ON THE SOLVABILITY OF CERTAIN (SSIE) WITH
OPERATORS OF THE FORM $B(r, s)$

BRUNO DE MALAFOSSE AND EBERHARD MALKOWSKY

ABSTRACT. Given any sequence $z = (z_n)_{n \geq 1}$ of positive real numbers and any set E of complex sequences, we write E_z for the set of all sequences $y = (y_n)_{n \geq 1}$ such that $y/z = (y_n/z_n)_{n \geq 1} \in E$; in particular, $s^{(c)}$ denotes the set of all sequences y such that y/z converges. In this paper we deal with sequence spaces inclusion equations (SSIE), which are determined by an inclusion each term of which is a sum or a sum of products of sets of sequences of the form $\chi_\alpha(T)$ and $\chi_x(T)$ where a is a given sequence, the sequence x is the unknown, T is a given triangle, and $\chi_\alpha(T)$ and $\chi_x(T)$ are the matrix domains of T in the set χ. Here we determine the set of all positive sequences x for which the (SSIE) $s^{(c)}_x(B(r, s)) \subset s^{(c)}(B(r', s'))$ holds, where r, r', s' and s are real numbers, and $B(r, s)$ is the generalized operator of the first difference defined by $(B(r, s)y)_n = ry_n + sy_{n-1}$ for all $n \geq 2$ and $(B(r, s)y)_1 = ry_1$. We also determine the set of all positive sequences x for which
\[
\frac{ry_n + sy_{n-1}}{x_n} \to l \text{ implies } \frac{r'y_n + s'y_{n-1}}{x_n} \to l \ (n \to \infty)
\]
and for some scalar l. Finally, for a given sequence a, we consider the a–Tauberian problem which consists of determining the set of all x such that $s^{(c)}_x(B(r, s)) \subset s^{(c)}_a$.

1. Introduction

As usual we denote by ω the set of all complex sequences $x = (x_n)_{n \geq 1}$, and by c_0, c and ℓ_∞ the subsets of all null, convergent and bounded sequences, respectively; we write cs for the set of all convergent complex series. Also let U^+ denote the set of all sequences $u = (u_n)_{n \geq 1}$ with $u_n > 0$ for all n. Given a sequence $a \in \omega$ and a subset E of ω, Wilansky [15] introduced the notation $a^{-1} \ast E = \{y \in \omega : ay = (a_ny_n)_{n \geq 1} \in E\}$. The sets s_α, $s^{(c)}_\alpha$ and $s^{(c)}_\alpha$ were introduced in [3] by $((1/a_n)_{n \geq 1})^{-1} \ast E$ for any sequence $a \in U^+$ and $E \in \{\ell_\infty, c_0, c\}$. In [4, 5] the sum $\chi_\alpha + \chi'_b$ and the product $\chi_\alpha \ast \chi'_b$ were defined, where χ and χ' are any of the symbols s, $s^{(c)}_a$, or $s^{(c)}_s$; also matrix transformations in the sets $s_\alpha + s^{(c)}_\alpha(\Delta q)$ and $s_\alpha + s^{(c)}_\alpha(\Delta q)$ were characterized, where Δ is the operator of the first difference. In [9] de Malafosse and

Mathematics Subject Classification. 40H05, 46A45.

Key words and phrases. Matrix transformations; BK space; the spaces s_α, $s^{(c)}_\alpha$ and $s^{(c)}_\alpha$; (SSIE); (SSE) with operator; band matrix $B(r, s)$; Tauberian result.

Research of the second author supported by the research project #174007 of the Serbian Ministry of Science, Technology and Environmental Development.
Malkowsky gave the properties of the spectrum of the matrix of weighted means \overline{N}_q considered as an operator in the set s_α. In [10] characterizations can be found of the classes of matrix transformations from $s_\alpha(\Delta^q)$ into χ_b, where χ is any of the symbols s, s^0, or $s^{(c)}$. Using the spectral properties of the operator of the first difference in the sets s_α^0 and $s_\beta^{(c)}$, in [5] we were able to simply the set $s_\alpha^0((\Delta - \lambda I)^h) + s_\beta^{(c)}((\Delta - \mu I)^l)$, where h and l are complex numbers, and α and β are given sequences; also matrix transformations in this set were characterized in [5]. In [11] de Malafosse and Rakočević gave applications of the measure of noncompactness to operators on the spaces s_α, s_α^0, $s_\alpha^{(c)}$ and ℓ_α^p to determine compact operators between some of these spaces. Sequence spaces inclusion equations (SSIE) and sequence spaces equations (SSE) were introduced and studied in [2, 8, 7]. They are determined by an inclusion or identity each term of which is a sum or a sum of products of sets of the form $\chi_a(T)$ and $\chi_{f(x)}(T)$ where χ is any of the symbols s, s^0, or $s^{(c)}$, a is a given sequence in U^+, x is the unknown, f maps U^+ to itself, and T is a triangle. In this paper we use the operator represented by the triangle $B(r, s)$, called the generalized operator of the first difference and defined by $(B(r, s)y)_n = ry_n + sy_{n-1}$ for all $n \geq 2$ and $(B(r, s)y)_1 = ry_1$. Then we deal with the (SSIE) $s_x^{(c)}(B(r, s)) \subset s_x^{(c)}(B(r', s'))$, which is equivalent to

