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(Abstract) 

Lithium ion cells comprising actual components of positive electrodes (LiCoO2, 

LiNixCoyAlz, and LiMn2O4) and negative electrodes (graphite and hard carbon) were 

assembled for in situ 7Li nuclear magnetic resonance (NMR) experiments. The 7Li NMR 

measurements of the cells revealed a "relaxation effect" after overcharging: a decrease of 

the signal assigned to Li metal deposited on the negative electrode surface by overcharging. 

The reduction of the Li metal signal was inversely proportional to the increase of the signal 

of lithium stored in carbon. Therefore, the effect was ascribed to absorption of deposited 

                                                 
*Corresponding author. Tel/Fax: +81 86 251 7776 

E-mail : kgotoh@cc.okayama-u.ac.jp (K. Gotoh) 



 2 

lithium into the carbon of negative electrodes. The effect, which occurred rapidly in a few 

hours, reached an equilibrium state at 8–15 h. The slight shift of deposited metal suggests 

that dendritic Li easily re-dissolved, although larger Li particles remained. A hard carbon 

electrode has a greater effect of Li metal relaxation than graphite electrodes do, which is 

explainable by the bufferable structure of the carbon. Results are expected to be important 

for the discussion of the state of lithium, and for safer battery design. 

 

 

1. Introduction 

Lithium ion batteries (LIBs), a crucially important power source, are increasingly 

demanded for application to electrical devices and electric vehicles [1]. To improve the LIB 

capacity, efficiency, lifetime, and safety, it is indispensable to elucidate the states of the 

lithium atoms on the positive electrode (cathode) and on the negative electrode (anode). 

6Li/7Li nuclear magnetic resonance (NMR) is suitable for characterizing LIBs because the 

spectra reflect the environment of the lithium atoms [2–5]. Particularly in situ NMR 

experiments of LIBs have been attracting interest because they allow for access to the 

non-equilibrium state of the battery during charging and discharging processes in a 

non-invasive manner [6–8]. To date, in situ NMR studies of LIBs for carbon electrodes [9–

13], metal electrodes [14, 15], and lithium metal oxide electrodes [16–18] have been 

reported. 

All previous studies have specifically addressed either one of the pair of electrodes 

using cells with a working electrode on one side and lithium metal electrode on the other 

side. However, for LIBs in actual use, what happens on the negative electrode can be 
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affected by the positive electrode material, and vice versa. For example, a LiCoO2 electrode 

can provide more lithium ions than a LiMn2O4 electrode can. Such a difference in the 

positive electrode can affect the rate of lithium-metal deposition on the negative electrode 

when the battery is overcharged. It follows that in situ Li NMR of a "full cell" composed of 

the positive electrode and negative electrode used in practical and operational LIBs would 

be favorable, rather than analyses of the lithium environment on the positive and negative 

electrodes in separate samples of "half cells". To evaluate the overcharged state of LIBs 

accurately, well-designed full cells having appropriate balance of capacities in positive and 

negative electrodes are necessary. 

This report describes in situ 7Li NMR studies of full LIB cells using LiCoO2, 

LiNixCoyAlz, and LiMn2O4 for the materials of positive electrode, and graphite and hard 

carbon for the materials of negative electrode. We fabricated cells for various combinations 

of these materials in a compact form that is suitable for in situ NMR. Then we measured 7Li 

spectra for various states of charge (SOC). Results show that in situ 7Li NMR analysis 

exhibits an interesting phenomenon of the deposited lithium on the negative electrode after 

overcharging: lithium metal is transferred into the carbon electrode material within a few 

hours. To date, such a relaxation effect has only been predicted. This report is the first to 

describe experimental evidence for the relaxation after overcharging. Results show that the 

hard carbon electrode can absorb more lithium atoms than the graphite electrode can. A 

discussion of the results will be given in terms of the pores that can be buffers of the 

lithium atoms. 

