ON MODEL STRUCTURE FOR COREFLECTIVE SUBCATEGORIES OF A MODEL CATEGORY

TADAYUKI HARAUCHI

1. Introduction

Let \mathcal{C} be a coreflective subcategory of a cofibrantly generated model category \mathcal{D}. In this paper we show that under suitable conditions \mathcal{C} admits a cofibrantly generated model structure which is left Quillen adjunct to the model structure on \mathcal{D}. As an application, we prove that well-known convenient categories of topological spaces, such as k-spaces, compactly generated spaces, and Δ-generated spaces [3] (called numerically generated in [12]) admit a finitely generated model structure which is Quillen equivalent to the standard model structure on the category Top of topological spaces.

2. Coreflective subcategories of a model category

Let \mathcal{D} be a cofibrantly generated model category [7, 2.1.17] with generating cofibrations I, generating trivial cofibrations J and the class of weak equivalences $W_\mathcal{D}$. If the domains and codomains of I and J are finite relative to I-cell [7, 2.1.4], then \mathcal{D} is said to be finitely generated.

Recall that a subcategory \mathcal{C} of \mathcal{D} is said to be coreflective if the inclusion functor $i: \mathcal{C} \to \mathcal{D}$ has a right adjoint $G: \mathcal{D} \to \mathcal{C}$, so that there is a natural isomorphism $\varphi: \text{Hom}_\mathcal{D}(X, Y) \to \text{Hom}_\mathcal{C}(X, GY)$. The counit of this adjunction $\epsilon: GY \to Y$ ($Y \in \mathcal{D}$) is called the coreflexion arrow.

Theorem 2.1. Let \mathcal{C} be a coreflective subcategory of a cofibrantly generated model category \mathcal{D} which is complete and cocomplete. Suppose that the unit of the adjunction $\eta: X \to GX$ is a natural isomorphism, and that the classes I and J of cofibrations and trivial cofibrations in \mathcal{D} are contained in \mathcal{C}. Then \mathcal{C} has a cofibrantly generated model structure with I as the set of generating cofibrations, J as the set of generating trivial cofibrations, and $W_\mathcal{C}$ as the class of weak equivalences, where $W_\mathcal{C}$ is the class of all weak equivalences contained in \mathcal{C}. If \mathcal{D} is finitely generated, then so is \mathcal{C}. Moreover, the adjunction $(i, G, \varphi): \mathcal{C} \to \mathcal{D}$ is a Quillen adjunction in the sense of [7, 1.3.1].

Proof. It suffices to show that \mathcal{C} satisfies the six conditions of [7, 2.1.19] with respect to I, J and $W_\mathcal{C}$. Clearly, the first condition holds because

\textit{Mathematics Subject Classification.} Primary 55U40; Secondary 55U35.

\textit{Key words and phrases.} model category, Quillen equivalence, numerically generated space.
W_C satisfies the two out of three property and is closed under retracts. To see that the second and the third conditions hold, let I_C-cell and J_C-cell be the collections of relative I-cell and J-cell complexes contained in C, respectively. Since I_C-cell and J_C-cell are subcollections of the collections of relative I-cell and J-cell complexes in D, respectively, the domains of I and J are small relative to I_C-cell and J_C-cell, respectively. The rest of the conditions are verified as follows. Let $f: X \to Y$ be a map in C. Since $\eta: X \to GX$ is isomorphic for $X \in D$, f is I-injective in C if and only if it is I-injective in D. Similarly, f is J-injective in C if and only if it is J-injective in D. Let f be an I-cofibration in D. Then it has the left lifting property with respect to all I-injective maps in C. Hence f is an I-cofibration in C. Conversely, let f be an I-cofibration in C. Suppose we are given a commutative diagram

\[
\begin{array}{ccc}
X & \longrightarrow & A \\
\uparrow f & & \uparrow p \\
Y & \longrightarrow & B
\end{array}
\]

where p is I-injective in D. Then there is a relative I-cell complex $g: X \to Z$ [7, 2.1.9] such that f is a retract of g by [7, 2.1.15]. Since g is an I-cofibration in D, there is a lift $Z \to A$ of g with respect to p. Then the composite

\[
Y \to Z \to A
\]

is a lift of f with respect to p. Therefore f is an I-cofibration in D. Similarly, f is a J-cofibration in C if and only if it is a J-cofibration in D. Thus we have the desired inclusions

- J_C-cell $\subseteq W_C \cap I_C$-cof,
- I_C-inj $\subseteq W_C \cap J_C$-inj, and
- either $W_C \cap I_C$-cof $\subseteq J_C$-cof or $W_C \cap J_C$-inj $\subseteq I_C$-inj.

Here I_C-inj and I_C-cof denote, respectively, the classes of I-injective maps and I-cofibrations in C, and similarly for J-inj and J-cof. Therefore C is a cofibrantly generated model category by [7, 2.1.19].

It is clear, by the definition, that C is finitely generated if so is C.

