博士論文

イネの金属吸収・分配に関与する輸送体遺伝子の機能解析

平成26年3月

佐々木明正

岡山大学大学院
自然科学研究科
目次

第1章 序論
 1. はじめに 3
 2. マンガンについて 4
 3. カドミウムについて 8
 4. Nrampについて 10

第2章 OsNramp5の機能解析 14
 第1節 緒言 14
 第2節 材料と方法 14
 第3節 結果 29
 1. OsNramp5の構造解析 29
 2. OsNramp5の発現解析 30
 3. OsNramp5の組織局・細胞内局在性 32
 4. 生理学的解析 33
 5. OsNramp5の輸送活性の測定 50
 6. OsNramp5とカドミウム吸収関連遺伝子の比較 51
 第4節 考察 54

第2章 ゼニゴケ用いた新規輸送活性測定法の確立 61
 第1節 緒言 61
 第2節 材料と方法 62
 第3節 結果 68
第1章 OsNramp5の機能解剖

第2章 OsNramp5の発現解析

第3章 OsNramp3の細胞内局在

第4章 考察

参考文献
第1章 序論

1. はじめに

植物の生育に必要不可欠な元素は17種類ある。そのうち、14種類はミネラルで、主に土壤から獲得する。しかし、ミネラルの過不足で作物の生産性が低い問題土壤は世界中に広く分布し、大きく分けて酸性土壤とアルカリ性土壤がある（図1）。これらの土壤での生産性の向上は今後食糧不足を解決するカギとされている。

酸性土壤は、熱帯・亜熱帯を中心に広く分布し、世界の耕地面積の約30〜40%を占めている。酸性土壤で問題となっているミネラルストレスとして、カルシウム、マグネシウム、ホウ素及びモリブデンの欠乏が挙げられる。しかし、主に作物生育阻害因子となっているのがアルミニウム毒性及びマンガン過剰害である（植物栄養学第2版）。一方、世界の
耕地面積の約三割を占めるアルカリ性土壌では、鉄やマンガン、亜鉛などの金属が不溶性となるため、それら金属の欠乏症状を示す（植物栄養学第2版）。酸性土壌やアルカリ性土壌での問題の他に、我々の工業の発展に伴い、環境中に排出される重金属なども問題となっている。これは植物がカドミウムやヒ素などの有害なミネラルも吸収しないで、植物の生育を抑制するだけでなく、食物連鎖を介して我々の健康にも悪影響を与えるからである。

このように植物は常に何らかのミネラルストレスに曝されている。そのため、植物のミネラル輸送機構を明らかにすることは、問題土壌でも生育できる植物体の作物に貢献でき、今後の食糧不足を解決する手助けとなる。また有害ミネラルフリーの安全な作物生産にも寄与する。

本論文では、植物の必須微量元素の一つであるマンガン、また有害元素あるカドミウムについて研究を行った。

2. マンガンについて

先でも述べたように、マンガンは植物の必須微量元素の一つであり、植物がライフサイクルを全うするために重要な元素である。植物体内での役割は、光化学系IIで、光エネルギーを利用した水分解反応の触媒中心に4つのマンガン原子が存在し、酸素の発生に関与する（Rutherford and Boussac, 2004; Umena et al., 2011）。ミトコンドリア内ではMn-SODとして酸化ストレスから身を守る役割があり（Bowler et al., 1991; Alschner et al., 2002）、代謝経路に関与する酵素、リンゴ酸脱水酵素、イソクエン酸脱水酵素、アルギナーーゼ、ペルオキシダーゼの活性化作用もある。

植物の種類によって異なるが、健全な植物体の葉のマンガン濃度は乾
燥重量あたり数十～数百 mg/kg で、20 mg/kg を下回るとマンガン欠乏症状が生じる（植物栄養学 第 2 版）。マンガン欠乏は、土壌 pH が高いアルカリ性土壌で引き起こされる。欠乏症状として、葉が黄化し、光合成が阻害される。しかし、逆に高濃度のマンガンが存在すると過剰害が生じてしまう。マンガン過剰害は主に酸性土壌で引き起こされる。マンガン毒性は酸性土壌においてアルミニウム毒性に次ぐ主な作物生育阻害因子である（植物栄養学 第 2 版）。植物がマンガンを過剰に吸収すると葉身の黄化、褐色斑点が生じる。このようなマンガン毒性が生じる原因として二つのことが考えられる。1）過剰なマンガンを液胞などに隔離することができず細胞質、ミトコンドリアあるいはクロロプラストといったマンガに対する感受性な器官に蓄積することによって引き起こされ（Schaaf et al., 2002; Peiter et al., 2007）。2）アポプラスト中での Mn²⁺が酸化され Mn³⁺としてアポプラストに蓄積することでマンガン毒性が引き起こされる。Mn³⁺はタンパク質や脂質を強力に酸化する働きがあると考えられている（Fecht-Christoffers et al., 2003a, b）。マンガンを過剰に吸収することでアポプラスト中ペルオキシダーゼ（POD）活性が高まり、その結果吸収された過剰の Mn²⁺が酸化され Mn³⁺となる。マンガン過剰耐性は植物種間や品種間によって大きく異なる。同じイネ科植物であるオオムギとイネのマンガン耐性能力を比較した写真を示す（図 1-2 A）。100 µM の過剰マンガンを 1 カ月処理するとオオムギでは激しくマンガン毒性が生じるが、イネではコントロール区とあまり変わりない（図 1-2 A）。この時の地上部のマンガン濃度を測定したが、オオムギと比較して 5 倍以上も高濃度のマンガンを地上部に集積しているが、生育が阻害されない（図 1-2 B）。
このようにイネが過剰なマンガンを集積しても毒性が生じないのは、イネが生育している環境に由来していると考えられる。通常イネ（水稲）は、湛水状態で生育している。湛水状態では還元的であるため多くの二酸化マンガンが還元され、二価マンガンが増加する。イネはこの様な環境に適応するために、土壌中の多くのマンガンを吸収し、地上部に移行・分配し、植物体内で無毒化する機構が発達してきたと考えられる。しかし、それら過程に関与するトランスポーターについてあまり明らかとなっていない。シロイヌナズナでは、過剰なマンガンを液胞などの器官に隔離するトランスポーターがいくつか報告されている。液胞への輸送には陽イオン/プロトンアンチポーターであるCAX2やCAX様トランスポーターが関与し（Hirschi et al., 2000; Schaaf et al., 2002）、ゴルジ体への輸送にはCDFファミリーの
AtMTP11が重要な役割を示していると考えられている(Peiter et al., 2007)。オオムギでは、HvIRT1がマンガン吸収に関与していると報告されている(Pedas et al., 2005, 2008)。HvIRT1は、ZRT, IRT-related proteinsに属する遺伝子群の一つであり、細胞膜に局在し、鉄、亜鉛、カドミウムと同様にマンガンを輸送することが酵母の実験系より明らかとなっている(Pedas et al., 2008)。HvIRT1はマンガン、鉄欠乏によってその遺伝子発現が誘導される。その遺伝子の発現レベルは、マンガン欠乏感受性品種より、マンガン欠乏耐性品種で高く発現している(Pedas et al., 2008)。このことから、HvIRT1がマンガンの吸収に関与していると考えられている。しかし、HvIRT1の発現抑制株などを用いた実験がされていないため、植物体内での真の役割について今後さらに解明していく必要があると考えられる。最近、イネでも少しずつマンガントランスポーターについて明らかとなってきている。金属と植物由来のキレートの錯体を輸送することで知られているYSL(Yellow Stripe-like)ファミリーに属するOsYSL2が、植物体内でのマンガン移行に関与している事が報告された(Koike et al., 2004; Ishimaru et al., 2010)。OsYSL2は根や葉の縁部に局在し、Mn-NA錯体を輸送する(Koike et al., 2004)。OsYSL2発現抑制株では、玄米中のマンガン濃度が低下する事から体内でのマンガンの移行が低下していることが示唆された(Ishimaru et al., 2010)。さらに、OsYSL2と同じYSLメンバーに属する、OsYSL6が過剰なマンガンを体内で無毒化することに関与していることが報告されている(Sasaki et al., 2011)。OsYSL6はMn-NA錯体を輸送するトランスポーターである。この遺伝子が破壊されると、過剰マンガン処理により野生株と比較して著しく生育が阻害され、また破壊株の下位葉で激しいネクローシスがおこる。地上部・根全体のマンガン濃度は野生株と破壊株との間に差が見られない。しかし、
アポプラスト液とシンプラスト液のマンガン濃度を測定した結果、アポプラスト液では野生株と比較して破壊株でマンガン濃度が高くなったが、シンプラスト液では逆にマンガン濃度が低くなる。このことから、破壊株ではシンプラスト輸送ができなくなりアポプラスト中に高濃度のマンガンが蓄積することで、激しい酸化ストレスが生じたためマンガン毒性が生じたと考えられる。さらに最近、CDFファミリーに属するOsMTP8.1がマンガンの無毒化にも関与することが報告された（Chen et al., 2013）。OsMTP8.1は液胞膜に局在し、その遺伝子は主に地上部で発現している。この遺伝子を破壊すると地上部、根のマンガン濃度が野生株と比較して減少するが、マンガン過剰処理により野生株と比較して破壊株のマンガン毒性が激しく生じる。このことから、OsMTP8.1により過剰なマンガンを液胞に隔離することで無毒化していることが考えられる。しかし、マンガン集積植物であるイネには、未同定のマンガントランスポーターが多く存在すると考えられる。例えば、イネがどのようなトランスポーターを介してマンガンを吸収し、分配するか明らかでない点が多く存在する。

3. カドミウムについて

カドミウムは、植物の有害元素である。また、カドミウムで汚染された穀物を我々人間が食べることで次第に人体に蓄積され健康に悪影響を及ぼす。日本でのカドミウム汚染による人体への被害として、1910・70年代に富山県の神通川下流域で発生したイタイイタイ病が挙げられる。鉱業排水に含まれるカドミウムが神通川に流れ、その川の水を農業用の灌漑用水として利用していたため、カドミウム汚染した作物を食べ続けたことにより多大な被害が生じた。我々が摂取するカドミウムの約1/3はコメに由来する（厚生労働省 http://www.mhlw.go.jp/houdou/2003/12/h1209-1c.html#01）。
国際的には精米中のカドミウムの安全基準値は0.4 ppm以下（農林水産省http://www.maff.go.jp/j/syouan/nouan/kome/k_cd/kizyunti/）とされているが、しばしばこの基準値を超えたコメが流出している。したがってコメ中のカドミウム濃度を低下させることは健康上非常に重要である。

イネがどのようにしてコメ中にカドミウムを蓄積するかについて、その分子機構がここ数年で飛躍的に前進した。まず細胞内に吸収されたカドミウムは、液胞膜に局在するOsHMA3によって隔離することで地上部への集積を抑制することが報告された（Ueno et al., 2010）。OsHMA3は、世界各地のイネから選抜されたカドミウム高集積品種と低集積品種の解析により同定され、この遺伝子の過剰発現体をカドミウム汚染土壌で栽培しても、野生株と比較して劇的に玄米中のカドミウム濃度が減少する（Ueno et al., 2010）。OsHMA3により液胞に隔離されなかったカドミウムは、OsHMA3と同じメンバーに属するOsHMA2により根から地上部へカドミウムが輸送される（Satoh-Nagasawa et al., 2012; Takahashi et al., 2012; Yamaji et al., 2013）。OsHMA2は、根の内鞘細胞に局在し（Yamaji et al., 2013）、この遺伝子を破壊すると、根のカドミウム濃度が増加し、地上部のカドミウム濃度は減少する。さらに、生殖成長期ではOsHMA2が節を介して穂へカドミウムを輸送する役割があることが明らかとなった（Yamaji et al., 2013）。節でのOsHMA2の局在は肥大維管束と分散維管束の節部に局在し、破壊株では玄米中のカドミウム濃度が大幅に減少する。さらに、節を介したカドミウムの輸送に関与するOsLCT1が同定された（Uraguchi et al., 2011）。OsLCT1は肥大維管束、分散維管束で発現が高いことがin situ hybridizationにより明らかとなり、OsLCT1発現抑制株では、節管液のカドミウム濃度が減少することにより玄米中のカドミウム濃度が減少する。このことから、OsLCT1は、節でのカドミウムの維管束間移行
に関与することが示唆された。このようにイネではカドミウム輸送に関与するトランスポーターがいくつか報告されているが、根圏から根に取り込むトランスポーターは未だ同定されていない。この第1ステップに関与するトランスポーターを同定することは、根からコメまでの一連のカドミウム輸送ステップが明らかになり、さらにはカドミウムが集積しないイネの作出に繋がるため重要な課題である。

3. Nramp familyについて

植物のミネラルを輸送するために、重要なトランスポーターとしてNrampファミリーが挙げられる。Nrampとは、Natural Resistance-Associated Macrophage Proteinsの略で細菌、酵母、藻類、植物や動物で広く存在する輸送体である（Nevo and Nelson, 2006）。タンパク質配列も非常に高い相同性を示し、最初に同定されたマクロファージのファゴソーム膜に局在するNramp1（Vidal et al., 1993）との相同性は、酵母（Smf2）で28%、植物（OsNramp1）で40%、ショウジョウバエ（Mvl）で54.9%あり、広く保存された輸送体であることがわかる（Cellier et al. 1995）。Nrampはプロトン共役輸送によりMn$^{2+}$、Zn$^{2+}$、Cu$^{2+}$、Fe$^{2+}$、Cd$^{2+}$、Ni$^{2+}$、Co$^{2+}$、Al$^{3+}$を輸送できることが現在までに報告されている（Nevo and Nelson, 2006; Colangelo and Guerinot, 2006; Xia et al., 2010）。

3-2.植物におけるNramp遺伝子の役割について

シロイヌナズナ（Arabidopsis thaliana）とイネ（Oryza sativa）のゲノム上には6つと7つそれぞれ保存されており、系統樹解析により大きく分けて2つのグループに分類される（図1-2）。

図1-2 N r a m pの系統樹

イネとシロイヌナズナで現在までに報告されている N r a m p遺伝子のアミノ酸配列を基に Cl u s t a l Wにて作成した。

現在までにいくつかの N r a m p遺伝子について機能解析が行われた。シロイヌナズナでは、その多くが機能解析なされ、A t N r a m p 1, 3, 4がマンガン、鉄、カドミウム、A t N r a m p 6がカドミウムを輸送することが酵母の実験系で報告されている(C u r i e et al., 2000; T h o m i n e et al., 2000, 2003; L a n q u a r et al., 2005; C a i l l i a t t e et al., 2009)。A t N r a m p 1は細胞膜に局在することがA t N r a m p 1とG F Pを融合させた形質転換体で明らかとなり、この遺伝子を破壊すると低マンガン条件でマンガンの吸収量が減少するため、生育が著しく阻害される。そのため、この遺伝子の機能は高親和性のマンガントラスポーターであることが明らかとなった(C a i l l i a t t e et al., 2010)。

