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Abstract 

To study epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) 

resistance mechanisms, we established a novel gefitinib-resistant lung cancer cell line 

derived from an EGFR-mutant non-small cell lung cancer cell line (PC-9) pretreated 

with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (designated PC9-GR). We found 

that gefitinib substantially suppressed the EGFR signaling pathway, whereas ERK was 

reactivated after several hours in PC9-GR but not in PC-9. The combination of gefitinib 

with ERK inhibition (by U0126) restored gefitinib susceptibility in PC9-GR, but 

PI3K-Akt inhibition with LY294002 did not. Although the levels of phosphorylated Src 

were up-regulated simultaneously with ERK reactivation, neither ERK suppression 

using U0126 nor an ERK-specific siRNA induced Src phosphorylation. Furthermore, 

dual inhibition of EGFR and Src restored gefitinib sensitivity in PC9-GR in vitro and in 

vivo. In conclusion, our results indicate that Src-mediated ERK reactivation may play a 

role in a novel gefitinib resistance mechanism, and that the combined use of gefitinib 

with a Src inhibitor may be a potent strategy to overcome this resistance. 



Abbreviations: EGFR, epidermal growth factor receptor; ERK, extracellular 

signal-regulated kinase; IGF-1R, insulin-like growth factor-1 receptor; MAPK, 

mitogen-activated protein kinase; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide; NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; NSCLC, 

non-small cell lung cancer; PI, propidium iodide; PTEN, phosphatase and tensin 

homolog; siRNA, small interfering RNA; TKI, tyrosine kinase inhibitor. 
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Introduction 

Lung cancer remains a leading cause of cancer mortality worldwide. Non-small cell 

lung cancer (NSCLC) harboring somatic mutations in the gene encoding epidermal 

growth factor receptor (EGFR) is highly sensitive to EGFR-tyrosine kinase inhibitors 

(TKIs). Somatic EGFR mutations in NSCLC, including a 15-base pair in-frame deletion 

in exon 19 and L858R mutation in exon 21, contribute to EGFR-TKI sensitivity [1-3]. 

EGFR-TKIs compete with ATP for binding to the ATP-binding pocket of the tyrosine 

kinase receptor and demonstrate substantial inhibition of survival signals. Although 

EGFR-TKIs cause an immediate and dramatic clinical response, almost all patients with 

EGFR mutations who initially respond to EGFR-TKIs eventually develop acquired 

resistance, typically after around 1 year [4,5]. 

 Recently, mechanisms of resistance to EGFR-TKIs have been identified. In 

approximately half of EGFR-TKI-resistant patients, resistance is associated with the 

emergence of a single missense mutation in exon 20 of EGFR that substitutes 

methionine for threonine at position 790 (“T790M”) in the kinase domain of the protein 

[6,7]. Irreversible EGFR-TKIs such as afatinib, HKI-272, and CL-387,785 have been 

considered to be potent for overcoming such resistance [8-10]. However, no clinical 

drug is currently available. MET amplification accounts for 20% of resistance 



mechanisms [11]. Furthermore, Guix et al. [12] reported that insulin-like growth 

factor-1 receptor (IGF-1R) signaling mediated acquired resistance to EGFR-TKIs in 

A431 squamous cell lines with wild-type EGFR amplification. On the other hand, 

intrinsic resistance to EGFR-TKIs involves KRAS [13]. Although resistance to 

EGFR-TKIs in NSCLC has increased clinically, the resistance mechanisms are 

incompletely understood. 

 Many studies have demonstrated an association between smoking and poor 

prognosis in NSCLC patients, and smoking status was identified as an independent 

negative prognostic factor for survival in NSCLC patients treated with chemotherapy 

[14-17]. Furthermore, even in NSCLC patients treated with EGFR-TKIs, current and 

ex-smokers have a significantly poorer response rate or shorter survival time compared 

with light- or never-smokers [18-20]. However, the effects of smoking on EGFR-TKI 

resistance have not been examined. In this report, we describe a novel mechanism of 

gefitinib resistance induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone 

(“nicotine-derived nitrosamine ketone,” NNK), a tobacco-specific nitrosamine. 

