 d13

D

PD-1^- Tim-3^+

% Annexin V positive

0 20 40 60 80 100

d7 d10 d13

E

PD-1^+ Tim-3^+

% Annexin V positive

0 20 40 60 80 100

d7 d10 d13

* * * ** *
Supplementary Figure 4

Eikawa et al.

A

<table>
<thead>
<tr>
<th></th>
<th>SP CD8+</th>
<th>LN CD8+</th>
<th>Thy CD4+CD8+</th>
</tr>
</thead>
<tbody>
<tr>
<td>negative control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met +</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

% Annexin V positive

- SP
- LN
- Thy

![Bar graph](image10.png)
Supplementary Figure 7

A

<table>
<thead>
<tr>
<th>Met</th>
<th>AMPKα</th>
<th>p-AMPKα</th>
<th>AMPKβ</th>
<th>p-AMPKβ</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Relative protein expression (%)

- AMPKα
- p-AMPKα
- AMPKβ
- p-AMPKβ

Bat3
Bag1
Bax
Bcl2
Actin

B

C

Met

CM
EM
Teff

D

Met

CD62L
KLRG1

% of Max

Arbitrary units

0 60 120 180

Times (min)

pS6

% of Max
Supplementary Figure 8

A

<table>
<thead>
<tr>
<th></th>
<th>d7</th>
<th>d10</th>
<th>d13</th>
</tr>
</thead>
<tbody>
<tr>
<td>iso</td>
<td>28.0</td>
<td>33.7</td>
<td>35.0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>35.0</td>
<td>29.4</td>
</tr>
</tbody>
</table>

B

Treg / volume (mm³)

<table>
<thead>
<tr>
<th></th>
<th>d7</th>
<th>d10</th>
<th>d13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>3.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Supplementary Figure 9

A

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Day 10</th>
<th>Day 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>no treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metformin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metformin + anti-CD8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Staining Control</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ki-67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Day 10</th>
<th>Day 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>no treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metformin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metformin + anti-CD8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Staining Control</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ki-67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>