A t N r a m p 3, A t N r a m p 4は液胞膜に局在し(T h o m i n e et al., 2000; L a n q u a r et al., 2005), それらの輸送体は、鉄を液胞から排出することに関与していることが示唆され、それら遺伝子の二重変異体では鉄欠乏時に液胞から鉄を排出できないため、激しい鉄欠乏症状が生じる(L a n q u a r et al., 2005)。また、A t N r a m p 3, A t N r a m p 4はマンガンの恒常性維持にも機
能していることが明らかとなった（Lanquar et al., 2010）。
AtNramp6は、細胞内の金属輸送に関与し、*AtNramp6*過剰発現体はカドミウムに対して感受性になるが、植物体内的カドミウム濃度に差が生じない。そのため、細胞内のカドミウムの分配・利用に関与していることが示唆された（Cailliatte et al., 2009）。シロイヌナズナとは対照的にイネの*Nramp*遺伝子の機能解析された報告は2例しかない。*OsNramp1*は細胞膜に局在し、鉄とカドミウムを輸送できることができ、酵母の実験系で明らかとなっている（Curie et al., 2000; Takahashi et al., 2011）。*OsNramp1*過剰発現体では、根のカドミウム濃度が減少するが、葉のカドミウム濃度が増加する。しかし鉄濃度はほとんど変化しなかった（Takahashi et al., 2011）。このことから、植物体内でのカドミウム輸送に関与することが考えられるが、鉄への*OsNramp1*の関与については依然と明らかとなっていない。また、最近*OsNramp1*はヒ素の集積にも関与することが報告されている（Tiwari et al., 2013）。一方、我々のグループが機能解析を行った*OsNrat1*（*OsNramp4*）は、Al**3+**を輸送することができる初めての輸送体の発見となった。*OsNrat1*は他の*Nramp*メンバーとの相異性が低く、現在までに報告されている*Nramp*メンバーは全て2価金属イオンを輸送するが、*OsNrat1*は2価の亜鉛、鉄、マンガンを輸送することができない（Xia et al., 2010, 2011）。この遺伝子を破壊すると、アルミニウムに対して感受性が高くなる。
さらに、シロイヌナズナやイネとは異なる植物種からも*Nramp*メンバーが同定され、機能解析が行われた。亜鉛とカドミウムの集積植物であるグンバイナズナ（*Thlaspi caerulescens*）から、*TcNramp3*と*TcNramp4*が同定された。それらの輸送基質や細胞内局在はシロイヌナズナの*AtNramp3*と*AtNramp4*と同様にマンガンと鉄を輸送することができ、液胞膜に局在する（Oomen et al., 2009）。そのため、植物体内での機能もシロイヌナズナと
同様の役割を果たしていることが考えられる。次にニッケル集積植物であるタカネグンバイ（Thlaspi japonicum）からTjNramp4が同定され、ニッケルを輸送できるが亜鉛、マンガン、カドミウムは輸送できないことが報告されている（Mizuno et al., 2005）。さらに、大豆からGmDMT1が同定されマンガン、鉄を輸送することができる（Kaiser et al., 2003）。トマトからLeNramp1、LeNramp3が同定されマンガンを輸送できることが酵母の実験系より明らかとなっている（Bereczky et al., 2003）。このように様々な植 物種から同定されたNrampメンバーは、様々な金属の輸送を担うことがわ かってきた。現在までに機能解析が行われたNrampメンバーは輸送基質の 同定、細胞内居在、遺伝子発現解析について多く報告されているが、植物 体内部における役割について明らかとなっていることが少ない。さらに、イ ネに関しては未だ機能解析が行われていないNrampメンバーが多く存在する ため、本研究ではこれらのうちOsNramp5とOsNramp3の機能解析を行った。
第2章 OsNramp5の機能解析

第1節 緒言

序論でも述べたように、Nrampメンバーで機能解析が行われた遺伝子の多くが酵母の実験系を用いた輸送基質の同定や遺伝子発現解析であり、植物体内での実際の役割が明らかとなっていない場合が多い。また、イネのゲノム上に存在するNrampメンバー7つの内、機能が2つしか明らかとなっていない。そこで本章では、未同定であるOsNramp5について機能解析を行った。遺伝子発現解析、組織局在性、OsNramp5破壊株を用いた生理学的解析を行うことで、植物体内でのOsNramp5の役割について解明する。

第2節 材料と方法

(1) OsNramp5の構造解析
データベース解析にはThe Rice Annotation Project Database(http://rapdb.dna.affrc.go.jp/)及びClassification and Secondary Structure Prediction of Membrane Proteins(http://bp.nuap.nagoya-u.ac.jp/sosui/)で検索した。

(2) OsNramp5破壊株の取得

OsNramp5破壊株は、中国のRice Mutant Database(http://rmd.ncpgr.cn/)から分譲していただいた。また、野生株としてZhonghua 11を用いた。
(3) イネの栽培方法

イネ種子を水に浸し、遮光して30℃で発芽させた。その後、0.5 mM塩化カルシウム溶液が入った1.0Lのプラスチックボトルに浮かばせたネットに載せた。溶液は2日毎に交換した。1週間後、苗を1/2木村B溶液（pH5.6）（表1-1）が入った3.5Lボットに移した。培養液は2日毎に交換した。

<table>
<thead>
<tr>
<th>多量元素</th>
<th>mM</th>
<th>微量元素</th>
<th>µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NH₄)₂SO₄</td>
<td>0.18</td>
<td>H₃BO₃</td>
<td>3.0</td>
</tr>
<tr>
<td>KNO₃</td>
<td>0.09</td>
<td>MnCl₂</td>
<td>0.5</td>
</tr>
<tr>
<td>Ca(NO₃)₂</td>
<td>0.18</td>
<td>CuSO₄</td>
<td>0.2</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>0.28</td>
<td>(NH₄)₆Mo₇O₂₄</td>
<td>1.0</td>
</tr>
<tr>
<td>KH₄PO₄</td>
<td>0.09</td>
<td>ZnSO₄</td>
<td>0.4</td>
</tr>
</tbody>
</table>

作成した培養液は、1N水酸化ナトリウムを用いてpH5.6に調整した。鉄は、実験条件に合わせて、Fe·EDTAあるいはFeSO₄の形態で加えた。

(4) 破壊株のホモラインの選抜

破壊株のホモラインを選抜するために分譲した18個の植物個体からDNAを抽出し、PCRによりホモ・ヘテロを判別した。DNAの抽出方法及びPCRで使用したプライマーは下記の通りである。
DNA抽出

1. 葉にDNA抽出バッファー（表1-2）を600μl加え、ホモジナイザーを用いて粉砕する。

2. 粉砕後、65℃で60分間インキュベートする。15分に1度攪拌する。

3. クロロホルム:イソアミルアルコールを600μl加え、vortexする。

4. 14,000rpmで10分間遠心し、上澄を新しいチューブに移す。

5. イソプロパノールを等量加え、よく混ぜた後、-20℃で30分間インキュベートする。

6. 4℃, 14,000rpmで10分間遠心し、イソプロパノールを捨てる。

7. 70%エタノールでペレットをwashして、14,000rpmで10分間遠心する。

8. 70%エタノールを捨て、ペレットを乾燥させる。

9. 100μlの水を加え、ペレットを溶かす。

AZ·F
GAGATTAATCACGTTATGCG

AZ·R
TTTAACGGGTATTGACTGAT

NTLB5·2
AAGCTCGCATGTTATTAAG

(5)RNAの抽出

RNAの抽出のためサンプルを液体窒素で凍結させた後、ホモジナイザーまたは乳棒でサンプルを粉砕した。RNAの抽出にはRNasy Plant Mini Kit（QIAGEN）を使用して、以下のプロトコールに従いRNA抽出を行った。
・RNA抽出方法
1. 粉砕したサンプルに、1/100 量のメルカプトエタノールを含む Buffer RLT を 450 µl 加え、更に粉砕。
2. QIAshredder spin column に入れ、15,000 rpm で 5 分間遠心。
3. カラムを通じた液を新しい 1.5 ml チューブに移す。
4. 0.5 倍量の 100% エタノールを加え、ピペッティングする。
5. 4 の液を RNeasy mini column に入れ、10,000 rpm で 15 秒間遠心。
6. カラムを通じた液を捨て、700 µl の RW1 Buffer を加え 10,000 rpm で 15 秒間遠心。
7. カラムを通じた液を捨て、500 µl の RPE Buffer を加え 10,000 rpm で 15 秒間遠心。
8. カラムを通じた液を捨て、500 µl の RPE Buffer を加え 10,000 rpm で 2 分間遠心。
9. 新しい 1.5 ml チューブにカラムを移し、40 µl の RNase-free water を加え 15,000 rpm で 1 分間遠心。

抽出後 RNA 濃度は分光光度計 (ND-1000, Nano Drop) により測定した。

(6)cDNA の合成

cDNA を合成する前に、DNase (Invitrogen) 処理を行い、SuperscriptTM First-Strand System RT-PCR (Invitrogen) を用いて cDNA を合成した。合成後のサンプルは RNase H (Takara) 処理を行い、RNA を分解し、超純水にて 5 もしくは 15 倍希釈した。プロトコールは下記の通りである。
・DNase I 処理
1. 以下の試薬を混合する。

<table>
<thead>
<tr>
<th>試薬名</th>
<th>量（単位）</th>
</tr>
</thead>
<tbody>
<tr>
<td>テンプレート RNA</td>
<td>X（0.5 µg）</td>
</tr>
<tr>
<td>10×DNase buffer</td>
<td>0.5</td>
</tr>
<tr>
<td>DNase I</td>
<td>0.5</td>
</tr>
<tr>
<td>RNA free water</td>
<td>3×X</td>
</tr>
<tr>
<td>Total</td>
<td>4 µL</td>
</tr>
</tbody>
</table>

2. 室温で15分置く。
3. 付属の25 mM EDTA溶液を1 µL加える。
4. 65℃で10分処理する。

・cDNA合成方法
1. DNase I処理したサンプルにOligo(dT)primerを0.5 µL、10 mM dNTP mixを0.5 µL加える。
2. 65℃で5分処理。
3. 以下の逆転写反応液を調整し、加えた。

<table>
<thead>
<tr>
<th>試薬名</th>
<th>量（単位）</th>
</tr>
</thead>
<tbody>
<tr>
<td>5×First strand buffer</td>
<td>2.0</td>
</tr>
<tr>
<td>0.1M DTT</td>
<td>1.0</td>
</tr>
<tr>
<td>RNase OUT</td>
<td>0.5</td>
</tr>
<tr>
<td>SS II RT</td>
<td>0.125</td>
</tr>
<tr>
<td>RNA free water</td>
<td>0.375</td>
</tr>
<tr>
<td>Total</td>
<td>4.0 µL</td>
</tr>
</tbody>
</table>

4. 42℃で50分処理。
5. 70℃で15分処理。
RNase処理

合成したcDNAに2Uに希釈したRNase Hを1μL加え、37℃で20分間インキュベートした後、RNA free waterで1/5または1/15希釈した。cDNAは、-20℃で保存。

(7)破壊株のOsNramp5の発現確認

野生株及び破壊株のOsNramp5の発現を確認するために、1/2木村B溶液で1週間育成したイネの根からRNAを抽出した。抽出したRNAからcDNAを合成し、発現解析用のサンプルとした。合成したcDNAをテンプレートとして、Ex·Taq(TAKARA)を用いてRT-PCRを行い野生型と破壊株のOsNramp5の発現の有無を調べた。使用したOsNramp5プライマー配列は下記の通りである。

OsNramp5発現確認用プライマー

5’·CAGCAGCAGTAAGAGCAAGATG·3’
5’·GTGCTCAGGAAGTACATGTTGAT·3’

(8)OsNramp5の発現部位の確認

OsNramp5の発現部位を調べるために、圃場で栽培した生育時期の異なる日本晴から、根、基部節、下位の葉身、下位の葉鞘、止葉、止葉の葉鞘、節Ⅲ、節Ⅱ、節Ⅰ、節間Ⅰ、穂軸、穂、穂をサンプリングし、RNAを抽出した。抽出したRNAからcDNAを合成し、発現解析用のサンプルとした。
(9) OsNramp5 の金属応答性の確認

金属欠乏応答性を調べるために7日間、鉄、マンガン、亜鉛、銅欠乏処理した日本晴の地上部と根をサンプリングし、RNAを抽出した。抽出したRNAからcDNAを合成し、発現解析用のサンプルとした。

(10) 定量的リアルタイム RT-PCR

(8),(9)で調整した発現解析用サンプルは、SsoFast EvaGreen Supermix (Bio Rad)を使用して、CFX384 (Bio-Rad)で発現解析を行った。内部標準として、OsHistone H3を使用した。定量的リアルタイム RT-PCRの反応液組成、使用したプライマーは下記の通りである。OsNramp5プライマーは上記で示したものを使用した。

OsHistone H3プライマー配列

5’-AGTTTGGTCTGCTCTCGATTTTG-3’
5’-TCAACAAGTTGACCACGTAC-3’

・反応液組成

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SsoFast EvaGreen Supermix</td>
<td>2.5</td>
</tr>
<tr>
<td>Reverse primer</td>
<td>0.3</td>
</tr>
<tr>
<td>Forward primer</td>
<td>0.3</td>
</tr>
<tr>
<td>cDNA</td>
<td>2.0</td>
</tr>
<tr>
<td>H2O</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>5 μL</td>
</tr>
</tbody>
</table>
抗体染色によるOsNramp5の組織局在の確認