 

 

Materials and Methods 



Establishment of a gefitinib-resistant cell line 

The “PC-9” cell line, which was derived from an untreated Japanese patient with a 

pulmonary adenocarcinoma carrying an in-frame deletion in EGFR exon 19 

(del_E746-A750), shows strong sensitivity to EGFR-TKIs (e.g., gefitinib and erlotinib) 

[21]. PC-9 cells were initially treated with NNK (2.5 mg/mL) for 24 h and then washed 

with phosphate-buffered saline twice. The cells were then incubated in RPMI 1640 

medium with gefitinib (0.5 μM) for 1 week. Before subsequent subcloning in 

RPMI 1640 medium with gefitinib (from 0.3 to 0.5 μM), surviving cells were cultured 

without gefitinib for 14 days. Finally, a gefitinib-resistant clone was identified, which 

was designated as “PC9-GR”. RPC-9, derived from PC-9 as described previously [22], 

harbors both a sensitive EGFR mutation and a secondary EGFR-TKI-resistant T790M 

mutation in EGFR exon 20. 

 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay 

Dose-response curves were determined using MTT assays. Briefly, cells were placed in 

96-well plates at 1,500/well and exposed continuously to each drug for 96 h, and then 

quantified spectrophotometrically at 570 nm using a microplate reader (Bio-Rad, 

Hercules, CA). The drug concentration required to inhibit the growth of the tumor cells 



by 50% (IC50) was used to evaluate the effect of the drug. Each assay was performed at 

least in triplicate. All IC50 values are presented as means±standard deviation (SD). 

 

Apoptotic morphology using Hoechst 33342 and propidium iodide (PI) differential 

staining 

Cells were stained with Hoechst 33342 and PI (Invitrogen, Carlsbad, CA), and those 

with fragmented or condensed nuclei were defined as apoptotic cells. At least ten visual 

fields were observed under a fluorescence microscope for each sample and at least 500 

cells were counted to determine the proportions of apoptotic and necrotic cells. 

 

mRNA and genomic DNA extraction and analyses 

Total mRNA was obtained using an RNeasy Mini Kit (Qiagen, Hilden, Germany). Then, 

1 µg of RNA was reverse-transcribed using Super Script III Reverse Transcriptase 

(Invitrogen) according to the manufacturer’s protocol. Genomic DNA was extracted 

using a DNeasy Mini Kit (Qiagen). cDNA or genomic DNA was amplified and 

analyzed using Power SYBR Green PCR Master Mix (Applied Biosystems, Foster City, 

CA) by real-time quantitative polymerase chain reaction using a GeneAmp 5700 

apparatus (Applied Biosystems). Target gene-specific primers were designed using the 



web tool “Primer3” (http://primer3.sourceforge.net). The sequences are available on 

request. The concentration of DNA was quantified using a NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies, Wilmington, DE). DNA sequencing was 

performed using an ABI Prism 3100 Genetic Analyzer (Applied Biosystems) in 

Okayama University Medical School’s Central Research Laboratory (Okayama, Japan). 

 

Immunoblotting analysis 

Cells were lysed in lysis buffer (1% Triton X-100, 0.1% SDS, 50 mM Tris-HCl, pH 7.4, 

150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 10 mM β-glycerolphosphate, 10 mM NaF, 1 

mM sodium orthovanadate, and protease inhibitor tablets [Roche Applied Sciences, 

Indianapolis, IN]) and the proteins were then separated by electrophoresis on 

polyacrylamide gels, transferred to nitrocellulose membranes, and probed with specific 

antibodies. Peroxidase-labeled anti-rabbit or anti-mouse antibodies (GE Healthcare 

Biosciences, Piscataway, NJ) were used as the secondary antibody followed by 

detection with an Enhanced Chemiluminescence Plus kit (GE Healthcare Biosciences). 

 

Reagents and antibodies 

Gefitinib was purchased from Tocris Bioscience (Ellisville, MO). NNK was purchased 



from TRONTO Research (North York, ON, Canada). LY294002 (PI3K inhibitor; 

#9901) and U0126 (MEK inhibitor; #9903) were purchased from Cell Signaling 

Technology (Beverly, MA). Rabbit antisera against EGFR, phospho-EGFR (pY1068), 

p44/42 mitogen-activated protein kinase (MAPK) (ERK1/2), phospho-p44/42 MAPK 

(ERK1/2) (Thr202/Tyr204), Akt, phospho-Akt (pSer473), phospho-MET (pMET; 

pY1234/1235), IGF-1R, phospho-IGF-1R (pIGF-1R; pY1131), “phosphatase and tensin 

homolog deleted on chromosome 10” (PTEN), Src, phospho-Src, Stat-3, phospho-Stat-3, 

cyclooxygenase-2 (COX-2), and β-actin were purchased from Cell Signaling 

Technology. Polyclonal antibodies against MET were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA). Peroxidase-labeled anti-rabbit or anti-mouse 

antibodies (GE Healthcare Biosciences) were used as secondary antibodies. 