 

2. Experimental 
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2.1 Preparation of cells for NMR 

Cells sealed by Al-deposited laminate film were assembled for in situ measurements, 

with a positive electrode made with lithium transition metal oxides, a negative electrode 

made with carbon, and polypropylene separator (25 m). The cells were filled with liquid 

electrolyte comprising 1 M LiPF6 in ethylene carbonate (EC) / ethylmethylcarbonate 

(EMC) mixture with a volume ratio of 30:70. The positive electrode was prepared by 

coating an active material on an Al foil (20 m). LiCoO2 (LCO), LiNixCoyAlz 

(x:y:z=8:2:<0.1) (NCA), or LiMn2O4 (LMO) was used as active materials. The capacity 

was precisely adjusted to 3.0 mAh cm-2. The negative electrodes were formed on a Cu foil 

(18 m thickness) in the same manner using an artificial graphite powder (2030 m of 

particle sizes) or pitch-based hard carbon (Carbotron PS(F), Kureha Battery Materials 

Japan). Characterization of the hard carbon product has been reported in [4] and [19]. Each 

negative electrode was prepared adjusting its capacity at 3.2 mAh cm-2 (corresponding to 

360 mAh g-1 for graphite and 450 mAh g-1 for hard carbon). Each positive electrode and 

negative electrode was cut in rectangular shape (10 x 16 mm), and assembled to a cell. 

Thus, the capacity balance of negative against positive in each cell was same. The cell size 

was 30 mm  20 mm, and the thickness of the Al-deposited laminate packing was 115 m 

(the Al thickness in the laminate film was less than 30 m). A schematic drawing of the 

cell is presented in Fig. 1(a).  

To evaluate the reduction of the NMR signal attributable to radiofrequency (RF) 

shielding by the Al layer in the package, Li metal samples packed in the polyethylene 
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terephthalate (PET) film (100 m thickness) and in the Al-deposited laminate film were 

fabricated. The results of the NMR measurements are described in the section 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 In situ NMR 

     In situ 7Li NMR experiments were conducted using a 7 T superconducting magnet 

and a homebuilt NMR spectrometer [20]. For this study, we developed an in situ 7Li NMR 

probe that can charge–discharge the cell while NMR experiments are performed (Fig. 1(b)). 

It is equipped with a flattened solenoid coil tuned at the 7Li Larmor frequency (116.41 

MHz) and a pair of terminal ports for charging–discharging. To isolate the RF circuit from 

Fig. 1  Photograph and schematic drawing of a practical component cell for in situ 

NMR measurement (a), photograph of the cell set on the head of a NMR probe (b), 

and a schematic drawing of the NMR probe including isolation shunt circuit (c). 
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the charge–discharge circuit, a shunt pair of a capacitor and an inductor resonating at 116 

MHz was attached to each of the two terminals, acting as a high-impedance trap at the 

NMR frequency, although it has a slight effect on direct currents. The cell was folded and 

put in the coil, and thereby in the magnet with the cell plane normal to the magnetic field. A 

single pulse sequence was applied with a pulse length of 6 s corresponding to the 90 deg 

spin flip. The spectral width was 200 kHz, which was enough to observe all Li components. 

A 7Li NMR signal in saturated aqueous solution of LiCl was used as a chemical shift 

reference. Although 50  100 scan was enough to observe each Li component, we 

accumulated 1000 scans to obtain good S/N ratio. 

First, to estimate the effect of RF shielding by the Al layer, we compared 7Li signal 

intensities of the samples sealed by the Al-deposited laminate and by the PET film. Then, 

the cells made with the LCO and graphite electrodes (LCO-gph), NCA and graphite 

(NCA-gph), LMO and graphite (LMO-gph), and LCO and hard carbon (LCO-hc) were 

subjected to the in situ 7Li NMR studies. The cutoff potentials of the cell for the charge and 

discharge processes were, respectively, 4.20 V and 2.75 V (2.5 V for LCO-hc). The cell 

was charged–discharged by 0.5 C (3–4 mA) for each sample. 

In general, cells can be charged efficiently using the CC–CV method: the cell is 

charged rapidly by the constant current (CC) mode; then it is charged slowly by the 

constant voltage (CV) mode. However, such precise control is difficult when the cell is 

accidentally overcharged during actual use. Accordingly, we applied CC charging without 

the CV process for all samples. 100% SOC was experimentally defined by the first 
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discharged capacity after formation process (4.5 mAh for graphite cells, and 3.5 mAh for 

hard carbon cells). 

 

2.3 Observation of absorption effects of Li metal into carbon 

     LCO-gph, NCA-gph, LMO-gph, and LCO-hc cells were applied to the experiment. 

The cells were overcharged to 170% of SOC by 2 C (until ca. 4.9 V) for LCO-gph, 

NCA-gph, and LMO-gph cells, and to 170% of SOC by 3 C (until ca. 4.9 V) for LCO-hc 

cell. After the overcharging, NMR spectra were immediately measured every 17 min. 