OsNramp5のアミノ酸配列MEIERESSERGSISWRASA-Cに特異的な一次抗体をウサギの血清から作った。4%パラホルムアルデヒドと50 mMカルコジル酸を含む60 mMスクロースバッファー(pH 7.5)で2時間処理し野生株の根を固定した。PBSバッファー(PBS; 10 mM PBS, pH 7.4, 138 mM NaCl, 2.7 mM KCl)で3回洗浄した後、5%アガールで包埋した。サンプルを80 µmの厚さにマイクロスライサー(ZERO 1; Dosaka EM)で切り、切片にした。0.1%ペクトリアーゼY-23(Seishin)を含むPBSバッファーで室温で2時間処理した。2時間後、PBSバッファーで3回洗浄した。ブロッキングを5%BSAで行った後、1/100希釈した抗OsNramp5ウサギ抗体を室温で一晩反応させた。反応後、PBSバッファーで5回洗浄した。その後、5%BSAを含むPBSバッファーを加えた後、二次抗体(Alexa Fluor 555 goat anti-rabbit IgG; Molecular Probes)をさらに加え2時間反応させた。その後、5回PBSバッファーで洗浄し50%グリセロールを含むPBSをのせ、共焦点レーザー顕微鏡(LSM700; Carl Zeiss)で観察した。

DAPI(4′,6-diamidino-2-phenylindole)染色は、最後の洗浄過程に適量加えることで二重染色を行った。

(11)一過的発現用ベクターの構築

GFPとの融合遺伝子を一過的に発現させるために、まず、pGEM T·easyベクター(Promega)へのサブクローニングを行った。cDNAをテンプレートに以下のプライマーを用いてPCR反応を行った後TAクローニングした。
OsNrramp5·GFP用プライマー配列

5' - TTCCGGAAATGGGATTGAGAGAGAGAGCA - 3'

5' - TTCCGGACTACCTTGAGAGCGGGATGTC - 3'

TAクローニング後、DNAシーケンサーによって塩基を確認後、エラーのないプラスミドを35S・sGFP・NOSにT4Ligase(Promega)を用いて導入した。

(13)タマネギへの一過発現

一過発現用ベクターのプラスミドを用いてバーティクルガン法でタマネギの表皮細胞に導入した。DNAを金粒子へのコーティングを下記の方法で行い、バーティクルガン(PDS·1000/He, BioRad)を使いタマネギの鱗片の細胞に打ち込んだ。打ち込んだサンプルは遮光して一晩インキュベートさせ、共焦点レーザー顕微鏡(LSM700; CarlZeiss)で観察を行った。

金粒子のコーティング法

1. 1 µMの金粒子8 mgを1.5 mlチューブに入れて、100%エタノール400 µl加えた。
2. 超音波洗浄機を使って金粒子を分散させ、100 µlずつ分注し遠心した。
3. 上澄みを捨て100%エタノール400 µl加えた。
4. DNA溶液80 µl(約3 µg)加えた。
5. 3 M酢酸ナトリウムを8 µl加え、15分攪拌させた。
6. 攪拌後、遠心し上澄みを捨て100%エタノール400 µl加えた。
7. もう一度15分攪拌させた。
(14) 水耕栽培での野生株と破壊株の生育及び金属濃度の比較

表1-1で記した1/2木村B溶液（FeSO₄:10μM）に100nM CdSO₄溶液を加え21日間処理した。培養液は2日毎交換した。21日後、地上部と根を切り分けた。

(15) 土耕栽培での野生株と破壊株の生育及び金属濃度の比較

資源植物科学研究所の圃場の土を3.5Lボットに入れて、ケイ酸肥料50g、化成肥料（N·P·K, 14·14·14％）7gを加え、隔離温室にて穂を実るまで生育させた。穂が実った後、収量調査を行った。

(16) OsNramp5発現抑制株の作製

RNAi法を用いてOsNramp5発現抑制株を作製した。RNAi用ベクターの作製は、Gateway(invitrogen)クローニングテクノロジーを用いて作製した。

日本晴のcDNAをテンプレートにPCRにより200bpの断片を増幅した。使用したプライマーは下記の通りである。増幅させた断片を、Gateway BP ClonaseⅡEnzymeMix(invitrogen)によりエントリーベクターであるpDONRに導入し、DNAシーケンサーによって塩基を確認した。その後、Gateway LR ClonaseⅡEnzymeMix(invitrogen)により、pANDAベクター(Miki and Shimamoto, 2004)に導入し、アグロバクテリウム法(strain EHA101)を用いて日本晴に形質転換を行った。

OsNramp5·RNAi用プライマー配列

5'·AAAAAGCAGGCTGTAATACCAACCATTCTCCTTCT·3'

5'·AGAAAGCTGGTTAGCAGCTGATCATCTGCCTCG·3'
(17) 水耕栽培での OsNramp5 発現抑制株と日本晴の生育及び金属濃度の比較

表1-1で記した1/2木村B溶液(Fe濃度:10 µM)で28日間生育させた。培養液は、2日毎に交換した。28日後、地上部をサンプリングし70℃の乾熱機で2日間以上乾燥させた後、発現抑制株と日本晴の地上部の乾物重を比較した。

(18) 土耕栽培での OsNramp5 発現抑制株と日本晴の金属濃度の比較

資源植物科学研究所の圃場の土を3.5Lボットに入れ、ケイ酸肥料50g、化成肥料7gを加え、隔離温室にて穂が実るまで生育させた。

(19) 異なるマンガノ濃度条件での生育及び金属濃度の比較

表1-1で記した1/2木村B溶液から、マンガノを除いた培養液を作製した。異なるマンガノ濃度条件(0.1, 0.5, 5 µM)で21日間栽培した。鉄(FeSO4)濃度は2 µM処理した。21日後、地上部と根をサンプリングし70℃の乾熱機で2日間以上乾燥させた後、地上部、根の乾物重を測定した。

(20) 異なる鉄濃度条件での生育及び金属濃度の比較

表1-1で記した1/2木村B溶液で異なる鉄濃度条件(FeSO4として0.1, 2, 10 µM)で21日間栽培した。マンガノ濃度は5 µM処理した。21日後、地上部と根をサンプリングし70℃の乾熱機で2日間以上乾燥させた後、地上部、根の乾物重を測定した。

(21) マンガノ、カドミウム短期吸収実験

野生株と破壊株の根におけるマンガノ、カドミウム吸収の違いを解析す
するために、30分間の短期吸収実験を行った。表1-1で記した1/2木村B溶液で21日間栽培した野生株と破壊株を用いて短期吸収実験を行った。処理したマンガン濃度は0、0.1、0.5、5、10、50、100μMで、カドミウム濃度は0、0.1、0.5、1、2、5μMであった。代謝依存的な吸収を見るために、それぞれ25℃と4℃で実験を行った。処理30分後、根をサンプリングして、金属濃度の測定に供試した。マンガンの短期吸収実験は、野生株と破壊株を1週間マンガンを除いた培養液で栽培した植物体を使用した。

(22)金属濃度の測定方法
金属濃度測定用のサンプルは、70℃の乾熱機で2日間以上乾燥させた後、乾物重を測定した。測定後、硝酸(60%)によって分解し、超純水で20mlにメッシアップした。分解液中の金属濃度は、原子吸光光度計(Z-2000; Hitachi, Japan)またはICP-MS (7700X; Agilent Technologies)によ り測定した。これらの実験は全て3連で行った。

(23)酵母発現用ベクターの構築
酵母を用いた相補性試験を行うために、遺伝子をpYES2ベクター(invitrogen)へ導入した。pYES2ベクターはガラクトース誘導性プロモーター(GAL1)を持ち、この下流に遺伝子をつなぐことで、遺伝子発現誘導をガラクトースによって制御できる。まず、pGEM T-easyベクター(Promega)へのサブクローニングを行った。cDNAをテンプレートに以下のプライマーを用いてPCR反応を行った後TAクローニングを行い、DNAシーケンサーによって塩基を確認後、酵母発現ベクターpYES2ベクターにT4 Ligaseを用いて導入した。
OsNramp5 酵母発現
用プライマー配列
5'-GAATTCAAAATGGAGATTGAGAGAGAGAGCA-3'
5'-CTCGAGCTACCTGGGAGCGGGATGTCG-3'

(24) 酵母への形質転換
(23) で作製した酵母発現用ベクターを S.c.EasyComp Transformation Kit (invitrogen) を用いて、マンガン吸収酵母変異体 Δsmf1 株に形質転換を下記の方法により行った。また、コントロールとして空ベクターを Δsmf1 株に形質転換した。

1. 1 µg の酵母発現用ベクターをコンピテントセルに加える。
2. 500 µl の Solution Ⅲ を加え、混ぜる。
3. 30℃で 1 時間インキュベートする。15 分おきに溶液を混ぜる。
4. グルコース入り Sc(-Ura)プレートに菌液をまき、30℃で 4 日間インキュベート。
5. コロニーが生えた後、PCR により導入遺伝子の有無を調べた。

Sc(-Ura)培地組成

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast nitrogen base (w/o amino acid)</td>
<td>0.67%</td>
</tr>
<tr>
<td>Drop out mix (-Ura)</td>
<td>2%</td>
</tr>
<tr>
<td>Glucose</td>
<td>2%</td>
</tr>
<tr>
<td>Agar</td>
<td>2%</td>
</tr>
</tbody>
</table>
マンガン吸収欠損酵母変異体を用いた相補性試験

相補性試験を行うために下記で示した方法で、Metal free 培地にスポットアッセイを行った。Metal free 培地に含まれる僅かなマンガンをキレートするために EGTA を加えた。スポットアッセイを行う前に、予め EGTA を加えた培地を作製した。

1. Sc (・ウラシル、+ グルコース) 液体培地で一晩、30℃で振とう培養。
2. OD600 値が 1 以上になった酵母を 2 mL チューブに移す。
3. 800 rpm、5 分間遠心後、上澄みを捨てる。
4. 滅菌水を入れ、800 rpm、5 分間遠心後、上澄みを捨てる。
5. 4 を 3 回繰り返す。
6. OD600 値を 0.2 に合わせる。
7. OD600 値 0.2 に合わせた酵母をさらに 1/10 ずつの希釈系列を作成する (0.02, 0.002, 0.0002, 0.00002)。
8. それぞれを 10 µl ずつ 2% ガラクトースを含む培地にスポットする。
9. 30℃で数日培養し、スキャナーで画像を取り込む。

カドミウム吸収関連遺伝子変異体の発現解析

カドミウム吸収に関与するとされている OsIRT1, OsNramp1, OsNramp5 変異体をそれぞれ取得して、発現解析に用いた。野生株として OsIRT1 変異体が Dongjin, OsNramp1 変異体が日本晴、OsNramp5 変異体が Zhonghua 11 を用いた。鉄を除いた 1/2 木村 B 培養液に鉄濃度 (FeSO₄): 0.1 または 10 µM、カドミウム濃度 :0.2 µM 加え 2 週間処理したのち、根をサンプリングし RNA 抽出用のサンプルとした。RNA 抽出方
法、cDNA合成方法、遺伝子解析方法は前述の通りである。使用したプライマーは下記に示す。遺伝子発現解析は、3種類共に野生株が異なるためそれぞれの野生株と比較した。

OsIRT1

5′-CATGTCCGTCATGGCCAAGT-3′
5′-TGTCCTCGATGATCGAG-3′

OsNramp1

5′-GTTGTGGTGCGCTATTTG-3′
5′-AGCCCTGGGAATATACCTTTGA-3′

(27) カドミウム吸収関連遺伝子変異体を用いたカドミウム蓄積の比較

OsIRT1、OsNramp1、OsNramp5変異体を用いてカドミウムの蓄積量を比較した。鉄を除いた1/2木村培養液に鉄がFeSO₄として0.1または10μM、カドミウムを0.2μM加え2週間処理した。2週間後、地上部、根をサンプリングした。金属濃度の測定方法は前述の通りである。
第3節 結果

1. OsNramp5 の構造解析

OsNramp5 の構造を解析した結果、OsNramp5 は538アミノ酸からなるタンパク質をコードし、イントロンが12、エキソンが13カ所存在していた（図2-1A）。SOSUI を用いて解析した結果、10個の膜貫通ドメインも持つ膜タンパク質であった（図2-1B）。

図2-1. OsNramp5 の構造
(A) OsNramp5 遺伝子の構造。RAP-DB での予測図。 (B) SOSUI プログラムによる OsNramp5 の膜貫通ドメインの予想図。緑色で示した部分が予測された膜貫通ドメインである。
2. OsNramp5 の発現解析

OsNramp5 の発現パターンを調べるために、異なる生育時期における様々な組織をサンプリングした。その結果、OsNramp5 はいずれの生育時期においても主に根で発現していた（図 2-2 A）。さらに根の部位特異的発現を調べた結果、先端側と比較して約 20 倍基部側で高く発現した（図 2-2 B）。また、金属欠乏による OsNramp5 の応答性を調べたが、OsNramp5 は亜鉛、鉄、マンガン、銅欠乏に応答せず恒常的に根で発現していた（図 2-2 C）。
図 2-2. *OsNramp5* 発現パターン

(A) 生育時期の異なる様々な組織を用いた遺伝子発現。圃場で栽培した日本晴からサンプリングした。(B) *OsNramp5* の根の部位特異的発現。サンプルは根の先端 (0-1cm) と基部 (1-2cm) に切り分けた。(C) *OsNramp5* の金属欠乏応答性。亜鉛、鉄、マンガン、銅を除いた培養液で 1 週間処理し、サンプリングした。遺伝子の発現はreal-time RT-PCRで定量した。内部標準としてHistone H3を用いた。開花期の根(A)、根の先端(B)、通常条件の根(C)を基準に相対発現を示した。アスタリスクはStudent's t-testで統計処理した有意値 (**: P < 0.01)。（n=3）
3. OsNramp5 の組織局・細胞内局在性

OsNramp5 に対して特異的抗体を作製し根で抗体染色を行った。野生株の根では内皮、外皮細胞にシグナルが検出された（図 2・3 A）。興味深いことに内皮、外皮細胞共に遠心側に極性を持って局在した（図 2・3 A）。ネガティブコントロールである破壊株ではシグナルが検出されなかった（図 2・3 B）。さらに、DAPI 染色を行った結果、核の外側にシグナルが検出され細胞膜に局在していると推測された（図 2・3 C, D）。さらにタマネギの表皮細胞に一過的に発現させて、細胞内局在を調べた結果、GFP 単独では細胞質や核に局在したが（図 2・3 F）、OsNramp5・GFP は細胞膜に局在した（図 2・3 E）。

図 2・3. OsNramp5 の組織・細胞内局在性
野生株 (A, C, D) と破壊株 (B)の根での抗体染色の結果。(C, D) DAPI を用いた 2 重染色の結果。ex は外皮、en は内皮細胞である。赤色は OsNramp5 を示し、シアンブルーは細胞壁の自家蛍光である。矢印は DAPI により染まった核を示している。Bar=20 µm。（E, F）タマネギの表皮細胞での OsNramp5・GFP (E) と GFP (F) の細胞内局在。Bar=100 µm。
4. OsNramp5の生理学的解析