 

Small interfering RNA (siRNA) experiments 

Approximately 2×10
5
 cells were plated in six-well plates in RPMI 1640 supplemented 

with 10% heat-inactivated fetal bovine serum. After 24 h, the cells were transfected with 

an siRNA oligonucleotide or negative control siRNA using Lipofectamine RNAiMAX 

(Invitrogen) at a final RNA concentration of 30 nM in serum-free Opti-MEM 

(Invitrogen) medium according to the manufacturer’s protocol. At 24 h after transfection, 



we changed the medium to normal conditioned medium. After an additional 24 h, the 

cells were lysed and extracted as above. Immunoblotting was performed as described 

above. The siRNA oligonucleotides for Src and ERK (predesigned siRNA, ID number 

SASI_Hs01_00112907 Validated MISSION siRNA and SASI_Hs01_00190617 

Validated MISSION siRNA, respectively), and the negative control siRNA 

(Mission_Negative Control SIC-001), which does not induce non-specific effects on 

gene expression, were purchased from Sigma-Aldrich (St. Louis, MO). 

 

Enzyme immunoassay 

Cells were plated at a density of 3.0×10
5
 cells/well in 6-well plates 24 h prior to 

experiments. Cells were exposed to 0.01% DMSO or 1 M of gefitinib for 12 h. Then, 

culture medium in each well was collected and centrifuged. Supernatants were assayed 

for released Prostaglandin E2 (PGE2) using PGE2 Express EIA Kit (Cayman Chemical 

Co., Ann Arbor, MI) according to the manufacturer’s instructions. 

 

Xenograft model 

Female athymic mice, 7 weeks of age, were purchased from Charles River Laboratories 

Japan Inc. (Yokohama, Japan). All mice were provided with sterilized food and water 



and housed in a barrier facility under a 12-h/12-h light/dark cycle. Cells (2×10
6
) were 

injected subcutaneously into the backs of the mice. At 1 week after injection, the mice 

were randomly assigned to one of four groups (6 or 7 mice per group); the groups were 

administered vehicle, 5 mg/kg/day of gefitinib, 15 mg/kg/day of dasatinib, and 5 

mg/kg/day of gefitinib plus 15 mg/kg/day of dasatinib, respectively. Vehicle, gefitinib, 

and dasatinib were administered by gavage once per day, five times per week. Tumor 

volume (width × width × length/2) was determined periodically. All tumor volumes are 

expressed as means±SD. Differences in tumor volume were evaluated using Student’s 

t-test. The tumor volume percent was determined from the change in average tumor 

volume for each treated group relative to the vehicle-treated group in the case of tumor 

regression.  

All experiments involving animals were performed under the auspices of the 

Institutional Animal Care and Research Advisory Committee at the Department of 

Animal Resources, Okayama University (Okayama, Japan). 

 

Statistical analyses 

For the experimental data, all P-values correspond to two-sided tests, with the 

significance set at P < 0.05. Statistical analyses were conducted using STATA software 



(ver. 10; StataCorp, College Station, TX). 

 

 

Results 

Continuous exposure to gefitinib with NNK induced resistance to gefitinib 

To establish gefitinib-resistant cell lines, we used PC-9 cells pretreated with NNK 

followed by gefitinib as described in the Materials and Methods. The doubling times for 

PC-9 (23.0 h) and PC9-GR (21.7 h) were similar. The IC50 value of PC9-GR for 

gefitinib was approximately 2.60±0.88 µM, which was a 124-fold decrease in gefitinib 

sensitivity compared with the parental line PC-9 (IC50: 0.021±0.0084 µM; Fig. 1A). The 

growth inhibitory effect of gefitinib on PC-9 and PC9-GR was confirmed by cell 

counting assays (Fig. S1A). Staining with Hoechst 33342 and PI showed that treatment 

with gefitinib induced apoptosis in PC-9 to a greater extent than in PC9-GR (Fig. S1B 

and S1C). PC9-GR showed cross-resistance to erlotinib (IC50 values: 0.0073±0.0014 

µM in PC-9 vs. 1.50±0.50 µM in PC9-GR). 