$$\frac{ry_n + sy_{n-1}}{x_n} \to l \implies \frac{r'y_n + s'y_{n-1}}{x_n} \to l' \quad (n \to \infty)$$

for all x. We then obtain extensions of results stated in [3, 2, 8, 7, 6]. The notion of an a–Tauberian theorem was introduced in [6] as follows. For a given sequence a, an a–Tauberian theorem is one in which the convergence of a sequence $y/a = (y_n/a_n)_{n \geq 1}$ is deduced from the convergence of some transform of the sequence together with some side conditions, the so–called a–Tauberian conditions. In [6], for given sequences λ and μ, we determined the set of all sequences a such that

$$\frac{1}{\lambda_n} \sum_{k=1}^{n} \mu_k \left(\sum_{i=k}^{\infty} y_i \right) \to l \implies \frac{y_n}{a_n} \to l' \quad (n \to \infty)$$

for all $y \in cs$. In [6] a–Tauberian theorem is an extension of Hardy's Tauberian theorem. In Hardy's Tauberian theorem it is shown that under some condition for $y = (y_n)_{n \geq 1}$, we have $n^{-1} \sum_{k=1}^{n} y_k \to l$ implies $y_n \to l$ as n tends to infinity. In a similar way, for a given sequence a, we will determine the set of all positive sequences x for which

$$\frac{ry_n + sy_{n-1}}{x_n} \to l \implies \frac{y_n}{a_n} \to l \quad (n \to \infty)$$

for all y. Would you like to proceed with this text or do you have any other questions?
If \(a_n = 1 \) for all \(n \) we obtain the classical Tauberian problems. In [14] we considered the \((C, \lambda, \mu)\) summability that generalizes the \((C, 1)\) summability and established conditions for the equivalence between the convergence of \(x_n/\mu_n \) and the convergence of the sequence

\[
\mu'_n = 1/\lambda_n \sum_{m=1}^{n} \hat{\mu}_m(x),
\]

where \(\hat{\mu}_n(x) = (x_1 + \ldots + x_n)/\mu_n \), and also for the equivalence between the convergence of \(\hat{\mu}_n(x) \) and the convergence of \(\mu'_n \).

This paper is organized as follows. In Section 2 we recall some results on AK and BK spaces and on the set \(S_{a,b} \). In Section 3 we consider the operator \(C(\xi) \) and its inverse \(\Delta(\xi) \), and recall the definitions and properties of the sets \(\hat{\Gamma}, \hat{C}, \Gamma \) and \(\hat{C}_1 \). In Section 4 we solve the (SSIE) \(s_x^{(c)}(B(r, s)) \subset s_x^{(c)}(B(r', s')) \) where \(B(r, s) \) is the generalized operator of the first difference defined above. In Section 5 we determine the set of all sequences \(x \) of positive real numbers such that \((r y_n + s y_{n-1})/x_n \to l \) implies \((r' y_n + s' y_{n-1})/x_n \to l \) as \(n \) tends to infinity, for some scalar \(l \) and for given reals \(r, s, r' \) and \(s' \). Finally in Section 6 we consider some \(a\)–Tauberian theorems; this is achieved by determining the set of all \(x \) such that \(s_x^{(c)}(B(r, s)) \subset s_x^{(a)} \).

2. Notations and preliminary results

Let \(A = (a_{nk})_{n,k \geq 1} \) be an infinite matrix and \(y = (y_k)_{k \geq 1} \) be a sequence. Then we write

\[
A_n y = \sum_{k=1}^{\infty} a_{nk} y_k \text{ for any integer } n \geq 1
\]

and \(A y = (A_n y)_{n \geq 1} \) provided all the series in (2.1) converge.

Let \(E \) and \(F \) be any subsets of \(\omega \). Then we write \((E, F)\) for the class of all infinite matrices \(A \) for which the series in (2.1) converge for all \(y \in E \) and all \(n \), and \(A y \in F \) for all \(y \in E \). So if \(A \in (E, F) \) then we are led to the study of the operator \(\Lambda = \Lambda_A : E \to F \) defined by \(\Lambda y = A y \) and we identify the operator \(\Lambda \) with the matrix \(A \).