4-1. OsNramp5破壊株の取得とホモラインの選抜

破壊株は12番目のイントロンにT-DNAが挿入されている（図2-4A）。破壊株のDNAを抽出し、PCRにてホモラインを選抜した。その後、根からRNAを抽出し、OsNramp5の発現を確認した（図2-4B）。OsNramp5破壊株では、OsNramp5が発現していないことを確認した（図2-4B）。

A

B

図2-4. OsNramp5遺伝子破壊株
(A) OsNramp5遺伝子におけるT-DNA挿入位置。T-DNA挿入位置は赤で示した部位である。（B）野生株と破壊株のOsNramp5遺伝子の発現結果。それぞれの根からRNA抽出し、cDNA合成後、PCRにより確認した。
4・2. 野生株と破壊株の生育比較

先でも述べたとおり、N*ampa ファミリーは様々な金属を輸送することが報告されている。そのため、まず野生株と破壊株を通常条件で水耕栽培し生育を比較した。その結果、イネの生育には十分な条件であるのにも関わらず、野生株と比較して破壊株の生育が著しく阻害された（図 2・5A）。地上部と根の乾燥重量を測定したが、破壊株の地上部、根共に野生株と比較して半分以下の生育量であった（図 2・5B,C）。さらに破壊株の新葉では、クロロシスが生じていたためクロロフィル含量を測定した。その結果、野生株の新葉と比べ、破壊株のクロロフィル含量は有意に減少していた（図 2・5D）。このことから、OsNampa 遺伝子を欠損させることで、植物の生育に負の影響を与える事が明らかとなった。
図 2・5. 野生株と破壊株の生育比較
(A) 野生株と破壊株の生育写真。左が野生株、右が破壊株。
(B) 地上部の乾燥重量。
(C) 根の乾燥重量。\((n=3)\)。
(D) 新葉の葉緑素測定結果。収穫前に野生株と破壊株の新葉の葉緑素を SPAD・502 (KONICA MINOLTA) を用いて測定 \((n=6)\)。
アスタリスクは Student's t-test で統計処理した有意値 \((**: P < 0.01)\)。
4・3. 野生株と破壊株の金属濃度の比較

破壊株の生育阻害やクロロシスの原因を調べるために、地上部と根の金属濃度を測定した。地上部の金属濃度を測定した結果、野生株と比較して破壊株のマンガン、鉄、カドミウム濃度が劇的に減少していた（図2・6A）。また、根でも同様にマンガンとカドミウム濃度が破壊株で著しく減少したが、鉄、銅、亜鉛濃度は、両株間で差は認められなかった（図2・6B）。以上の結果より、破壊株ではマンガン、カドミウムを根に取り込むことができなかったため、地上部、根のマンガン、カドミウム濃度が減少したことが考えられる。しかし、根では野生株と破壊株との間に鉄濃度に差がみられなかった。両株共に根の鉄濃度は、20000 mg/kg DW以上であり他の元素よりはるかに高い数値を示したことから、根の表面に沈着したため野生株と破壊株との間に鉄濃度に差がみられなかったと考えられる（図2・6B）。
図2-6. 野生株と破壊株の地上部、根の金属濃度の比較

（A）地上部の金属濃度の比較。（B）根の金属濃度の比較。（n=3）。アスタリスクはStudent's t-testで統計処理した有意値（*:P < 0.05、**:P < 0.01）。
4-3. 土耕栽培での野生株と破壊株の比較

次に土耕栽培を行い、穂が実るまで生育し、野生株と破壊株の収量、乾物重を比較した。その結果、破壊株の収量は野生株の11%程度であった（図2-7B）。この時の藁中の金属濃度を測定した結果、マンガン、カドミウム濃度が大幅に減少した（図2-7C）。しかし、鉄、銅、亜鉛濃度は両株間で差がなかった。また、玄米中のマンガン、カドミウム濃度も破壊株で減少していたが、鉄、銅、亜鉛濃度は両株間で大きな差がなかった（図2-7D）。
図 2-7. 土耕栽培での野生株と破壊株の生育、収量、金属濃度の比較
（A）藁乾燥重量、（B）収量、（C）藁と（D）玄米中の金属濃度。（n=3）。アスタリスクは Student's t-test で統計処理した有意値（*: P < 0.05, **: P < 0.01）。
4-4. OsNram5発現抑制株を用いた生理学的解析

水耕、土耕栽培で破壊株に現れた表現型が、OsNram5の破壊によるものか調べるために、RNAi法を用いてOsNram5発現抑制株を作製した。まず、発現抑制株のOsNram5遺伝子の発現を確認した結果、野生株（日本晴）と比較して発現抑制株で発現が低下していた（図2-8A）。野生株と発現抑制株を通常条件で水耕栽培した結果、独立した3系統の発現抑制株全体で、地上部の乾物重が野生株より減少していた（図2-8B）。この時の地上部のマンガン濃度は、発現抑制株で著しく減少していた（図2-8C）。鉄濃度も発現抑制株で減少していた（図2-8D）。さらに、土耕栽培で穂が実るまで生育した後、稈の金属濃度を測定した結果、発現抑制株のマンガン、カドミウム濃度が野生株と比較して顕著に減少していた（図2-8E）。鉄、亜鉛濃度も発現抑制株で若干減少したが、銅濃度は両株間で差は見られなかった（図2-8E）。以上の結果は、破壊株で生じた表現型がOsNram5の機能が損なわれたためであると考えられる。
図 2-8. 水耕、土耕栽培での野生株と破壊株の生育、収量、金属濃度の比較

（A）野生株と発現抑制株の根での OsNramp5 の発現結果。水耕で栽培した野生株と発現抑制株の地上部の野生株と発現抑制株の生育量（B）、その時の（C）マンガン、（D）鉄濃度。土耕栽培した野生株と発現抑制株の地上部の（E）金属濃度比較（n=3）。アスタリスクは Dunnett's test で野生株と比較して統計処理を行った（*: P < 0.05）。

41
4・5.異なるマンガン濃度処理による生育への影響

前節までの水耕栽培の結果より、破壊株の生育量が野生株と比較し大幅に減少し、さらに破壊株のマンガン、鉄濃度が減少していた。そのため、破壊株の生育低下はマンガン欠乏または鉄欠乏であると考えられる。そのため、まず培養液中のマンガン濃度を0.1、0.5、5 µMの3段階処理し、両株の生育を比較した。その結果、通常（0.5 µM）条件下と比較して（図 2・9 B, E）、低マンガン（0.1 µM）条件下では破壊株の生育がより悪化し、新葉のクロロフィムも激しくなった（図 2・9 A, D）。高濃度（5 µM）のマンガンを処理することで破壊株の生育が若干回復した（図 2・9 C, F）。破壊株の地上部、根の生育量は、培養液中のマンガン濃度が増加するに従って増加したが、野生株は増加しなかった（図 2・9 G, H）。

42
図 2・9. 異なるマンガノン濃度処理による野生株と破壊株の生育比较
(A, D) 0.1、(B, E) 0.5、(C, F) 5 µM で 3 週間栽培後の生育の様子。右が野生株、左が破壊株。(A・C) 植物体全体の生育比較、(D・E) 新葉のクロロフィル、(G) 地上部、(H) 根の乾物重の比較 (n=3)。異なる英字は有意差があることを示している。Tukey's test で統計処理した有意値 (P < 0.05)。
4.6.異なるマンガン濃度処理によるマンガン、鉄濃度の比較

この時の地上部のマンガン濃度を測定した結果、全てのマンガン処理区において破壊株のほうが顕著に低い値を示した。野生株のマンガン濃度は1000 mg kg⁻¹にも達していたが（図2-10 A）、生育は抑制されなかった（図2-9 G, H）。以前の報告通り、インナがマンガンに対して強い耐性を有していることが確認できた（Sasaki et al., 2011）。地上部の鉄濃度は、低マンガン（0.1 µM）処理区で野生株と破壊株との間に差が見られなかったが（図2-10 B）、その他のマンガン処理区では、野生株と比較して破壊株で有意に減少した（図2-10 B）。

根のマンガン濃度は、低マンガン（0.1 µM）処理区では差が見られなかったが、通常（0.5 µM）、高マンガン（5 µM）処理区では破壊株で減少した（図2-10 E）。破壊株の鉄濃度は低マンガン（0.1 µM）、通常（0.5 µM）処理区で野生株と比較して増加したが、高マンガン（5 µM）処理区では変わらなかった（図2-10 F）。破壊株の根で鉄濃度が増加した原因は、破壊株の根がマンガン欠乏により生育が抑制され（図2-9 H）、根の表面に鉄が多く結合したことによるものだと考えられる。地上部、根の亜鉛と銅濃度は、野生株と比較して破壊株で若干高いためまたは低かった（図2-10 C, D, G, H）。このような僅かな違いは、マンガン欠乏による生育の違いによって引き起こされたと考えられる。
図2-10. 異なるマンガン濃度処理による野生株と破壊株の金属濃度比較
（A・D）地上部、（E・H）根のマンガン（A、E）、鉄（B、F）、亜鉛（C、G）、銅（D、H）濃度比較（n=3）。アスタリスクはStudent's t-testで統計処理した有意値（*: P < 0.05, **: P < 0.01）。
4-7.異なる鉄濃度処理による比較

次に培養液中の鉄濃度を0.1、2、10 µMの3段階処理し、両株の生育を観察した。この時、マンガン欠乏による影響が生じるのを防ぐため通常条件の10倍の5 µMのマンガンを処理した。この時の地上部、根の乾物重を測定した結果、培養液中の鉄濃度が増加しても、破壊株の地上部の生育量は増加しなかった（図2-11A）。この時の、地上部と根のマンガン、鉄濃度を測定した。0.1 µM処理区では、野生株と破壊株の地上部の鉄濃度に差が見られなかったが（図2-11D）、マンガン濃度は破壊株で有意に減少していた（図2-11C）。破壊株の根のマンガン濃度は、全ての鉄処理区で減少した（図2-11E）。しかし鉄濃度は野生株と破壊株との間に差が見られなかった（図2-11F）。以上の結果より、破壊株の生育抑制は鉄欠乏ではなく、マンガン欠乏により引き起こされたと考えられる。
図 2-11. 異なる鉄濃度条件での野生株と破壊株の生育及び金属濃度の比較
0.1, 2, 10 µM で 3 週間栽培後の (A) 地上部、(B) 根の生育量の比較。その時の地上部 (C, D) と根 (E, F) のマンガン (C, E)、鉄 (D, F) 濃度 (n=3)。異なる英字は有意差があることを示している。Tukey's test で統計処理した有意値 (P < 0.05)。アスタリスクは Student’s t-test で統計処理した有意値 (*: P < 0.05, **: P < 0.01)。
3.7 マンガン、カドミウムの短期吸収実験

前述で生じた破壊株のマンガン欠乏が、マンガン吸収の欠損が原因であるかを調べるために、野生株と破壊株の根におけるマンガン吸収の違いを解析した。その結果、根のマンガン吸収は、破壊株は全てのマンガン処理区で野生株と比較して低い値を示した（図2・12A）。この結果を基に、25℃のマンガン吸収量から4℃のマンガン吸収量を差し引いた能動的なマンガン吸収量を算出した結果、能動的なマンガン吸収量は野生株と比較して破壊株では著しく低かった（図2・12B）。また、水耕、土耕栽培で破壊株のカドミウム濃度も減少していたため、さらにカドミウムに対しても同様の実験を行った。その結果、マンガン吸収実験と同様の結果となり、根のカドミウム吸収は、野生株と比較して破壊株は全てのカドミウム処理区で低い値を示し（図2・12C）、この結果を基に算出した能動的なカドミウム吸収量は野生株と比較して破壊株では著しく低い値を示した（図2・12D）。以上の結果より、破壊株ではマンガン、カドミウム吸収能力がほとんど損なわれていると考えられる。
図 2-12 マンガン、カドミウム短期吸収実験
マンガン（A）、カドミウム（C）吸収量。能動的なマンガン（B）、カドミウム（D）吸収量。野生株と破壊株を異なるマンガン、カドミウム濃度を含む培養液で30分間、25℃と4℃で処理した。能動的なマンガン、カドミウム吸収量は、25℃の吸収量から4℃の吸収量を差し引いて算出した。
5. マンガン吸収欠損酵母変異体を用いた相補性試験

OsNramp5 の輸送活性を調べるために、マンガン吸収欠損酵母変異体に OsNramp5 を導入して、相補性試験を行った。また、ポジティブコントロールとしてマンガンの輸送活性を示すことが報告されている AtNramp4 を用いた（Thomine et al., 2000)。EGTAを含まない培地で生育させた結果、Vector コントロール、OsNramp5、AtNramp4 導入株共に生育に差がなかった（図 2-13A）。しかし、2 mM EGTA を加えた培地で生育させた結果、Vector コントロールと OsNramp5 導入株の生育は著しく阻害されたが、AtNramp4 導入株は若干生育が阻害されたが Vector コントロールと OsNramp5 導入株と比較して生育が回復した（図 2-13B）。

図 2-13 マンガン吸収酵母変異体を用いた相補性試験
OsNramp5、AtNramp4 を発現させた酵母を EGTA 濃度 0 mM (A)、2 mM (B) 含む培地にスポットし、30℃で 5 日間培養した。
6. カドミウム吸収関連遺伝子の遺伝子発現、カドミウム濃度の比較

6-1. カドミウム吸収関連遺伝子変異体の発現解析

鉄十分条件と比較して OsIRT1、OsNramp1 共に鉄欠乏条件で発現が著しく増加した（図 2-14A、B）。一方、OsNramp5 の発現レベルは、ほとんどの株で鉄十分、欠乏条件で変化しなかった（図 2-14C）。しかし、WT2 と WT3 が鉄欠乏によって若干発現が上昇した（図 2-14C）。今回 2 週間鉄欠乏処理をしたため、イネが過度の鉄欠乏ストレスに曝されたことによって起きた二次的な影響が考えられる。また、OsIRT1、OsNramp1、OsNramp5 の変異によって、それら遺伝子の発現レベルは影響しなかった（図 2-14A、B、C）。

OsNramp1 発現抑制株では、鉄欠乏によって OsNramp1 遺伝子の発現が大きく上昇したが、OsIRT1 発現抑制株では鉄欠乏によって OsIRT1 遺伝子は発現誘導されなかった（図 2-14A、B）。