Peptide nucleic acid-locked nucleic acid PCR clamp methods and RT-PCR 

confirmed that PC9-GR had neither the secondary T790M mutation in EGFR exon 20 

nor MET gene amplification (Fig. S2A and S2B). Western blotting demonstrated that 



IGF-1R signaling was not activated in PC9-GR (Fig. S2C). The PTEN expression levels 

were also similar in both cell lines (Fig. S2D). A direct sequence analysis of genomic 

DNA revealed that a wild-type KRAS gene was present in PC9-GR. We also found no 

apparent mutation in other EGFR signaling pathways (KRAS, BRAF, c-Raf, and 

MEK1/2) by direct sequence analysis (data not shown). 

 

ERK phosphorylation in PC9-GR cells was maintained in the presence of gefitinib 

Protein expression in PC-9 and PC9-GR is shown in Fig. 1B. The levels of 

phosphorylated EGFR, AKT, and ERK in PC9-GR were increased compared with those 

in PC-9 treated without gefitinib. Treatment for 24 h with gefitinib (≥ 0.1 µM) of both 

the parental and resistant cells inhibited the phosphorylation of EGFR and of the 

downstream factors Akt and ERK, although pERK was still maintained in PC9-GR. 

That is, gefitinib inhibited ERK activation in accordance with the suppression of 

pEGFR in PC-9, whereas ERK was still activated in PC9-GR. 

 

PC9-GR cell growth was significantly suppressed by a MEK inhibitor but not a 

PI3K inhibitor 

Protein expression was assessed with a MEK inhibitor (U0126) or a PI3K inhibitor 



(LY294002) in combination with gefitinib. ERK phosphorylation was completely 

suppressed by the combination of gefitinib with U0126, even in PC9-GR (Fig. 2A). 

Likewise, the combination of gefitinib with LY294002 suppressed EGFR and Akt 

activation in the resistant cells (Fig. 2B). The growth of PC9-GR was significantly 

suppressed when treated with the combination of gefitinib and U0126 (Fig. 2C), 

whereas the combination of gefitinib and LY294002 showed marginal growth inhibition 

in PC9-GR (not statistically significant; Fig. 2D). The results suggested that bypassing 

signals in PC9-GR may depend mainly on the EGFR-ERK pathway. 

 

Time-dependent ERK reactivation in PC9-GR is correlated with Src activation 

Cells were exposed to 2 μM gefitinib for the indicated time (Fig. 3A). EGFR and Akt 

phosphorylation was down-regulated by gefitinib in a time-dependent manner. Although 

gefitinib immediately suppressed ERK phosphorylation in both cell lines, ERK was 

reactivated after 6 h of exposure to gefitinib in PC9-GR. Interestingly, Src activation 

was observed in accordance with ERK reactivation in PC9-GR. Densitometry 

confirmed that Src phosphorylation, normalized to GAPDH, increased significantly in 

the resistant cells (Fig. S3A). Conversely, downstream ERK inhibition by U0126 and by 

siRNA did not induce Src activation in either cell line (Fig. 3B and 3C). Taken together, 



ERK reactivation was apparently induced by Src activation. 

 

The combination of gefitinib with Src inhibition, using dasatinib or siRNA, was 

effective against PC9-GR 

Suppression of Src phosphorylation by treatment with gefitinib and dasatinib, a Src 

inhibitor, resulted in ERK suppression and significant inhibition of cell proliferation 

(Fig. 4A and 4B). Dose-response curves for gefitinib with or without dasatinib are 

shown in Fig. 4C. The IC50 values for gefitinib were decreased significantly in PC9-GR 

(3.5 µM without dasatinib vs. 0.008 µM with dasatinib). Furthermore, an siRNA 

specific for Src showed significantly increased gefitinib sensitivity in PC9-GR (IC50 

values: 5.3 µM without siRNA vs. 0.47 µM with siRNA; Fig. 4D and 4E). The Src 

knockdown did not affect pERK expression (Fig. 4D), consistent with the result of Src 

inhibition with dasatinib (Fig. 4A). These results suggest that dual inhibition of EGFR 

and Src may overcome gefitinib resistance. 