 

3. Results and Discussion 

3.1 Estimation of shielding effect by Al-laminate film and Cu foil 

     The 7Li NMR signals of Li metal packed in the PET film and in the Al-deposited 

laminate film are presented in Fig. 2(a). Results showed that the signal intensity was 

attenuated by ca. 50% attributable to RF shielding by the aluminum layer in the laminate 

film. Signals of Li metal with electrolyte solution and of Li metal electrode (Li pasted on 

Cu foil (18 m thickness) with electrolyte solution are also presented for comparison in Fig. 

2(b). The signal intensity decreased by 20–30% by the Cu foil. Although the signals were 

weakened by the Al-laminate film and Cu foil in the battery, we observed 35–40% intensity 

of the signal, which is tolerable for our study. Actually, RF wave can pass metal layer only 

less than 10 m. Therefore, the NMR signals must be obtained from the "edge" parts of the 

cells and come out through voids between deposited Aluminum particles in laminate film. 

To avoid the RF shielding effect, Cu and Al meshes were used for the electrodes in 
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previous studies [6, 10, 16]. However, metal foils and laminated packing by thicker Al film 

are preferred to maintain cell stability for a long time. The assembled cells in this study 

were stable; no disintegration of the components was found over three months. The cells 

were used for the following 7Li in situ NMR experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 7Li NMR 

     Figures 3(a)–3(d) respectively show 7Li NMR spectra of LCO-gph, NCA-gph, 

LMO-gph, and LCO-hc cells in the range of +100 and -30 ppm (+150 and -50 ppm for (c)). 

Spectrum of wider range (between +400 and -200 ppm) and the discharge curve of each 

cell are shown in Fig. S1 and S2, respectively, in a supplementary material file. 

  

Fig. 2  Signals of Li metal in PET film (black broken line) and in Al-deposited 

laminate film (red solid line) (a). Li metal with electrolyte solution (red broken 

line) and Li metal electrode (Li pasted on Cu foil) with electrolyte solution (blue 

solid line) (b). 
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A broad background signal, which is ascribed to positive electrode, and the other narrower 

signals were observed in each NMR spectrum. Although the signals of LiCoO2 in LCO-gph 

and LCO-hc (broad background signals in Figs. 3(a)(d) and Figs. S1(a)(d) around +220 to 

-200 ppm) overlapped with the other peaks, each narrow peak was distinguished 

Fig. 3  7Li NMR spectra of LCO-gph (a), NCA-gph (b), LMO-gph (c), and 

LCO-hc (d) cells. 
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definitively because of the extraordinarily different line widths. The narrow components in 

the NCA-gph spectra (Fig. 3(b)) and LMO-gph (Fig. 3(c)) were also distinguished clearly. 

The spectra of LCO-gph have three narrow peaks (C1, E1 and E2) at 38, 0.2, and -2.5 ppm. 

The component C1 intensity decreased with the decreasing of SOC and disappeared under 

SOC = 40%. Therefore, it was assigned to the signal of first or second stage Li - graphite 

(LiC6 or LiC12) of the negative electrode, although LiC6 and LiC12 generally show peaks 

respectively at 42 and 44 ppm. Indeed, the reduction of the C1 signal is in good agreement 

with previous studies on a half cell [9, 10] although quadrupolar satellites are not observed 

in our spectra. The components E1 and E2 should be assigned to the electrolyte because of 

the narrowness of the signal. The two signals might reflect the Li in electrolyte solution and 

Li on the surface of positive electrodes. Further study must be done to clarify this point. 

NCA-gph spectra (Fig. 3(b)) also included intercalated Li (LiC6 or LiC12) in negative 

electrode (C1), and two peaks (E1 and E2) at the SOC under 60%. However, the peaks E1 

and E2 did not split at the SOC over 60%; a sharp peak was observed. The shapes of 

LMO-gph spectra (Fig. 3(c)) differed considerably from the former two spectra. The peak 

shift of intercalated Li (C1) was 57 ppm. The widths of E1 and E2 were larger than those of 

the other samples (Fig. 3(a) and 3(b)). The shift of the peaks (C1, E1, and E2) and the 

broadening of the peaks (E1 and E2) are explained by an influence of magnetic 

susceptibility of LMO in positive electrodes. Our NMR results revealed that the magnetic 

susceptibility of LMO affects the chemical shift and the peak shape not only of Li in 

electrolyte solution but also of the counter electrode in the in situ cell. Indeed, it has been 

reported that 7Li MAS NMR of LMO observed a broad signal at about 600 ppm [21], and it 
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shifted depending on the angle between static magnetic field (B0) and the sample because 

of its stronger bulk magnetic susceptibility [17, 18]. 