図 2-14 様々な変異体を用いた遺伝子発現解析
（A）OsIRT1、（B）OsNramp1、（C）OsNramp5 の遺伝子発現。培養液に鉄濃度 0.1 または 10 µM になるように加えた。さらに両培養液にカドミウムを 0.2 µM 加え、2 週間処理した。10 µM 鉄処理区のそれぞれの野生株を基準として計算した（n=3）。
3-10. 鉄十分条件下でのカドミウム、鉄濃度の比較

鉄十分（10 μM）条件下で、これら変異体を2週間処理し、鉄、カドミウム濃度を測定した。野生株と比較してOsNrampl発現抑制株は、地上部、根共に鉄、カドミウム濃度に差がなかった（図2-15）。しかし、OsIRT1発現抑制株、OsNramp5破壊株のカドミウム濃度は、地上部、根共に野生株と比較して減少していた。しかし、その減少はOsIRT1発現抑制株と比較してOsNramp5破壊株の方が大きかった（図2-15 A, C）。地上部の鉄濃度もOsIRT1発現抑制株、OsNramp5破壊株で減少した（図2-15 B）。OsIRT1発現抑制株の根の鉄濃度は野生株と変わらなかったが、OsNramp5破壊株は増加した（図2-15 D）。

![A]![B]![C]![D]

図2-15様々な変異体を用いたカドミウム吸収実験

培養液に鉄；10 μM、カドミウム；0.2 μM加え、2週間処理した時の地上部（A, B）、根（C, D）のカドミウム（A, C）、鉄（C, D）濃度比較（n=3）。

52
3-11. 鉄欠乏条件下でのカドミウム、鉄濃度の比較

次に鉄欠乏（0.1 μM）条件下での地上部、根のカドミウム、鉄濃度を測定した。OsIRT1、OsNramp1遺伝子は鉄によりその遺伝子発現が大きく上昇する。しかし、OsNramp1発現抑制株は3・10の結果と同様に、地上部、根共に野生株との間に差がなかった（図2・16）。また、OsIRT1発現抑制株の地上部、根のカドミウム、鉄濃度が鉄欠乏処理により差がなくなるという結果となった（図2・16）。鉄欠乏条件下でも、唯一OsNramp5破壊株は地上部、根共に野生株と比較してカドミウム濃度が大幅に減少した（図2・16A, C）。

図2-16様々な変異体を用いたカドミウム吸収実験

培養液に鉄；0.1 μM、カドミウム；0.2 μM加え、2週間処理した時の地上部（A, B）、根（C, D）のカドミウム（A, C）、鉄（C, D）濃度比較（n=3）。
第4節 考察

序論でも述べたようにマンガンは植物の必須元素の一つであるが、他の金属と比較して、マンガン吸収の分子メカニズムはあまりわかっていなかった（Pittman, 2005）。オオムギでは2つの異なる品種を用いて研究され、マンガン欠乏の耐性品種が感受性品種よりHVIRT1の発現レベルが高いこと、2品種間を比較した生理学的解析によりHVIRT1がマンガン吸収に関与すると報告された（Pedas et al., 2008）。また、シロイヌナズナではOsNramp5と同じメンバーに属するAtNramp1が高親和性のマンガントランスポーターとして同定された（Cailliatte et al., 2010）。この遺伝子を破壊するとマンガン欠乏条件下でマンガン吸収量が減少し、生育が抑制される（Cailliatte et al., 2010）。イネではマンガン吸収に関与するトランスポーターは未同定であった。しかし、本研究によりOsNramp5がイネでの主要なマンガン輸送体であることを見出した。OsNramp5は根の内皮と外皮細胞に局在し、いずれの細胞の遠心側に極性局在を示した（図2・3A）。OsNramp5破壊株、発現抑制株は、根と地上部のマンガン濃度が劇的に減少し（図2・6, 2・8C）、破壊株の生育は培養液中のマンガン濃度が増加するに従って回復したが（図2・9G, H）、培養液中の鉄濃度が増加しても生育は回復しなかった（図2・11A, B）。さらに破壊株は、マンガンの吸収能力がほとんど損なわれていた（図2・12A, B）。また、破壊株は地上部の鉄濃度も減少していた（図2・6A）。この結果より、OsNramp5はマンガン同様に鉄も輸送できることを示している。しかし、破壊株の鉄濃度減少はマンガンと比べて僅かである。破壊株の生育は低マンガン処理により抑制されるが（図2・9G, H）、その時の鉄濃度は156 mg kg⁻¹ DWであり（図2・10B）、生育に問題が生じない濃度であった（Yokosho et al., 2009）。さらに、鉄欠乏処理を行っても破壊株の生育量は通常条件と同程度であり（図2・11A, B）、また鉄欠乏処理時
の鉄濃度は野生株と破壊株との間に差がなかった（図 2-11D, F）。このことから、生育に必要な鉄の取り込みは他のトランスポーターにより行われ、OsNram5はそれらに続いた鉄の取り込みに関与することが示唆される。イネにおける鉄の取り込みは、OsIRT1が関与している（Ishimaru et al., 2006）。還元状態であるため湛水条件下では、2価鉄が豊富に存在するため、OsNram5による鉄の取り込みへの寄与は低いと考えられる。実際、土耕栽培によって野生株と破壊株の鉄濃度に差が無かった（図 2-7 C）。以上の結果より、OsNram5がイネでの主要なマンガン輸送体であると考えられる。

同じNrampメンバーに属するAtNram1とOsNram5が、シロイヌナズナとイネでマンガンの吸収に関与しているが、両遺伝子の相違点は多くあることが今回の研究によって明らかとなった。OsNram5の発現解析から、OsNram5は主に根で発現し、その発現レベルはマンガン、鉄、亜鉛、銅欠乏によって誘導されないが（図 2-2 A, C）、AtNram1はマンガンだけでなく鉄欠乏によっても遺伝発現が誘導される（Curie et al 2000; Cailliatte et al., 2010）。また、AtNram1のプロモーターとGUSを結合した形質転換体の解析の結果、AtNram1は根の伸長領域で主にGUS活性が観察された（Cailliatte et al., 2010）が、OsNram5は根の基部側で発現が高かった（図 2-2 B）。さらに、根における組織局在性も両タンパク質で異なる。OsNram5特異的抗体を用いて根で抗体染色を行った結果、OsNram5は根の外皮、内皮細胞に局在していたが（図 2-3 A）、AtNram1は根の全体でGUS活性が観察された（Cailliatte et al., 2010）。また、OsNram5はAtNram1と異なり内皮と外皮細胞の遠心側に極性局在を示していた（図 2-3 A）。このように、遺伝子発現パターンや組織局在性などOsNram5とAtNram1で大きく異なる。さらに生理学的解析によっても、両遺伝子間で大きく異なる。AtNram1破壊株はマンガン欠乏処理時のみ、地上部のマンガン濃度が減少すること
で生育が阻害され、高濃度のマンガン処理を処理することで生育量、マンガン濃度は野生株と変わらない（Cailliatte et al., 2010）。しかし、OsNramp5破壊株はマンガン欠乏・高濃度処理時何れも地上部、根共にマンガン濃度が著しく減少するため、生育が阻害される。破壊株は高濃度のマンガンを処理してもその生育は完全には回復しなかった（図2・9G,H）。このようなシロイヌナズナとイネの違いは、根の構造やマンガンの吸収能力の違いに起因すると考えられる。シロイヌナズナと異なりイネの根には、内皮細胞と外皮細胞の両方にカスパリー線がある（Yamaji and Ma, 2011）。さらに、成熟したイネの根には発達した通気組織があり、内皮・外皮細胞の間にはほとんど皮層細胞が存在しない（Kawai et al., 1998）。そのため、外皮・内皮細胞の遠心側に局在するOsNramp5により、外液から中心柱へのマンガンを効率的に輸送できる。このような輸送機構は、イネから同定されたケイ素トランスポーターであるOsLsi1と似た輸送機構を示している（Ma et al., 2006）。ケイ素の場合は、同じ細胞層の向心側に局在するOsLsi2が、OsLsi1により細胞内に輸送されたケイ素を細胞外に輸送するために機能している（Ma et al., 2007）。そのため、マンガンも同様に向心側に局在するトランスポーターが存在すると考えられるが、未だ同定されていない。

通常イネは、湛水状態で生育しているが湛水状態は還元的であるため二価マンガンの形態が多く存在する。そのため、イネはこのような環境に適応するために、高いマンガン耐性示す。さらにイネは、地上部に多くのマンガンを蓄積することができる。OsNramp5破壊株は地上部のマンガン濃度が劇的に減少することから、地上部へのマンガン蓄積にOsNramp5が大きく寄与していることを示している。以上の結果から、OsNramp5はAtNramp1のオルソログではないことが示され、OsNramp5の機能は、マンガン集積植物であるイネ特有のものであると考えられる。
一方カドミウムは有害元素であり、過剰な吸収は植物の生育を抑制する。また、我々人間にとっても有害であり、イタイイタイ病の原因物質として知られている。我々が摂取したカドミウムの約1/3はコメからである（厚生労働省 http://www.mhlw.go.jp/hoodou/2003/12/h1209-1c.html#01）。そのため、コメ中のカドミウムを低減させることは非常に重要である。しかし、イネがカドミウムを吸収するメカニズムについては不明であった。一般的にカドミウムは有害元素であるため、カドミウムのみを特異的に輸送するトランスポーターは存在しないと考えられている。AtNramp1、AtNramp3、AtNramp4もマンガヌ、鉄と同様にカドミウムを輸送することが酵母の実験系で報告されている（Thomine et al., 2000）。また、鉄トランスポーターとして知られるOsIRT1も鉄同様にカドミウムを輸送することが酵母の実験系で明らかとなり（Ishimaru et al., 2006；Nakanishi et al., 2006）、さらに鉄欠乏時にカドミウム吸収が促進されることが報告された（Nakanishi et al., 2006）。しかし、OsIRT1の植物体内での役割については未だ報告されていない。また、OsNramp1は、カドミウムの吸収・移行に関与することがOsNramp1過剰発現体の解析により明らかとなった（Takahashi et al., 2011）。OsIRT1、OsNramp1共に鉄十分条件下では発現が低く、鉄欠乏条件で発現が高くなる（図2-14A、B）。鉄欠乏条件下で、それらトランスポーターがカドミウム吸収に関与しているか調べたが、それら変異体中のカドミウム濃度は野生株と差がなかった（図2-16A、C）。また、野生株においても、鉄欠乏処理によるカドミウム吸収の増加が見られなかったことから（図2-15A、C、図2-16A、C）、鉄欠乏によって誘導される輸送体遺伝子のカドミウム吸収への寄与率は低いと考えられる。しかし、鉄十分条件下でOsIRT1発現抑制株のカドミウム濃度が減少した事から（図2-15A、C）、OsIRT1はカドミウム吸収の一部を担っている可能性が考え
される。対照的に、OsNramp5 は鉄欠乏などの金属欠乏による影響を受けず（図 2-2 C）、また全ての生育ステージの根で高く発現している（図 2-2 A）。さらに、生理学的解析により水耕、土耕栽培の何れの栽培条件において地上部、根、玄米中のカドミウム濃度が破壊株、発現抑制株の両株で野生株と比較して著しく減少した（図 2-6 A, B, 図 2-7 C, D）。また、現在までに報告されているカドミウム吸収に関与する遺伝子（OsIRT1, OsNramp1）の発現抑制株を用いたカドミウム蓄積の比較実験により、OsNramp5 破壊株がそれら遺伝子発現抑制株よりカドミウム蓄積が大幅に減少した（図 2-15, 16）。さらに、野生株と破壊株のカドミウム短期吸収実験より、破壊株のカドミウム吸収能力がほとんど損なわれていることが示唆された（図 2-12 C, D）。以上の結果より、イネにおいて OsNramp5 がカドミウムを吸収するための主要なトランスポーターであると明らかとなった。最近、同じ OsNramp5 について他のグループから論文が 2 報出ている（Ishimaru et al., 2012; Ishikawa et al., 2013）。OsNramp5 発現抑制株を用いた実験により、野生株と比較してカドミウムが地上部に蓄積することが報告された（Ishimaru et al., 2012）。しかし、本研究の結果では、水耕・土耕栽培の両条件下で OsNramp5 破壊株と発現抑制株の地上部のカドミウム濃度が減少していた（図 2-6 A, 図 2-7 C, 図 2-8 E）。OsNramp5 発現抑制株でカドミウムが根に多く蓄積した理由の一つとして、処理したカドミウム濃度によるものだと考えられる。彼らは、10 μM のカドミウムを処理し（Ishimaru et al., 2012）、本実験で処理した濃度の 50 倍である。この高濃度のカドミウム処理により植物の生育が阻害され、2 次的な影響により地上部に多くのカドミウムが蓄積したと考えられる。さらに、ごく最近 OsNramp5 について新たな報告がされた。コシヒカリにイオンビームを照射することで低カドミウム変異体の選抜を行い、変異体の原因遺伝子を特定した結果
OsNramp5が原因遺伝子であることが明らかとなった（Ishikawa et al., 2013）。圃場試験の結果、変異体の玄米中のカドミウム、マンガン濃度が著しく減少したが、両株の収量、生育量には違いがなかった（Ishikawa et al., 2013）。しかし、本研究の結果、破壊株の生育量、収量共に野生株と比較して著しく減少した（図 2-7 A, B）。この違いの原因として、OsNramp5遺伝子の変異程度によるものだと考えられる。イオンビームにより同定された低カドミウムイネではOsNramp5の塩基配列に1塩基欠損や433塩基挿入といった変異の割合が少なかったため、生育への影響が少なかったと考えられる。もしくは、収量調査を行った試験方法が異なる点も原因の一つであると考えられる。

これまでにイネのカドミウムの集積に関与する遺伝子がいくつか同定された。そのうち、OsHMA3は根の細胞の液胞にカドミウムを隔離するのに働き（Ueno et al., 2010）、OsHMA2が根から地上部への輸送に関与し（Satoh-Nagasawa et al., 2013; Takahashi et al., 2013）、さらに生殖成長期では節から穂へのカドミウム輸送に関与する（Yamaji et al., 2013）。また、OsLCT1が節でカドミウムを師管輸送することで玄米中にカドミウムが蓄積する（Uraguchi et al., 2011）。今回同定した、OsNramp5は根へのカドミウムの取り込みに関与している事が明らかとなった。これによって、イネがどのようにしてコメ中にカドミウムを蓄積するか、その一連のメカニズムが明らかとなった。今後は、これらトランスポーターを生かした、カドミウムをコメ中に蓄積しない安心・安全なイネを作出することが課題となる。しかし、OsNramp5は本来マンガンのトランスポーターであるため、OsNramp5遺伝子破壊株はマンガンの蓄積量が大幅に減少することで、生育が抑制され、収量も減少する（図 2-7）。また、OsHMA2は亜鉛トランスポーターであるため、OsHMA2破壊株も同様に生育が著しく
く阻害される（Yamaji et al., 2013）。そのため、それらトランスポーターの金属に対する選択性を改変し、カドミウムのみ輸送しないイネを作出する必要がある。
第3章 ゼニゴケ用いた新規輸送活性測定法の確立