 

Effect of combined gefitinib and dasatinib in a mouse xenograft model with 

PC9-GR 

To extend our findings to in vivo models, we conducted xenograft studies in athymic 



nude mice injected with PC-9 and PC9-GR. First, we examined xenograft tumors to 

determine the degree of gefitinib resistance in PC9-GR. In the 5 mg/kg gefitinib-treated 

group, PC9-GR xenograft tumors were able to grow compared to the vehicle group, 

whereas parental PC-9 xenograft tumors were not (Fig. S4). Subsequently, we 

investigated whether the combination of gefitinib with dasatinib had a synergistic effect 

on the growth of PC9-GR. At 7-10 days after tumor cell injection, the mice were 

divided into four groups and treated with vehicle, gefitinib, dasatinib, or a combination 

of both drugs by oral gavage for 45 days. The combined treatment showed growth 

inhibition of the PC9-GR xenograft tumor (Fig. 5), consistent with our in vitro results. 

The tumor volume percentages were 103.5% in the gefitinib arm, 84.7% in the dasatinib 

arm, and 50.9% in the combined arm on day 45. However, there was no statistically 

significant difference in tumor size between combination therapy and gefitinib 

monotherapy (P = 0.067). 

 

COX-2 and PGE2 levels in PC-9 and PC9-GR 

COX-2 expression in PC-9 and PC9-GR cells did not differ irrespective of 

gefitinib-treatment (Fig. S5A). Subsequently, PGE2 production was assessed by enzyme 

immunoassay (Fig. S5B). PGE2 levels were also similar in PC-9 and PC9-GR cells 



irrespective of gefitinib-treatment. 

  

Discussion 

We established a novel EGFR-TKI-resistant cell line in which the resistance mechanism 

involved ERK reactivation mediated by Src. A role for Src in resistance to EGFR-TKIs 

has not been reported previously. In this study, NNK exposure followed by gefitinib 

treatment induced resistance to gefitinib in the EGFR-mutated cells. PC9-GR was 

sensitive to gefitinib when combined with a Src inhibitor. 

 Koizumi et al. [23] reported gefitinib-resistant cells using MNNG, a known 

DNA alkylator. Resistance in their cells was associated with MET amplification. We 

established the PC9-GR line using NNK according to a similar procedure, but the cells 

did not harbor acquired resistance mechanisms, including T790M and MET 

amplification, or intrinsic resistance mechanisms, including KRAS mutations and a loss 

of PTEN. It is unclear whether the difference in DNA alkylating agents induced 

different resistance mechanisms. Gefitinib-resistant cell lines have been established 

traditionally by step-wise, chronic exposure to gefitinib, from low to high 

concentrations, for up to 6 months [11,12,22] whereas PC9-GR acquired strong 

resistance to gefitinib within 2 months. One explanation for the rapid emergence of 



gefitinib resistance in NNK-pretreated PC9-GR cells is the activation of an alternative 

survival signaling pathway. To date, such alternative pathways have been reported. 

Tobacco smoke was reported to cause an increase in COX-2 and its downstream product, 

prostaglandin E2, in normal and transformed oral epithelial cells [24]. Among the 

various downstream products of COX-2, thromboxane A(2) and thromboxane B(2), 

induced by NNK administration, were observed in lung cancer cell lines as well as in 

lung cancer tissues of smokers. They concluded that the increased thromboxane A(2) 

activated “cyclic adenosine monophosphate response element binding protein” (CREB) 

through the PI3K/Akt and ERK pathways [25]. In our study, there was no significant 

difference in COX-2 expression or PGE2 production between PC-9 and PC9-GR cells 

(Fig. S5). NNK-induced pulmonary adenocarcinoma in hamsters also showed 

overexpression of β2-adrenergic receptor pathway components, including CREB, and 

EGFR pathway components, including Raf-1 and ERK1/2 [26]. Together, these results 

suggest that NNK induced various alternative survival signals and led to the acquisition 

of gefitinib resistance, which was mediated by bypass signals, as seen in our study. 

Since we could not explain the reason why 24 h-exposure of NNK contributed to 

increased activation of Src-ERK axis in PC9-GR cells, further study was needed for the 

elucidation of the mechanism. 