LCO-hc cell (Fig. 4(d)) showed two peaks at 30 and -4 ppm at SOC 100%. The former, 

which is ascribed to Li doped in hard carbon, shifted to a lower frequency with discharging. 

The result is consistent with our previous NMR experiments [4]. 

 

3.3 Absorption ability of deposited Li-metal by carbon materials in negative electrode 

The temporal variations of 7Li NMR spectrum in the LCO-gph, NCA-gph, and LCO-hc 

cells after overcharging at 170% of SOC by 2 C are shown in Figs. 4–6. Spectra of a 

LMO-gph cell are not shown because the signal of Li metal could not be observed after 

overcharging. Figure 4 shows the first spectrum of each cell immediately after 

overcharging. Figure 5 displays the temporal variations of the spectra given in Fig. 4. 

Signals assignable to deposited Li metal were observed at around 260 ppm in three samples. 

The signals decreased over time, which clearly indicates a "relaxation effect" by carbon 

electrodes: an absorption effect of deposited Li metal on the surface of negative electrode 

into the carbon. Figures 6(a)–6(c) are temporal variations of 7Li NMR signals ascribed to Li 

metal in LCO-gph (a), NCA-gph (b), LCO-hc (c). Figures 7(a) –7(c) are time dependences 

of the intensities of Li metal signals and stored Li signals in carbon. The signal intensities 

of Li metal and Li in carbon were successfully estimated by fitting using Gaussian and 

Lorentzian curves, respectively. The intensity of the Li metal signal in LCO-gph was 76% 

of that of the Li signal in carbon just after the end of overcharge, and then it decreased 

rapidly during the first few hours. Then it gradually weakened during the subsequent 

several hours (Figs. 5(a), 6(a) and 7(a)). After 8 h, the intensity became constant at about 
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42% of the initial intensity. The signal of intercalated lithium (38 ppm) in graphite 

increased inversely proportional to the Li metal signal (Figs. 5(a), 6(a) and 7(a)). The result 

illustrates the relaxation effect of Li metal occurs by transfer of lithium into graphite 

electrode. It is particularly interesting that a slight shift of the peak of the Li metal signal 

from 260 ppm to 265 ppm with elapsed time was observed (Fig. 6(a)). Chandrashekar et al. 

reported that microstructural lithium deposited on Li metal electrode has a lower chemical 

shift [22]. The ablation of lower-shift component in Li metal suggests that the lithium metal 

having microstructure such as dendritic structure can be re-dissolved more easily and that it 

diffuses into the electrode rapidly, whereas larger Li metal particles remain on the surface 

of the electrode, even after 14.2 h. 

NCA-gph also exhibited a reduction of Li metal signal, although the decrement was 

only ca. 20%; most of the reduction occurred only in the first 17 min (Figs. 6(b) and 7(b)). 

The intensity of deposited Li metal was much less than that of LCO-gph. That fact is 

explainable by the composition of positive electrodes. Generally, LCO electrodes can react 

reversibly under 4.2 V. The reaction is described as shown below. 

     LiCoO2  ⇌ Li0.5CoO2 + 0.5Li+ + 0.5e− 

Therefore, about 50% of the lithium remains in the positive electrode even at 100% of SOC. 

The remaining lithium moves to the negative electrode by overcharging over 4.2 V, and 

thereafter precipitates on the negative electrode surface as Li metal. However, NCA and 

LMO electrodes have less lithium in their crystal structures at 100% of SOC. Ohzuku et al. 

reported [23] that the composition of LMO in a LIB cell at 4.2 V was estimated as 

Li0.27Mn2O4. The reaction is 

     LiMn2O4  ⇌ Li0.27Mn2O4 + 0.73Li+ + 0.73e−. 
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In fact, for NCA, it was also estimated that only approximately 20% of Li remains in the 

positive electrode. The peak intensity of Li stored in graphite in the NCA-gph cell also 

seems to increase gradually (Fig. 7(b)) between 4 and 8 h, as does LCO-gph. Although the 

reason remains unclear, another process of lithium intercalation is implied. 

In the 7Li NMR spectrum of LCO-hc after overcharging, clear signals of Li metal (263 

ppm), stored lithium in the hard carbon which consists of lithium in closed pores and 

between graphene layers (40–140 ppm), and lithium in electrolyte (-4 ppm) were observed 

(Fig. 4(c)). The intensity of the deposited Li metal signal was only 23% of that of the Li 

signal in carbon just after the overcharging, and 80% of the Li metal signal disappeared 

after 8.5 h (Figs. 6(c) and 7(c)). The stored lithium showed a peak at 80 ppm and a shoulder 

structure at about 100–120 ppm at first, but the shoulder structure faded over time (Figs. 