Finally, to prove that (i, G, φ) is a Quillen adjunction, it suffices to show that $G: D \to C$ is a right Quillen functor, or equivalently, G preserves J-injective maps in D by [7, 1.3.4] and [7, 2.1.17]. Let $p: X \to Y$ be a J-injective map in D. Suppose there is a commutative diagram

\[
\begin{array}{ccc}
A & \longrightarrow & GX \\
\uparrow f & & \uparrow Gp \\
B & \longrightarrow & GY
\end{array}
\]
where \(f \in J \). Then we have a commutative diagram

\[
\begin{array}{ccc}
A & \longrightarrow & GX \\
\downarrow f & & \downarrow p \\
B & \longrightarrow & GY \\
\end{array}
\]

Since \(p \) is \(J \)-injective in \(D \), there is a lift \(h: B \to X \) of \(f \). Thus we have a lift \(Gh \circ \eta: B \cong GB \to GX \) of \(f \) with respect to \(Gp \). Therefore \(Gp: GX \to GY \) is \(J \)-injective in \(C \). Similarly, we can show that \(G \) preserves \(I \)-injective maps in \(C \), and so \(G \) preserves trivial fibrations in \(C \). Hence \((i, G, \varphi)\) is a Quillen adjunction.

We turn to the case of pointed categories [7, p.4]. Let \(D_* \) be the pointed category associated with \(D \), and let \(U: D_* \to D \) be the forgetful functor. We denote by \(I_+ \) and \(J_+ \) the classes of those maps \(f: X \to Y \) in \(D_* \) such that \(Uf: UX \to UY \) belongs to \(I \) and \(J \), respectively. Then we have the following. (Compare [7, 1.1.8], [7, 1.3.5], and [7, 2.1.21].)

Theorem 2.2. Let \(D \) be a cofibrantly (resp. finitely) generated model category, and let \(C \) be a coreflective subcategory satisfying the conditions of Theorem 2.1. Then the pointed category \(C_* \) has a cofibrantly (resp. finitely) generated model structure, with generating cofibrations \(I_+ \) and generating trivial cofibrations \(J_+ \), such that the induced adjunction \((i_*, G_*, \varphi_*): C_* \to D_* \) is a Quillen adjunction.

We also have the following Proposition.

Proposition 2.3. Suppose \(C \) and \(D \) satisfy the conditions of Theorem 2.1. Suppose, further, that the coreflection arrow \(\epsilon: GY \to Y \) is a weak equivalence for any fibrant object \(Y \) in \(D \). Then the adjunctions \((i, G, \varphi): C \to D \) and \((i_*, G_*, \varphi_*): C_* \to D_* \) are Quillen equivalences.

Proof. Let \(X \) be a cofibrant object in \(C \) and \(Y \) a fibrant object in \(D \). Let \(f: X \to Y \) be a map in \(D \). Then we have \(\varphi f = Gf \circ \eta: X \cong GX \to GY \).

Since \(f \) coincides with the composite \(X \xrightarrow{\varphi f} GY \xrightarrow{\epsilon} Y \) and \(\epsilon \) is a weak equivalence in \(D \), \(\varphi f \) is a weak equivalence in \(C \) if and only if \(f \) is a weak equivalence in \(D \). It follows by [7, 1.3.17] that that the induced adjunction \((i_*, G_*, \varphi_*): C_* \to D_* \) is a Quillen equivalence.

3. ON A MODEL STRUCTURE OF THE CATEGORY NG

In [12] we introduced the notion of numerically generated spaces which turns out to be the same notion as \(\Delta \)-generated spaces introduced by Jeff Smith (cf. [3]) . Let \(X \) be a topological space. A subset \(U \) of \(X \) is numerically open if for every continuous map \(P: V \to X \), where \(V \) is an open subset of
Euclidean space, $P^{-1}(U)$ is open in V. Similarly, U is numerically closed if for every such map P, $P^{-1}(U)$ is closed in V. A space X is called a numerically generated space if every numerically open subset is open in X.

Let NG denote the full subcategory of Top consisting of numerically generated spaces. Then the category NG is cartesian closed [12, 4.6]. To any X we can associate the numerically generated space topology, denoted νX, by letting U open in νX if and only if U is numerically open in X. Therefore we have a functor $\nu : \text{Top} \to NG$ which takes X to νX. Clearly, the identity map $\nu X \to X$ is continuous. By the results of [7, §3] the following holds.

Proposition 3.1. The functor $\nu : \text{Top} \to NG$ is a right adjoint to the inclusion functor $i : NG \to \text{Top}$, so that NG is a coreflective subcategory of Top.

A continuous map $f : X \to Y$ between topological spaces is called a weak homotopy equivalence in Top if it induces an isomorphism of homotopy groups

$$f_* : \pi_n(X, x) \to \pi_n(Y, f(x))$$

for all $n > 0$ and $x \in X$. Let I be the set of boundary inclusions $S^{n-1} \to D^n$, $n \geq 0$, J the set of inclusions $D^n \times \{0\} \to D^n \times I$, and W_{Top} the class of weak homotopy equivalences. The standard model structure on Top can be described as follows.