 The relationship between smoking status and prognosis in lung cancer patients 

has long been evaluated. Doll and Hills [27] first reported a dose-response relationship 

between the number of cigarettes smoked and lung cancer death rates 50 years ago. 

Since then, smoking has been associated with cancer risk, including not only lung 

cancer, but also oral, laryngeal, esophageal, gastric, and colorectal cancers [28-30]. 

Many reports have shown that heavy smoking status is associated with a poor prognosis 

in patients with NSCLC [14-17]. Additionally, the longer the time since the cessation of 

smoking at treatment initiation, the better the survival outcome and recurrence-free 

survival in early-stage NSCLC patients [31]. However, a recent prospective study in 

chemo-naïve patients with advanced NSCLC demonstrated that smoking during 

treatment with cytotoxic agents was not significantly associated with survival [32]. The 

anti-tumor effects of EGFR-TKIs such as gefitinib and erlotinib are affected by smoking 

status. Never smoking or light smoking is thought to be more beneficial for patients 

treated with gefitinib and an independent negative predictor of gefitinib treatment 

[19,33-35]. In a large-scale phase III study and a global phase IV post-marketing 

surveillance study, current or past smoking was determined to be a negative predictive 

marker for treatment response and longer survival [18,20]. Thus, the negative effect of 

smoking on EGFR-TKI treatment has been discussed. However, few reports have 



described the influence of smoking on drug resistance because of the complexity of the 

ingredients in cigarette smoke (CS); there are many chemicals and carcinogens in 

addition to nicotine that are associated with addiction. Indeed, over 4,000 chemical 

compounds are created by burning a cigarette, and 69 of those are known to cause 

cancer [36]. NNK has been widely recognized to be strongly associated with the 

induction of tobacco-related carcinogenesis [38,39] or somatic mutations in KRAS 

associated with de novo resistance to EGFR-TKIs [13]. KRAS mutations in codons 12 

and 13 (G-to-T transversions and G-to-A transitions) occur in 15-25% of NSCLC 

patients, especially in adenocarcinoma, and are strongly associated with cigarette 

smoking history in NSCLC [39,40]. Some have argued, based on meta-analyses, that 

KRAS mutations represent a strong candidate predictive biomarker for 

non-responsiveness to both monoclonal antibodies and EGFR-TKI-based strategies 

[41,42]. Although PC9-GR did not carry a KRAS mutation, other bypassing signals 

related to NNK may be considered. 

The signal transduction pathway activating ERK via Src remains to be 

determined. A recent study showed that the “receptor activator of nuclear factor-κB 

ligand” (RANKL)/RANK pathway plays an important role in tumor migration, 

metastasis, proliferation, and tumorigenesis in vitro and in vivo, in mammary tumors 



[43,44]. They demonstrated that stimulation by RANKL resulted in activation of 

MAPKs such as ERK, p38MAPK, and JNK, and the combination of specific inhibitors 

of MAPKs suppressed RANKL-induced cell migration. Moreover, MAPK 

phosphorylation could be blocked by a specific Src inhibitor and by a Src-specific 

siRNA [44]. The Src family of protein tyrosine kinases (SFK) cooperates with multiple 

receptor tyrosine kinases such as EGFR and modulates various signaling pathways, 

including those involved in survival, growth, and transformation, in cancer cells [45]. 

Elevated SFK activity has been reported in various human tumors, including lung 

cancer [46,47], and Src inhibitor monotherapy caused growth inhibition and the 

induction of cell death in EGFR-driven NSCLC [48,49]. To date, synergistic 

interactions between EGFR and Src in mitogenesis and tumorigenesis have been 

established in vitro [50]. In breast cancer, co-overexpression of both EGFR and Src 

occurs in a subset of cell lines and tumor tissues [51]. These results suggest a 

connection between EGFR and Src, suggesting the combination of EGFR-TKIs with 

Src inhibitors as a potential therapeutic strategy. To date, an activating mutation in Src 

has not been reported in NSCLC, but Src-amplified NSCLC cell lines show strong 

sensitivity to Src inhibitors [52]. As reported previously, the amplification of target 

genes can predict susceptibility to target-specific treatment in ERBB2-amplified breast 



cancer and EGFR-amplified lung cancer [53,54]. Cooperation between EGFR and Src 

has been demonstrated in many tumors, notably in head and neck cancer and NSCLC 

[55,56]. EGFR-mutated NSCLC demonstrates differential sensitivity to Src inhibitors. 