第1節 緒言

高等植物由来の輸送体の輸送活性を測定するためには、異種発現系としてアフリカツメガエルの卵母細胞や酵母がよく使われる。しかし、これらの系では、輸送体の種類によって輸送活性が測定できない場合や輸送活性が弱く判定が難しい場合、さらには条件検討が難しいなどといった欠点がある。また、植物由来の細胞でないため卵母細胞や酵母内に導入した輸送体遺伝子が本来の局在とは異なる局在を示す場合もある。第2章で述べた、イネから同定したマンガンとカドミウムの輸送体OsNramp5がその一例である(第2章第2節図2-12)。そこで、本章は新規輸送活性測定法を確立するために、ゼニゴケ発現系を用いて新規の輸送活性測定方法を確立することを目的とした。

ゼニゴケはコケ植物の中でも最も初期に陸上化した植物であり、基部陸上植物として位置付けられている(Bowman et al., 2007)。そのため、ゼニゴケは、イネやシロイヌナズナのように機能重複した遺伝子も少ないと考えられ、導入した遺伝子本来の機能を観察できると考えられる。また、酵母やアフリカツメガエルの卵母細胞と異なり、植物細胞を用いる事ができため導入した輸送体遺伝子がより正確に機能する可能性がある。さらに、ゼニゴケは生活環のほとんどが半数体であり、無性芽を用いることで遺伝的に均一な植物体を大量に得られることも利点である(図3-1)。そのため、新たな輸送活性測定法を確立するための材料としてゼニゴケを選んだ。
第2節 材料と方法

(1) ゼニゴケ発現用ベクターの構築

ゼニゴケ発現用ベクターの作製は、Gateway(invitrogen)クローニングテクノロジーを用いて作製した。日本晴のcDNAをテンプレートにPCRによりOsNramp5のORFを増幅した。使用したプライマーは下記の通りである。増幅させた断片を、Gateway BP Clonase II Enzyme Mix (invitrogen)によりエントリーベクターであるpDONRに導入し、配列の確認を行った。その後、Gateway LR Clonase II Enzyme Mix (invitrogen)により、pMpGW102及びpMpGW103ベクター(Althoff et al., 2013)に導入した。このベクターはpGW2バイナリーベクター(Nakagawa et al., 2007)を基に作製されたベクターである。pMpGW102は35Sプロ
モーター制御下、pMpGWBr103 はゼニゴケ内在のプロモーターである EF1 α プロモーター制御下に Os Nramp5 を導入した。形質転換体は、共同研究先である京都大学大学院生命科学研究科の河内孝之教授のグループで作製して頂いた。

Os Nramp5 ORF 増幅用プライマー

5'-AAAAAGCAGGCTCACCATGGAGATTGAGAGAGAGCA-3'
5'-AGAAGCTGGGCTCATCCTTGGGAGCGGGATGT-3'

(2) ベニゴケの生育条件
ベニゴケは 1/2 Gamborg's B5 培地で、20℃、蛍光灯の下で生育させた。1/2 Gamborg's B5 培地の組成は下記に示した通りである。ベニゴケの継代は、無性芽から行った。

ベニゴケ生育用培地微量成分ストック

- Gamborg's B5 微量成分

<table>
<thead>
<tr>
<th>成分</th>
<th>量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂MoO₄·2H₂O</td>
<td>25 mg</td>
</tr>
<tr>
<td>CuSO₄·5H₂O (25 mg/ml)</td>
<td>0.1 mL</td>
</tr>
<tr>
<td>CoCl₂·6H₂O (25 mg/ml)</td>
<td>0.1 mL</td>
</tr>
<tr>
<td>ZnSO₄·7H₂O</td>
<td>200 mg</td>
</tr>
<tr>
<td>MnSO₄·7H₂O</td>
<td>1 mg</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>300 mg</td>
</tr>
</tbody>
</table>

蒸留水で 100 mL にメスアップ
・0.075% KI溶液

<table>
<thead>
<tr>
<th>KI</th>
<th>75 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>蒸留水で100mLにメスアップ</td>
<td></td>
</tr>
</tbody>
</table>

・Gamborg's B5ビタミン混合溶液

Myo-inositol	10 g
Nicotinic acid	100 mg
Pyridoxine·HCl	100 mg
Thiamine·HCl	1 g
蒸留水で100mLにメスアップ	

・10×Gamborg's B5ストック

NaH₂PO₄·2H₂O	1.75 g
KNO₃	25 g
(NH₄)₂SO₄	1.34 g
MgSO₄·7H₂O	2.5 g
CaCl₂·2H₂O	1.5 g
EDTA·NaFe(Ⅲ)	400 mg
Gamborg's B5微量成分	10 mL
0.075% KI溶液	10 mL
蒸留水で1000mLにメスアップ	

ストック溶液は-30℃で保存する。
・1/2 Gamborg's B5 培地
10×Gamborg's B5 ストック 50 mL
MES 0.5 mL
寒天(1%) 10 g
pH5.5 に合わせて蒸留水で 1000 mL にメスアップ
継代用のゼニゴケはスクロース (10 g/1000 mL) を加えた。

(3) 形質転換体の OsNramp5 発現解析
OsNramp5 の発現を確認するために、野生株、形質転換体をサンプリングし、RNA を抽出した。抽出した RNA から cDNA を合成し、発現解析用のサンプルとした。発現解析は、THUNDERBIRD™ SYBR® qPCR mix (TOYOBIO) を使用して、Mastercycler ep realprex (ependorf) で解析した。THUNDERBIRD™ SYBR® qPCR mix の反応組成は下記に記した。また、内部標準には MpActin を使用した。RNA の抽出方法、cDNA の合成方法、OsNramp5 発現確認用プライマー配列は、第 2 章、第 2 節で示した方法で行った。

MpActin
5'-AAGCCGTCGAAAAGAAGGAG-3'
5'-TTCAGGATCGTCCGTTATCC-3'

65
THUNDERBIRD™ SYBR® qPCR mix 10
50×ROX reference dye 0.4
Reverse primer 0.6
Forward primer 0.6
cDNA 2.0
H₂O 7.4
Total 20 µL

(4)カドミウム毒性による輸送活性の評価
無性芽から14日間1/2 Gamborg’s B5培地で生育させ、0, 10, 20, 40, 100 µMのカドミウムが添加された1/2 Gamborg’s B5培地に移植し、1週間生育させ野生株と形質転換体の生育を比較した。

(5)異なるカドミウム濃度処理によるカドミウム吸収量
無性芽から30日間1/2 Gamborg’s B5培地で生育させ、0, 10, 20, 40, 80, 100 µMのカドミウムが添加された1/2 Gamborg’s B5培地に移植し、1週間生育させ野生株と形質転換体の生育を比較した。1週間後、プレートからゼニゴケを採り、蒸留水で付着した寒天を洗い、金属濃度測定用サンプルとした。

(6)異なるマンガン濃度処理によるマンガン吸収量
無性芽から28日間、マンガンを除いた1/2 Gamborg’s B5培地で生育させ、0, 5, 10, 20, 40, 80, 100 µMマンガンが添加された1/2 Gamborg’s B5培地に移植し、2週間生育させた。2週間後、プレートからゼニゴケを
採り、蒸留水で付着した寒天を洗い流し、金属濃度測定用サンプルとした。

(7) カドミウム短期吸収実験
無性芽から30日間1/2 Gamborg's B5寒天培地で生育した。その後、10μMカドミウムを添加された1/2 Gamborg's B5液体培地に、1時間ゼニゴケを沈めた。その後、5mM CaCl₂溶液で表面に付着したカドミウムを除去し、金属濃度測定用サンプルとした。

(8) 金属濃度測定方法
サンプリングの前に2mLチューブの重さを測定する。その後、新鮮重を測定した後、サンプルを2mLチューブに入れ70℃で乾燥した。乾燥後、再びゼニゴケ入りの2mLチューブの重さを測定する。最後に、濃硝酸によって分解しICP-MSにより金属濃度を測定した。
1. OsNramp5 相同性遺伝子の探索

まず、ゼニゴケ内に保存されている OsNramp5 の相同性遺伝子の探索を行った。その結果、OsNramp5 と似た配列をもつ isotig18806、23863、26361、28246 の 4 つ見つかった（図 3-2 A）。それら 4 つの塩基配列と OsNramp5 の塩基配列を比較すると、isotig18806 と 58％、isotig23863 と 53％、isotig26361 と 46％、isotig28246 と 52％との相同性を示した。

図 3-2 ゼニゴケの N ramp 相同性遺伝子を含む系統樹
ゼニゴケから見つかった相同性遺伝子とイネ、シロイヌナズナの N ramp 遺伝子の塩基配列を基に系統樹を作製した。
2. OsNramp5の発現確認

pMpGWB102（35Sプロモーター制御）及びpMpGWB103（ゼニゴケ内在性EF1αプロモーター制御）ベクターに導入したOsNramp5の発現量を確認するために、それぞれの形質転換体から6系統ずつ選び発現量を確認した（図3-3A, B）。野生株では、OsNramp5が発現していないことが確認できた。pMpGWB102、pMpGWB103ベクターにOsNramp5を導入した形質転換体共にOsNramp5がゼニゴケ内で高発現していることを確認することができたが（図3-3A, B）、pMpGWB103ベクターにOsNramp5を導入した形質転換体のほとんどの個体で、発現量がpMpGWB102と比較して少ないものや発現していない個体があった（図3-3B）。以後の解析にはpMpGWB102はNo.3と4を、pMpGWB103はNo.6と16の個体を用いて解析を行った。

図3-3 OsNramp5を導入したゼニゴケのOsNramp5発現量の確認
（A）pMpGWB102ベクター、（B）pMpGWB102ベクターにOsNramp5を導入した形質転換体のOsNramp5発現結果。無性芽から34日間1/2Gamborg’sB5培地で栽培後、サンプリングした。
3. ゼニゴケ形質転換体を用いた輸送活性の測定

3-1. カドミウム毒性による輸送活性の評価

ゼニゴケを用いて輸送活性を評価するためには、まず有害元素であるカドミウムを加えたプレートで、カドミウム感受性テストを行った。異なるカドミウム濃度で1週間、野生株、形質転換体を生育させた（図3-4 A, B）。その結果、EFプロモーター制御下にOsNrfが導入した形質転換体と野生株との間に生育の差は見られなかった（図3-4 A）。しかし、35Sプロモーター制御下にOsNrfを導入した形質転換体は、カドミウムを加えた全ての培地で顕著なカドミウム毒性が観察された（図3-4 B）。一方、野生株はカドミウム毒性が生じなかった。35Sプロモーターのみを導入したベクターコントロールも同時に生育させたが、野生株とベクターコントロールとの間に生育の違いが観察されなかった（図3-4 B）。
図 3-4 カドミウム感受性テスト
（A）pMpGW B103 ベクター、（B）pMpGW B102 ベクターに OsNrpm5 を導入した形質転換体のカドミウム感受性テスト。カドミウム 0, 10, 20, 40, 100 μM 含む培地に 1 週間生育させた。WT は野生株、VC はベクターコントロールである。
3-2. カドミウム処理による形質転換体中のカドミウム濃度の測定

3-1 で 35S プロモーター制御下に OsNramp5 を導入した形質転換体は、カドミウム処理により顕著な生育阻害が生じた。そこで次の 0, 10, 20, 40, 80, 100 µM のカドミウムを含む培地で 1 週間生育させた形質転換体中のカドミウム濃度を測定した(図 3-5 A-F)。カドミウム濃度を測定した結果、図 3-5 A のカドミウム吸収量は野生株、ベクターコントロールと比較して破壊株で高い値を示した。この結果を基にNramp5 依存的な吸収量を算出した結果、プレート中のカドミウム濃度が増加するのに従ってカドミウム濃度が増加したが、ベクターコントロールは増加しなかった(図 3-5 B)。その他の金属濃度は、形質転換体ではカドミウム毒性が激しかったためカドミウム毒性の影響による金属濃度の増減を防ぐために、カドミウム濃度 0 µM 処理区の野生株、ベクターコントロール、形質転換体中の金属濃度を示した。その結果、鉄、銅、亜鉛濃度は野生株と形質転換体との間に大きな違いはなかったが(図 3-5 D-F)、形質転換体のマンガノン濃度は、野生株と比較して約 10 倍高い値を示した(図 3-5 C)。また、EF プロモーター制御下に OsNramp5 を導入した形質転換体を 10 µM のカドミウムを含む培地で 1 週間生育させた形質転換体中のカドミウム濃度を測定した(図 3-5 G-K)。EF プロモーター制御下にOsNramp5 を導入した形質転換体は図 3-5 A でカドミウム毒性が生じなかった結果と一致して、形質転換体中のカドミウム濃度は野生株と同程度の値を示した(図 3-5 G)。また、マンガン、鉄、銅、亜鉛濃度も野生株と形質転換体との間に差がなかった(図 3-5 H-K)。
図 3-5 金属濃度測定結果
(A, B) cadmium 0, 10, 20, 40, 100 µM 含む培地に 1 週間生育させた植物体中のカドミウム吸収量 (A)、OsNramp5 依存的カドミウム吸収量 (B)。(C-F) カドミウムを含まない培地で生育させたゼニゴケ中のマンガント、亜鉛 (D)、銅 (E)、鉄 (F) 濃度比較。(G-K) カドミウム 10 µM 含む培地に 1 週間生育させたゼニゴケ中のカドミウム濃度 (G)、マンガント (H)、亜鉛 (I)、銅 (J)、鉄 (K) 濃度。WT は野生株、VC はベクターコントロールである (n=3)。
3-3. 異なるマンガン濃度処理によるマンガン吸収量