6(d) and 7(c)). That fading is explainable by progression to an equilibrium state by lithium 

diffusion in carbon. Lithium was stored densely near the carbon particle surface 

immediately after the overcharging, although lithium was sparse in the carbon particle 

center. The state must be homogenized during the subsequent 10–15 h. The smaller initial 

intensity and the greater relaxation effect on deposited Li metal than on graphite is ascribed 

to the structure of the hard carbon containing lots of closed pores. The negative electrode in 

the cell still had a margin to accommodate lithium ions with closed pores in hard carbon. In 

these experiments, we overcharged the cell by CC mode without CV. Presumably, most of 

the deposited lithium atoms were partially oxidized again and transferred into carbon, and 

stored as quasimetallic lithium. Indeed, the signal intensity of lithium stored in carbon (40–

140 ppm) increased 17% between the initial spectrum and the last spectrum after 14.7 h. 
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Fig. 4  7Li NMR spectra of LCO-gph (a), NCA-gph (b), and LCO-hc (c) cells 

after overcharging to 170 % SOC by 2 C. 

Fig. 5  Temporal variations of 7Li NMR spectra of LCO-gph (a), NCA-gph (b), 

and LCO-hc (c) cells after overcharging. 
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Fig. 6  Temporal variations of 7Li NMR signals ascribed to Li metal in LCO-gph (a), 

NCA-gph (b), LCO-hc (c), and a signal for stored lithium in hard carbon in LCO-hc (d). 
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The relaxation effect of the deposited metal Li-dendrite on negative electrode has never 

been reported in the relevant literature, although it has long been suggested. In this study, 

we directly observed the reduction of Li metal on the electrode and evaluated the rate of 

transfer of lithium into carbon using in situ NMR technique. The results are expected to be 

extremely important for discussion of the state of lithium, and for the safe design of new 

batteries. The deposition of the lithium dendrite depends not only on the composition of the 

positive electrode (lithium content) and the structure of carbon in the negative electrode, 

but also on the diffusion rate of lithium in each component of the cell. Experiments 

Fig. 7  Temporal variations of 7Li NMR signal intensities. Two signal components in 

overcharged LCO-gph spectrum (Figs. 5(a),6(a)), NCA-gph (Fig. 5(b),6(b)), and LCO-hc 

(Figs. 5(c),5(d),6(c),6(d)), are displayed in (a), (b), and (c), respectively. Li metal signals 

are denoted by filled circles (●), whereas signals for stored lithium in carbon are shown by 

filled squares (■). Open triangles and open rhombuses in Fig. 7(c) denote respectively 

signal intensities of the main peaks and shoulder structures of stored lithium in carbon 

(filled squares). 
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conducted at high/low temperature and/or high charging rates are currently proceeding 

toward the use of the battery for large devices such as electric vehicles or storage systems 

of electricity for houses or infrastructure. 

 

4. Conclusion 

In situ 7Li NMR experiments were feasible for the lithium ion cells arranged for 

practical use, i.e., the cells using the Cu and Al foils, and coated by the Al-deposited 

laminate film. Reduction in the NMR signal intensity attributable to RF shielding was 60–

65% compared to the samples without the foils and the Al-laminate film. The cells used for 

in situ NMR experiments were stable. They only slightly degraded during three months in 

the atmosphere. The magnetic susceptibility of lithium metal oxide included in the positive 

electrodes affected the position of the 7Li peaks coming from the negative electrodes and 

electrolyte. 

The 7Li NMR spectra in the LCO-gph, NCA-gph, and LCO-hc cells after overcharging 

at 170% of SOC by 2 C or 3C showed signs of deposited Li metal at around 260 ppm, 

although LMO-gph showed no such signals. The Li metal signals decreased with time 

because of absorption into the carbon. The effect occurs rapidly in a first few hours, but 

reaches an equilibrium state in 8–15 h. The slight shift of the deposited metal peak suggests 

that dendritic Li easily re-dissolves, although the larger particles remain. The hard carbon 

electrode has a larger effect of Li metal relaxation than graphite electrodes, as explained by 

the bufferable structure of the carbon: closed pores. We showed that the use of in situ NMR 

to observe actual component cells is a prominent means to evaluate the safety of various 

LIBs against overcharging. 
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