Specifically, S768I and L861Q mutants are less sensitive to Src inhibition, whereas 

L858R or exon 19 deletion mutations are more sensitive to Src inhibitors. Interestingly, 

an exon 19 deletion/T790M double mutant remained sensitive to Src inhibitors whereas 

an L858R/T790M double mutant did not [57]. These differences in sensitivity to Src 

inhibitors have not been fully characterized. A phase I/II study of the combination of 

erlotinib with dasatinib in unselected NSCLC patients has already been conducted [58]. 

In that study, the overall disease control rate was 62% with a median progression-free 

survival of 2.7 months and overall survival of 5.6 months. If an EGFR-TKI refractory 

tumor demonstrated a resistance mechanism such as that in PC9-GR, the combination of 

an EGFR-TKI with a Src inhibitor may be a potent treatment strategy. 

 Recently, Ercan et al. [59] reported a novel EGFR-TKI resistance mechanism. 

They generated WZ4002 (irreversible EGFR-TKI)-resistant cell lines (PC9 WZR), 

which harbored an active mutation (del_E746-A750 in EGFR exon 19) and an 

EGFR-TKI-resistant mutation (T790M in exon 20). The resistant cells demonstrated 

sustained ERK phosphorylation in the presence of WZR4002, as seen in our resistant 



cells. Although the resistant cells contained MAPK1 amplification compared with the 

parental cells, and the resistance could be overcome by the inhibition of ERK1/2, they 

further demonstrated that down-regulation of DUSP6, a negative regulator of MAPK 

signaling, induced subsequent activation of ERK1/2 signaling. Although we 

investigated DUSP6 expression in our cell lines, DUSP6 protein expression was 

comparable between the parental and resistant cells (Fig. S3B). More recently, Filosto et 

al. [60] described transient EGFR-TKI resistance caused by Src activation in wild-type 

or L858R mutant EGFR NSCLC cell lines exposed to CS for a short time. They 

demonstrated that CS exposure induced an aberrant interaction between Src and EGFR, 

and, when treated with PP1 and PP2 (Src-specific inhibitors), Src-dependent 

trans-phosphorylation at Y845 of EGFR was markedly inhibited. Furthermore, transient 

EGFR-TKI resistance was overcome when combined with Src-specific inhibitors. They 

concluded that CS-induced oxidative stress evoked this EGFR-TKI resistance. Although 

their model emphasized Src function in EGFR-TKI resistance, similar to our study, we 

specifically used NNK, an abundant cigarette ingredient, and established a resistant cell 

line. 

Our study has some limitations. First, we investigated only one cell line. 

Although Src-mediated ERK reactivation may indeed be a resistance mechanism, we 



must investigate other EGFR-mutated cell lines, which could have as-yet unknown 

resistance mechanisms. Second, the NNK-induced resistance model in the present study 

is difficult to apply immediately to the clinical situation in patients with EGFR 

mutations. Although no clinical sample harboring this resistance mechanism has been 

reported, it must be noted that Src could play a role in EGFR-TKI resistance in some 

situations. Third, we unfortunately failed to show the superiority of combination 

treatment with gefitinib and dasatinib over each monotherapy with statistical 

significance in xenograft model (P = 0.067). The reason might be because there were 

comparatively small numbers (6 or 7 mice per group) or issues of the chemicals such as 

treatment doses or schedules. The kinetics of the two drugs administered concomitantly 

remains unclear in vivo, which applied to the schedule of the treatment as well. 

Otherwise the combination efficacy might not be acknowledged in vivo in fact. Further 

investigation is necessary to clarify it.  

 In conclusion, our results indicate that Src-mediated ERK reactivation may 

play a role in a novel gefitinib resistance mechanism. The combination of gefitinib with 

a Src inhibitor may be a potent strategy for overcoming this resistance. 

 



Figure legends 

Fig. 1 - Effects of gefitinib on PC-9 (parent) and PC9-GR (resistant). (A) Dose-response 

curves for the two cell lines. Growth inhibition was determined by MTT assays. (B) 

Protein expression was determined by Western blotting. 