カドミウム吸収実験と同様にマンガンに対する OsNramp5依存的な吸収量を算出した。通常の1/2 Gamborg's B5培地にはマンガンが含まれているため、無性芽をマンガンフリーの1/2 Gamborg's B5培地に移植し30日間生育させ、マンガン濃度0, 5, 10, 20, 50, 100 µMを含む培地で2週間生育させた。その結果、カドミウムと同様に野生株、ベクターコントロールと比較して全てのマンガン処理区で形質転換体中のマンガン濃度が高かった（図3-6A）。この結果を基に、OsNramp5依存的マンガン吸収量を算出した結果、ベクターコントロールと比較して形質転換体で高い値を示した（図3-6B）。この結果より、OsNramp5を導入することでマンガンの吸収量が増加することが明らかとなった。

75
図3-6 異なるマンガン処理濃度におけるゼニコケのマンガン濃度
(A, B) マンガン濃度 0, 5, 10, 20, 50, 100 µM 含む培地に2週間生育させた。ゼニコケ中のマンガン濃度 (A), Osteospernum 番依存的マンガン吸収量 (B)。WTは野生株、VCはベクターコントロールである (n=3)。
3-4. 短期間吸収実験

次に短期間で輸送活性を測定するために、1/2 Gamborg's B5 液体培地を用いて野生株と形質転換体を液体培地に沈め、短期間のカドミウムの吸収量を調べた。しかし、1時間処理を行ったが顕著な差が認められなかった(図 3-7 A)。No.3 が若干上昇しているようだが、No.4 は野生株と差がなかった(図 3-7 A)。このことから、カルシウム溶液で十分に洗浄できていないことが考えられる。この時のマンガン濃度は、形質転換体のほうが野生株より高かった(図 3-7 B)。これはプレート培地で生育させた時のマンガンの持ち込みが原因だと考えられる。

図 3-7 カドミウム短期吸収実験
10 µM カドミウム溶液に 1 時間暴露した後のゼニゴケ中の (A) カドミウム、(B) マンガン濃度。1 時間処理後、表面に付着しているカドミウムを 5 mM Ca 溶液で洗浄した(n=3)。
第4節 考察

現在までに輸送活性を測定する方法として、アフリカツメガエルの卵母細胞や酵母を用いた実験系が一般的によく使われている。それら2つの利点として短期間で輸送活性を測定できる事が挙げられる。

35S またはゼニゴケ内在性プロモーター制御下に OsNramp5 を導入した形質転換体共に OsNramp5 がゼニゴケ内で発現した（図3-3 A, B）。しかし、EF1αプロモーター制御下に OsNramp5 を導入した形質転換体のほとんどどの個体では、発現量が少なく、また発現していない個体があった（図3-3 B）。実際、EF1αプロモーター制御下に OsNramp5 遺伝子を導入した形質転換体では、カドミウム毒性が生じず（図3-4 A）、また、この結果と一致して形質転換体中のカドミウム濃度は野生株と同程度の値を示した（図3-5 G）。一方、35S プロモーター制御下に OsNramp5 遺伝子を導入した形質転換体は、カドミウム処理により野生株、ベクターコントロールと比較して著しく生育が阻害され（図3-4 B）、カドミウム濃度も増加していた（図3-5 A）。このことから、EF1αプロモーター制御下では OsNramp5 の輸送活性を測定するために適さないプロモーターであると考えられる。35S プロモーター制御下に OsNramp5 遺伝子を導入した形質転換体のOsNramp5依存的なカドミウム吸収量を算出した結果、処理したカドミウム濃度が増加するに従って形質転換体中のカドミウム濃度が増加し、ベクターコントロールで増加しなかった（図3-5 B）。また、マンガンに対しても同様の結果が得られ、処理したマンガン濃度が増加するに従って形質転換体中のマンガン濃度が増加した（図3-6）。このことから、ゼニゴケで発現している OsNramp5 がマンガンの輸送体として機能していることを示している。

しかし、プレートによる輸送活性の測定は時間を要するため水耕溶液を用いた短期間での実験系を確立しようとしたが、水耕溶液に1時間ゼニゴ
ケを処理したが野生株と形質転換体との間にカドミウム濃度差が見られなかった（図3-7A）。しかし、マンガノ濃度は形質転換体中で増加していた（図3-7B）。これは、前培養時のプレート由来のマンガンだと考えられる。

プレート上では、形質転換体との間にカドミウム濃度に大きな差が生じるため、カドミウム処理しても毒性がゼニゴケに生じない濃度を見極め、大量の無性芽を用いて数日間のアセイを行うことで大幅に時間が短縮できることが考えられる。今後さらに条件検討をする必要があると考えられる。

今回、ゼニゴケで確立したこの方法は今後アフリカツメガエルの卵母細胞や酵母で輸送活性をうまく測定できない他の輸送体にも応用できる。酵母と比較して形質転換のための時間を要することや輸送活性の測定時間が酵母やアフリカツメガエルの卵母細胞と比較して時間を要するという欠点がある。
第4章 OsNramp3 の機能解析

第1節 緒言

第2章により、根圏中のマンガンがOsNramp5により根に取り込むことが明らかとなった。しかし、根に取り込まれたマンガンがどのような輸送体を介して植物体内で移行、分配されるかについては明らかとなっていない。植物体内のマンガンの分配については、アイソトープを用いた生理学的解析がいくつか報告されている。アイソトープを用いた解析により、オオムギでは根から吸収されたマンガンは節に一旦蓄積することが報告されている（Tsukamoto et al., 2006）。植物体内でのマンガンの分配は、マンガン欠乏・過剰処理により大きく分配パターンが異なることが明らかとされた。マンガン欠乏処理したオオムギは、新葉へ優先的に分配されるが、過剰処理下では根から節へのマンガンの分配が抑制され、それに伴って植物体内のマンガン分配も抑制される事が報告されている（Tsukamoto et al., 2006）。さらに、イネもオオムギと同様に、節に蓄積されたマンガンが新しい葉へ主に分配されることが報告されている（Obata et al., 1980）。このように、根から吸収されたマンガンの多くが、節に蓄積した後、発達段階である新葉へ分配されることが明らかとなっているが、その分子機構は未だ明らかとなっていない。

本章では、OsNramp5と同じNrampファミリーに属されるOsNramp3が節で高発現し、発達段階である新葉へマンガンを分配するために必要な輸送体であることを見出した。

第2節 材料と方法

(1)OsNramp3 の輸送活性の測定
酵母発現用ベクターの構築、酵母への形質転換、スポットアッセイは第2章、第2節で記した通りに行った。使用した酵母は、マンガニの吸収に関与するsmf1遺伝子欠損酵母変異体、鉄の吸収に関与するfet3fet4遺伝子欠損酵母変異体を使用した。マンガニのキレート剤としてEGTA、鉄のキレート剤としてBPDS（4,7-biphenyl-1,10-phenanthroline-disulphonic acid）を培地に加えて実験を行った。酵母発現用ベクターの構築時に使用したOsN rpm3 ORF增幅用プライマーは下記に記した。

OsN rpm3 ORF增幅用プライマー
5'-AGGATCCAAGATGAGCGGCCCAATGCAAC-3'
5'-CTCGAGCTAATCGAGATCAGAAGCAGTTC-3'

また、カドミウム感受性テストは、野生株であるBY4741株にOsN rpm3を導入した株をSc（ウラシル、+グロコース）で一晩振とう培養した。その後、Sc（ウラシル、+ガラクトース）にカドミウムを加えた培地にスポットアッセイを行った。スポットアッセイの方法は第2章、第2節で記した通りに行った。

(2) OsN rpm3遺伝子発現パターン
発現解析に使用した、発現解析の方法、またcDNAサンプルは第2章、第2節で記した金属欠乏処理を行ったサンプルを用いて調べた。発現解析に用いたOsN rpm3発現解析用プライマー配列は下記に示した。インターナルコントロールとしてOsHistoneH3を用いた。OsHistoneH3のプライマーハは第2章、第2節で記した。
OsNramp3 発現解析用プライマー

5'・CACACAAATTCAAAAAGGCCATTTCTG・3'
5'・CGATAGACCGTTGTGGAGAAGC・3'

(3) OsNramp3 細胞内局在の確認。

OsNramp3 の細胞内局在を調べるために、一過的発現用ベクターをタマネギに発現させて調べた。一過的発現ベクターの構築方法、パーティグルガンを用いたタマネギへの一過的発現方法については第 2 章、第 2 節で記した通りに行行った。一過的発現ベクターの構築のために使用したプライマー配列は下記の通りである。

OsNramp3 GFP 用プライマー

5'・TGTCGACATGAGCGCCCAATGCAACG・3'
5'・TCCATGGGATCGAGATCGAGCAGTT・3'

(4) 破壊株と発現抑制株の OsNramp3 発現確認と

OsNramp3 破壊株は、韓国の POSTECH (http://www.postech.ac.kr/life/pfg/risd/)から分譲していただいた。野生株として Dongjin を用いた。発現抑制株は、本研究室の山地直樹助教が作製した株を使用した。発現抑制株の野生株は日本晴を用いた。イネの栽培方法は、第 2 章、第 2 節で記した通りである。また、マンガン欠乏処理は第 2 章、第 2 節の表 1・1 で記した 1/2 木村 B の組成からマンガンを除いた培養液を使用した。

野生株、破壊株、発現抑制株を通常条件で 2 週間栽培後、マンガンを除いた 1/2 木村 B 溶液で 2 週間栽培した。2 週間後、野生株、破壊株、発現
抑制株の新葉のSPAD値を測定し、基部節をOsNramp3発現確認用のサンプルとして回収した。

RNA抽出、cDNA合成方法は第2章、第2節で記した通りである。発現解析方法は、第3章、第2節で記した。発現解析で使用したOsNramp3のプライマー配列は上記で示した通りである。また、インターナルコントロールとしてOsHistoneH3を用いた。OsHistoneH3のプライマー配列は第2章、第2節で記した。

(5) マンガン欠乏処理による破壊株への生育影響

1/2木村B溶液で3週間生育させた。その後、マンガン欠乏処理区（0μM）、通常処理区（0.5μM）に分け12日間処理した。葉齢別にサンプリングを行い、新鮮重を測定した後、70℃の乾燥機で2日間以上乾燥させた。乾燥後、葉齢別のサンプルを一つにまとめて地上部全体とした。

(6) マンガン欠乏処理による葉位別のマンガン濃度の比較

1/2木村B溶液で3週間生育させた。その後、マンガン欠乏処理区（0μM）、通常処理区（0.5μM）にけて1週間処理した。1週間後、葉齢別にサンプリングを行った。

(6) 根端の金属濃度測定

1/2木村B溶液で4週間生育させた後、冠根の先端から1.0cmの部位を切り取り、2mLチューブに入れ、70℃の乾燥機で2日間以上乾燥させた。

(7) 金属濃度測定

金属濃度の測定方法は、第2章、第2節の(22)で記した通りである。
第3章 結果

1. OsNramp3の輸送活性の測定

OsNramp3の輸送活性を測定するために、マンガン、鉄吸収酵母変異体にOsNramp3を導入することでマンガン、鉄吸収が回復するかを調べた（図4-1 A, B）。その結果、マンガン吸収欠損酵母にOsNramp3を導入することで、コントロールと比較して生育が回復した（図4-1 A）。しかし鉄吸収酵母変異体に導入しても生育は回復せず、ベクターコントロールと同程度の生育だった（図4-1 B）。さらに、野生株にOsNramp3を導入して、カドミウム感受性テストを行った結果、OsNramp3導入株はカドミウム感受性を示さなかった（図4-1 C）。この結果、OsNramp3はマンガンのみ輸送活性が見られた。
図 4-1 OsNramp3 輸送活性
マンガン (A)、鉄 (B) 吸収欠損酵母変異体に OsNramp3 を発現させ相補性試験を行った。カドミウム感受性 (C) を調べるために野生株に OsNramp3 を発現させ、培地にスポットした。マンガン相補性試験、カドミウム感受性テストは 3 日間、鉄相補性試験は 5 日間、30℃で培養した。
2. OsNramp3の発現解析

OsNramp3の発現部位を解析するために、通常条件で生育させた根、基部節、地上部のサンプルを用いて調べた。その結果、地上部、根と比較して節で高く発現していた（図4-2 A）。節での発現が高かったため、次にマンガン、鉄、亜鉛、銅欠乏処理した基部節のサンプルを用いて金属欠乏応答性を確認したが、OsNramp3はそれら金属欠乏に応答しなかった（図4-2 B）。

図4-2 OsNramp3遺伝子発現パターン
(A)根、基部節、地上部のOsNramp3の発現比較。通常条件で栽培した日本晴の根、基部節、地上部をサンプリングした。(B)基部節における金属欠乏応答性の確認。亜鉛、鉄、マンガン、銅欠乏処理を1週間行った日本晴の基部節からサンプリングした。異なる英字は有意差があることを示している。Tukey's testで統計処理有意値（P < 0.05）
3. OsNramp3 の細胞内局在

OsNramp3 の細胞内局在を明らかにするために、GFP との融合タンパク質をタマネギ表皮細胞に導入した。GFP 単独では、核や細胞質にシグナルが検出されたが（図 4-3 A）、OsNramp3 と GFP 融合タンパク質を発現させると、細胞膜に局在した（図 4-3 B）。

図 4-3 OsNramp3 の細胞内局在
（A）GFP のみ、（B）OsNramp3 と GFP を融合させたプラスミドをタマネギの表皮細胞に一過的に発現させた。Bar=0.5 μm.
4. 生理学的解析

4-1. 破壊株と発現抑制株のOsNramp3発現確認とSPAD値の測定

酵母の相補性試験の結果よりOsNramp3はマンガンに関与することが示唆されたため、マンガン欠乏処理を行い野生株と破壊株、発現抑制株の生育を比較した。まず、破壊株と発現抑制株のOsNramp3遺伝子の発現が低下しているかを確認した。破壊株では発現がほとんど検出されず、発現抑制株では野生株と比較して約4割近くまで発現が低下していた（図4-4A）。マンガン欠乏処理による生育への影響を見るために、野生株、破壊株、発現抑制株をマンガン欠乏条件で2週間栽培した。2週間後、SPAD値を測定した。その結果、破壊株、発現抑制株共に、両株の野生株と比較して著しくクロロフィル含量が低下した（図4-4B）。

図4-4. OsNramp3の発現確認とSPAD値
(A)OsNramp3破壊株、発現抑制株とそれぞれの野生株でのOsNramp3の発現量(A)とSPAD値(B)。マンガン欠乏条件で2週間処理した。発現解析はn=3。
4・2 マンガン欠乏処理による破壊株への生育影響