Theorem 3.2 ([7, 2.4.19]). There is a finitely generated model structure on Top with I as the set of generating cofibrations, J as the set of generating trivial cofibrations, and W_{Top} as the class of weak equivalences.

The category NG is complete and cocomplete by [12, 3.4]. A space X is numerically generated if and only if $\nu X = X$ holds. Thus the unit of the adjunction $\eta : X \to \nu X$ is a natural homeomorphism. Moreover, since CW-complexes are numerically generated spaces by [12, 4.4], the classes I and J are contained in NG. Let W_{NG} be the class of maps $f : X \to Y$ in NG which is a weak equivalence in Top. Since the coreflection arrow $\nu Y \to Y$, given by the identity of $Y \in \text{Top}$, is a weak equivalence (cf. [12, 5.4]), we have the following by Theorem 2.1 and Proposition 2.3.

Theorem 3.3. The category NG has a finitely generated model structure with I as the set of generating cofibrations, J as the set of generating trivial cofibrations, and W_{NG} as the class of weak equivalences. Moreover the adjunction $(i, \nu, \varphi) : NG \to \text{Top}$ is a Quillen equivalence.

We turn to the case of pointed spaces. Let Top_* be the category of pointed topological spaces. By [7, 2.4.20], there is a finitely generated model structure on the category Top_*, with generating cofibrations I_+ and generating
trivial cofibrations J_+. Then we have the following by Theorem 2.2 and Proposition 2.3.

Corollary 3.4. There is a finitely generated model structure on the category NG_* of pointed numerically generated spaces, with generating cofibrations I_+ and generating trivial cofibrations J_+. Moreover, the inclusion functor $i_*: \text{NG}_* \rightarrow \text{Top}_*$ is a Quillen equivalence.

Remark. (1) The argument of Theorem 3.3 can be applied to the subcategories K of k-spaces and T of compactly generated spaces. Similarly, the argument of Corollary 3.4 can be applied to the pointed categories K_* and T_*. Compare [2.4.28], [2.4.25], [2.4.26] of [7].

(2) Let Diff be the category of diffeological spaces (cf. [8]). In [12] we introduced a pair of functors $T: \text{Diff} \rightarrow \text{Top}$ and $D: \text{Diff} \rightarrow \text{Top}$, where T is a left adjoint to D, and showed that the composite TD coincides with $\nu: \text{Top} \rightarrow \text{NG}$. Thus NG can be embedded as a full subcategory into Diff. It is natural to ask whether Diff has a model category structure with respect to which the pair (T, D) gives a Quillen adjunction between Top and Diff.

Let I be the unit interval, and let $\lambda: \mathbb{R} \rightarrow I$ be the smashing function, that is, a smooth function such that $\lambda(t) = 0$ for $t \leq 0$ while $\lambda(t) = 1$ for $t \geq 1$. Let \tilde{I} denote the unit interval equipped with the quotient diffeology $\lambda_*(D_{\mathbb{R}})$, where $D_{\mathbb{R}}$ is the standard diffeology of \mathbb{R}. In [5] we introduce a finitely generated model category structure on Diff with the boundary inclusions $\partial \tilde{I}^{n-1} \rightarrow \tilde{I}^n$ as generating cofibrations, and with the inclusions $\partial \tilde{I}^{n-1} \times \tilde{I} \cup \tilde{I}^n \times \{0\} \rightarrow \tilde{I}^n \times \tilde{I}$ as generating trivial cofibrations. Its class of weak equivalences consists of those smooth maps $f: X \rightarrow Y$ inducing an isomorphism $f_*: \pi_n(X, x_0) \rightarrow \pi_n(Y, f(x_0))$ for every $n \geq 0$ and $x_0 \in X$. Here, the homotopy set $\pi_n(X, x_0)$ is defined to be the set of smooth homotopy classes of smooth maps $(\tilde{I}^n, \partial \tilde{I}^n) \rightarrow (X, x_0)$.

It is expected that with respect to the model structure on Diff described above, the pair (T, D) induces a Quillen adjunction between Top and Diff.

Acknowledgements. I would like to express my sincere gratitude to my supervisor Kazuhisa Shimakawa. He introduced me to the project of building a homotopy theory on the category NG. This project was not completed without him. He carefully read this paper, helped me with the English and corrected many errors. In order that I might acquire a doctor’s degree, he had supported me for a long time.

Next I would like to thank Referee. He proposed that there exists a general framework from proofs of Theorem 3.3 and Corollary 3.4. As a result, we have Theorem 2.1, Theorem 2.2, and Proposition 2.3.
References

TADAYUKI HARAGUCHI
DEPARTMENT OF GENERAL EDUCATION
OITA NATIONAL COLLEGE OF TECHNOLOGY
1666, OAZAMAKI, OITA-SHI, OITA, 870-0152, JAPAN

e-mail address: t-haraguchi@oita-ct.ac.jp