 

Fig. 2 - Protein expression and cell growth in the presence of gefitinib and MEK or 

PI3K inhibitors. Protein expression in PC-9 and PC9-GR in the presence of gefitinib 

and U0126 (A) or LY294002 (B). The growth of PC-9 and PC9-GR was assessed 

following treatment with gefitinib and U0126 (C) or LY294002 (D). Cells were seeded 

at 50,000/well and incubated in the presence of the indicated drug for 72 h at 37°C in a 

5% CO2 incubator. After 72 h of treatment, the cells were counted. Bars indicate SDs. * 

P < 0.05. The concentrations of gefitinib, U0126, and LY294002 were 0.5, 10, and 10 

µM, respectively. 

 

Fig. 3 - Time-dependent ERK reactivation in PC-9 and PC9-GR. (A) Protein expression 

in the presence of gefitinib (2 µM) at the indicated times. ERK inhibition by U0126 (B) 

and an ERK-specific siRNA (C) did not induce Src phosphorylation. 

 



Fig.4 - Protein expression (A) and cell survival (B) of PC-9 and PC9-GR treated with 

gefitinib and dasatinib for 24 h. (C) Dose-response curves were determined using MTT 

assays. Cells were treated with gefitinib alone or combined with dasatinib. (D) Protein 

expression of Src following treatment with Src-specific siRNA. The Src knockdown did 

not affect pERK expression, consistent with the result of Src inhibition with dasatinib. 

(E) Dose-response curves of gefitinib in PC-9 and PC9-GR pre-treated with Src-specific 

siRNA. Abbreviations: gefitinib +, 0.5 µM gefitinib; dasatinib +, 50 nM dasatinib; 

dasatinib ++, 100 nM dasatinib. 

 

Fig. 5 - Combined effects of gefitinib with dasatinib in an in vivo model. Combination 

treatment was more effective than either agent (gefitinib or dasatinib) alone in the 

PC9-GR xenograft model. The numbers to the right of the curves are the percent tumor 

volumes determined from the change in average tumor volume in each treated group 

relative to the vehicle-treated group. Abbreviations: v, vehicle; G5, 5 mg of gefitinib; 

D15, 15 mg of dasatinib. 

 



Supplemental figure legends 

 

Fig. S1 - (A) The growth inhibitory effects of gefitinib on PC-9 and PC9-GR were 

confirmed by cell counting assays. * P < 0.05. (B) Hoechst 33342 and PI differential 

staining is shown in fluorescent micrographs. (a) PC-9 cells were treated without 

gefitinib for 48 h as a control. (b) PC-9 cells treated with gefitinib for 48 h. (c) PC9-GR 

cells treated without gefitinib for 48 h. (d) PC9-GR cells treated with gefitinib for 48 h. 

White arrows and red arrowheads indicate apoptotic cells and necrotic cells, 

respectively. Magnification, ×600. (C) The results of (B) were visualized. The 

proportion of apoptotic cells was less frequent in PC9-GR. 

 

Fig. S2 - Direct sequence analysis and real-time quantitative reverse transcription 

confirmed PC9-GR had neither (A) the secondary T790M mutation in EGFR exon 20, 

nor (B) MET amplification. (C) Western blotting demonstrated that IGF-1R signaling 

was not activated in PC9-GR. (D) Western blotting demonstrated PTEN expression in 

both cell lines. 

 

Fig. S3 - (A) Densitometry confirmed that Src phosphorylation, normalized to GAPDH, 



was increased significantly in the resistant cells. (B) DUSP6 protein expression was 

comparable between PC-9 and PC9-GR. 

 

Fig. S4 - Effects of gefitinib in a PC-9 xenograft model. Oral gefitinib (5 mg) showed 

substantial growth inhibition of the PC-9 xenograft. The numbers to the right of the 

curves are the percent tumor volumes determined from the change in the average tumor 

volume in each treated group relative to the vehicle-treated group. 

Abbreviations: v, vehicle; G5, 5 mg of gefitinib; G10, 10 mg of gefitinib. 

 

Fig. S5 - (A) COX-2 expression in PC-9 and PC9-GR cells was evaluated using Western 

blotting. (B) PGE2 concentration was assessed by enzyme immunoassay. Bar means ± 

SE. Each assay was done in triplicated. 
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