4・1 で SPAD 値の測定により、破壊株、発現抑制株の新葉のクロロフィル含量が低下していた。更に詳しく解析するために葉位別の生育量を比較した。通常条件とマンガン欠乏条件を 12 日間行った。その結果、マンガン欠乏処理下では、破壊株の新葉が枯死し、生育が阻害された（図 4・5 A・E）。発現抑制株では、新葉の生育が野生株より遅い傾向であった。この時の新鮮重を測定した結果、通常条件区では、野生株と破壊株、発現抑制株との間に差が見られなかった（図 4・5 F）。しかし、マンガン欠乏処理により破壊株では Leaf8 の新鮮重が野生株と比較して低下していた（図 4・5 G）。また、発現抑制株は Leaf9 の新鮮重が野生株より低下する傾向が見られた。このことから、OsNramp3 遺伝子を破壊することで、マンガン欠乏に対して感受性を示すことが明らかとなった。さらに、破壊株、発現抑制株の根端にネクローシスが観察されたが（図 4・5 I, K, L）、野生株では観察されなかった（図 4・5 H, J）。
図 4-5. マンガン欠乏条件で栽培した野生株と破壊株の生育の比較
マンガン欠乏条件で12日間処理した時の野生株(A, C)、破壊株(B)、発現抑制株(D, E)の様々な組織の生育を比較した写真、野生株(H, J)、破壊株(I)、発現抑制株(K, L)の根端の写真。通常条件(F)、マンガン欠乏条件(G)での新鮮重測定結果。
4･3. マンガン欠乏処理による地上部、根の金属濃度比較

まず、地上部全体の金属濃度を測定した。両条件下で Dongjin と破壊株、日本晴と発現抑制株との間にマンガン濃度間に差はなかった（図 4･6A）。若干、マンガン欠乏条件下の破壊株のマンガン濃度が増加した（図 4･6A）。また、その他の金属濃度も測定した結果、鉄、銅、亜鉛濃度が破壊株で高い傾向を示した（図 4･6B･D）。次に根全体の金属濃度を測定した。Control 区で破壊株、発現抑制株のマンガン濃度がそれぞれの野生株より減少した（図 4･6E）。鉄、銅濃度は、Dongjin と破壊株、日本晴と発現抑制株との間に差が見られなかった（図 4･6F, G）。しかし、発現抑制株の亜鉛濃度が日本晴と比較して著しく増加していたが、破壊株と Dongjin は亜鉛濃度に差が見られなかった（図 4･6H）。
図 4.6. 地上部、根の金属濃度の比較
地上部（A-D）、根（E-H）のマンガ（A, E）、鉄（B, F）、銅（C, G）、亜鉛濃度（D, H）。
通常条件、マンガ欠乏条件で12日間処理した。アスタリスクは、それぞれの野生株と比較してStudent's t-testで統計処理した有意値（*: P < 0.05, **: P < 0.01）。（n=3）。
4-4. マンガン欠乏処理による生育の比較

4-2. でマンガン欠乏処理により、破壊株の新葉が枯死することが明らかとなった。そのため、新葉へのマンガンの分配が破壊株で減少したと考え、次に葉齢が異なるサンプルを回収しマンガン濃度を測定した。Leaf2が一番古い葉で、Leaf6が新葉である。通常条件、マンガン欠乏条件下ともLeaf2からLeaf5までの古い葉では、野生株と破壊株の間に違いは見られなかった（図4-7A, B）。しかし、両条件下において破壊株の新葉のマンガン濃度が野生株と比べ、減少していた（図4-7A, B）。マンガン欠乏条件下では、野生株と比較して破壊株の新葉のマンガン濃度は約半分にまで減少していた（図4-7B）。このことから、破壊株の著しいマンガン欠乏症狀は新葉へのマンガン分配が低下したため生じたと考えられる。

図4-7. 野生株と破壊株の葉位別のマンガン濃度の比較
通常条件で生育後、野生株、破壊株をマンガン濃度0.5 µM（A）、0 µM（B）で7日間処理した後、サンプリングした。アスタリスクは、それぞれの野生株と比較してStudent's t-testで統計処理した有意値（**: P < 0.01）。(n=3)。
4・5. 野生株と破壊株の根端の金属濃度の比較

4・2. でマンガン欠乏処理により、破壊株の根端にネクローシスが生じた。そのため、次に根端の金属濃度を測定した。その結果、野生株と比較して破壊株のマンガン濃度が著しく減少した（図4・8A）。しかし、鉄、亜鉛、銅濃度は野生株と破壊株との間に差はなかった（図4・8 B, C, D）。

図4・8。野生株と破壊株の葉位別のマンガン濃度の比較
根の先端（1cm）を切りとり、マンガン（A）、鉄（B）、銅（C）、亜鉛濃度（D）を測定した。野生株、破壊株を通常条件で4週間生育させた後、サンプリングした。アスタリスクは、それぞれの野生株と比較してStudent's t-testで統計処理を行った有意値（*: P < 0.05）。(n=3)。
第3節 考察

OsNramp3は、OsNramp5と同じサブグループに属することが第2章のNrampメンバーの系統樹作製によって明らかとなったOsNramp3は酵母の実験によりマンガノの輸送活性があり（図4-1A）、OsNramp5と同様にマンガントランスポーターである事が明らかとなった。しかし、遺伝子発現バターンや生理学解析によって同じマンガントランスポーターであるOsNramp3とOsNramp5との間にいくつかの相違点があった。OsNramp5は主に根で発現していたが、OsNramp3は節で高い発現を示した（図4-2A）。OsNramp3遺伝子の破壊株、発現抑制株はマンガノ欠乏処理によって新葉の生育が著しく阻害され、また根の先端にネクローシスが生じた（図4-4B、図4-5）。OsNramp5破壊株は、地上部、根共に著しくマンガノ濃度が減少することで生育が阻害されたが、OsNramp3破壊株は地上部、根全体のマンガノ濃度が野生株と比較して大きな差がないのにも関わらず生育が阻害された（図4-6A、E）。OsNramp3破壊株は生育途中である新葉、根の先端部位のマンガノ濃度が減少することが明らかとなり（図4-7, 4-8A）、これら組織のマンガノ濃度が破壊株で減少することで生育が阻害されたと考えられる。このことから、OsNramp3はマンガノの吸収ではなく、マンガノの分配に関与している事が示唆された。植物体内のマンガノ分配について、いくつか報告がされている（Obata et al., 1980; Tsukamoto et al., 2006）。根から吸収されたマンガノの多くが、節に蓄積した後、発達段階である新葉へ分配されることが明らかとなっているが、その分子機構は未だ明らかとなっていない（Obata et al., 1980; Tsukamoto et al., 2006）。植物体内でのミネラル分配を考えるうえで重要になってくる器官の一つが節である。イネの場合、吸収されたミネラルは一旦節に運ばれる。イネは約15～17個の節から成り、1つの節に必ず1枚の葉が生じる。一般的に下から1～
11番目の節までは不伸長茎部であり、12番目以降から節間伸長が始まり栄養成長から生殖成長へと転換する（星川1975）。さらに、節には非常に発達した維管束が存在することが報告されている（Kawahara et al., 1975; 星川1975）。肥大維管束の肥大木部は仮導管と木部柔細胞とのモザイク構造となっており、葉やその他の節の維管束と繋がり、分散維管束には篩部柔細胞が存在し上の節や穂へと繋がる。そのため、蒸散流によって上昇したミネラルが選択的に肥大維管束の木部転送細胞から排出され、分散維管束の篩部へミネラルを輸送することで篩管輸送により発達段階の組織へ運ばれる（Kawahara et al., 1974; Kawahara et al., 1975; 星川1975）。そのため、節はミネラルを発達段階の組織へ分配するために重要な器官である。最近、節で高発現し、発達段階の組織へ輸送するために必要なトランスポーターがいくつか同定された。初めて同定されたトランスポーターがケイ素輸送体であるOsLsi6である（Yamaji et al., 2008）。OsLsi6は節1の肥大維管束の木部転送細胞に局在している。この遺伝子の破壊株は、穂殻へのケイ素分配が大幅に減少する。また、亜鉛トラスプローターとして知られるOsHMA2も節1で高発現し、分散維管束、肥大維管束の篩部に局在する。この遺伝子の破壊株は節1から上の組織の亜鉛濃度が著しく減少するため、生育も阻害される（Yamaji et al., 2013）。さらに、銅を穂へ輸送するOsYSL16（Cu·ニコチンアミン錯体）も節を介した銅の分配に重要な役割を果たす（Zheng et al., 2012）。このように、節で発現する輸送体の多くが、発達段階の組織へミネラルを輸送するために重要な役割を果たす。
OsNramp3も節で高発現する遺伝子であり（図4-2A）、さらに本研究室の皆地直樹助教によって、OsNramp3が節では肥大維管束の木部転送細胞と分散維管束の篩部に局在することが抗体染色によって明らかとなった（Yamaji et al., 2013）。このことから、OsNramp3は根から吸収されたマンガ
ンを肥大組織束から排出し、細部へ輸送することで発達段階の組織へマンガンを分配していると考えられる。さらに、OsNramp3は高濃度のマンガンに応答してタンパク質が分解されることが明らかとなった（Yamaji et al., 2013）。高濃度のマンガンを処理することにより、基部節のOsNramp3タンパク質レベルは速やかに減少し、その局在は細胞膜から小胞へと変化した（Yamaji et al., 2013）。しかし、遺伝子発現レベルではマンガン欠乏、過剰処理により遺伝子発現の応答性は見られず、タンパク質レベルのみマンガンに応答することが明らかとなった（Yamaji et al., 2013）。このことから、翻訳後修飾を受けていることが考えられる。高濃度マンガン処理によりOsNramp3のタンパク質レベルが減少する理由として、過剰なマンガンを未発達である新葉へ過剰に輸送することを防ぐため、タンパク質レベルを減少させることで新葉へのマンガン分配をコントロールしていると考えられる。

以上の結果より、OsNramp3は新葉や根の先端へマンガンを分配するために必要な輸送体であることが明らかとなった。
第5章 総合考察

本研究では、植物のミネラルを輸送するために、重要な遺伝子群の一つであるNramp（Natural Resistance-Associated Macrophage Proteins）ファミリーに属するOsNramp5、OsNramp3の機能解析を行った。遺伝子発現、組織、細胞内局在、生理学的解析などの網羅的な解析により、OsNramp5はマンガンの吸収、OsNramp3はマンガンの分配に関与することが明らかとなった。序論でも述べたように、イネ科植物の中でイネはマンガンに対して非常に強い耐性を持つ。同じイネ科のオオムギは、地上部のマンガン濃度が150µg g⁻¹ d. wt程度で毒性を示すのに対し、イネは5000µg g⁻¹ d. wt以上にならないと毒性を示さない（Vlamis and Williams., 1964）。水田環境下では、マンガンが還元され主に二価イオンの形態で多く存在する。そのため、イネはこの様な環境に適応するために多くのマンガンを吸収し、地上部で無毒化する機構が発達してきたと考えられる。しかし、長い間イネがどのようなトランスポーターを介して吸収・分配しているか明らかではなかった。

本研究により、OsNramp5は根で高発現し、外皮、内皮細胞の遠心側に局在することが明らかとなり（図2-3A）、その遺伝子の破壊株は水耕、土耕栽培の何れの条件下でも地上部のマンガン濃度が劇的に減少することから（図2-6, 2-7）、地上部へのマンガン集積にOsNramp5が大きく関与していると考えられる。一方、OsNramp3は主に節で発現し（図4-2A）、肥大維管束木部、篩部に局在する（Yamaji et al., 2013）。その遺伝子の破壊株は、新葉や根の先端などの発達段階の組織のマンガン濃度が減少することから（図4-7, 4-8A）、植物体内でマンガンを分配するために必要な輸送体であると考えられる。以上より、根圏に存在するマンガンをOsNramp5によって
て吸収し、根から基部節へ輸送された後、節で OsNramp3 によってマンガノを木部から師部に乗せ換え、師管輸送によって優先的に新葉や根の先端へ分配することで効率的にマンガノを輸送することが明らかとなった（図5）。

さらに、マンガントランスポーターである OsNramp5 はカドミウムの吸収にも関与するトランスポーターであることを突き止めた。OsNramp5 破壊株は水耕栽培条件下では地上部、根、土耕栽培下で薬、玄米中のカドミウム濃度が劇的に低下した（図2・7）。さらに、野生株と破壊株のカドミウムの短期吸収実験より、破壊株のカドミウム吸収能力を失っていることが示された（図2・12 C, D）。以上の結果から、カドミウムがマンガノの輸送体である OsNramp5 を介して吸収されていることを明らかとした。しかし、OsNramp5 破壊株では必須金属であるマンガノもできなくなり、生育や収量に負の影響を与えた（図2・7）。そのため、今後カドミウムの集積の少ない安全なコメを作るために、このトランスポーターの金属に対する選択性を改変して行く必要があると考えられる。
図 5. イネの金属輸送における OsRamp5、OsRamp3 の役割の模式図。
Althoff, F., Kopischke, S., Zobell, O., Ide, K., Ishizaki, K., Kohchi, T.,
Transgenic Res. DOI: 10.1007/s11248-013-9746-z.

Alscher, RG., Erturk, N., Heath, LS. (2002). Role of superoxide
dismutases (SODs) in controlling oxidative stress in plants. J Exp
Bot. 53: 1331-1341.

Differential regulation of nramp and irt metal transporter genes in
wild type and iron uptake mutants of tomato. J Biol Chem. 278:
24697-24704.

Bowler, C., Slooten, L., Vandenbranden, S., De Rycke, R., Botterman, J.,
superoxide dismutase can reduce cellular damage mediated by
oxygen radicals in transgenic plants. EMBO J. 10: 1723-1732.

genes—comparative genomics of the green branch of life. Cell. 129:
229-234.

参考文献

metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol. 53: 213-224.

Yokosho, K., Yamaji, N., Ueno, D., Mitani, N., Ma, JF. (2009). OsFRDL1 is a citrate transporter required for efficient translocation of iron in

謝辞

本研究を遂行するにあたり、終始適切なご指導、ご鞭撻を賜りました馬建鋒教授に深く感謝致します。
ゼニゴケの形質転換の作製にご協力いただいた京都大学大学院生命科学研究院内孝之教授、石崎公庸助教に深く感謝致します。
植物ストレス学グループの山地直樹助教には様々な実験のご助言、ご指導をして頂き感謝申し上げます。また、本実験を遂行するにあたり、当グループの皆様のご協力なくしては成し得なかったものであり、厚く御礼申し上げます。

最後になりましたが、常に温かく見守り続けてくれた両親に心から感謝申し上げます。