A Banach space \(E \) of complex sequences is said to be a BK space if each projection \(P_n : E \to \mathbb{C} \) defined by \(P_n(y) = y_n \) for all \(y = (y_n)_{n \geq 1} \in E \) is continuous. A BK space \(E \) is said to have \(AK \) if every sequence \(y = (y_k)_{k \geq 1} \in E \) has a unique representation \(y = \sum_{k=1}^{\infty} y_k e^{(k)} \) where \(e^{(k)} \) is the sequence with 1 in the \(k \)-th position and 0 otherwise.
If \(u \) and \(v \) are sequences and \(E \) and \(F \) are two subsets of \(\omega \), then we write \(uv = (u_nv_n)_{n \geq 1} \) and
\[
M(E,F) = \{ u = (u_n)_{n \geq 1} : uv \in F \text{ for all } v \in E \},
\]
for the multiplier space of \(E \) and \(F \).

To simplify notations, we use the diagonal matrix \(D_a \) defined by \([D_a]_{nn} = a_n\) for all \(n \), write
\[
D_a * E = (1/a)^{-1} * E = \{ (y_n)_{n \geq 1} \in \omega : (y_n/a_n)_{n \in E} \}
\]
for any \(a \in U^+ \) and any \(E \subset \omega \), and define \(s_a = D_a * \ell_\infty \), \(s_0^a = D_a * c_0 \) and
\[
s_{a,c} = D_a * c \text{ (see, for instance, \([4, 3, 11]\))}.
\]

Each of the spaces \(D_a * \chi \), where \(\chi \in \{ \ell_\infty, c_0, c \} \), is a BK space normed by \(\| \xi \|_{s_a} = \sup_{n \geq 1} (|\xi_n|/a_n) \) and \(s_0^a \) has AK (see \([15, \text{Theorem 4.3.6}]\)).

Now let \(a = (a_n)_{n \geq 1}, b = (b_n)_{n \geq 1} \in U^+ \). By \(S_{a,b} \) we denote the set of all infinite matrices \(\Lambda = (\lambda_{nk})_{n,k \geq 1} \) such that
\[
\| \Lambda \|_{S_{a,b}} = \sup_{n \geq 1} \left(\frac{1}{b_n} \sum_{k=1}^\infty |\lambda_{nk}|a_k \right) < \infty.
\]

It is well known that \(\Lambda \in (s_a, s_b) \) if and only if \(\Lambda \in S_{a,b} \). So we can write \((s_a, s_b) = S_{a,b} \).

When \(s_a = s_b \) we obtain the Banach algebra with identity \(S_{a,b} = S_a \) (see \([3]\)), normed by \(\| \Lambda \|_{S_a} = \| \Lambda \|_{S_{a,a}} \). We also have \(\Lambda \in (s_a, s_a) \) if and only if \(\Lambda \in S_a \).

If \(a = (r^n)_{n \geq 1} \), the sets \(S_a, s_a, s_0^a \) and \(s_{a,c} \) are denoted by \(S_r, s_r, s_0^r \) and
\(s_{r,c} \), respectively (see \([4]\)). When \(r = 1 \), we obtain \(s_1 = \ell_\infty \), \(s_1^0 = c_0 \) and
\(s_{1,c} = c \), and writing \(e = (1,1,...) \) we have \(S_1 = S_e \). It is well known that
\((s_1, s_1) = (c_0, s_1) = (c, s_1) = S_1 \) (see, for instance, \([15, \text{Example 8.4.5A}]\)).

In the sequel we will frequently use the obvious fact that \(\Lambda \in (\chi_a, \chi'_b) \) if and only if \(D_{1/b} \Lambda D_a \in (\chi_e, \chi'_e) \) where \(\chi, \chi' \) are any of the symbols \(s_0^0, s_{(c)} \), or \(s \).

For any subset \(E \) of \(\omega \), we put \(\Lambda E = \{ \eta \in \omega : \eta = \Lambda y \text{ for some } y \in E \} \).

If \(F \) is a subset of \(\omega \), we write \(F(\Lambda) = F_{\Lambda} = \{ y \in \omega : \Lambda y \in F \} \) for the matrix domain of \(\Lambda \) in \(F \).

3. The operators \(C(\xi), \Delta(\xi) \) and the sets \(\tilde{\Gamma}, \tilde{C}, \Gamma \) and \(\widetilde{\Gamma} \)

An infinite matrix \(T = (t_{nk})_{n,k \geq 1} \) is said to be a triangle if \(t_{nk} = 0 \) for \(k > n \) and \(t_{nn} \neq 0 \) for all \(n \). Now let \(U \) be the set of all sequences \((u_n)_{n \geq 1} \in \omega \) with \(u_n \neq 0 \) for all \(n \). If \(\xi = (\xi_n)_{n \geq 1} \in U \), we write \(C(\xi) \) for the triangle
with
\[
[C(\xi)]_{nk} = \begin{cases}
\frac{1}{\xi_n} & \text{if } k \leq n, \\
0 & \text{otherwise},
\end{cases}
\]
(see, for instance, [12]-[14]). It is easy to see that the triangle \(\Delta(\xi)\) defined by
\[
[\Delta(\xi)]_{nk} = \begin{cases}
\xi_n & \text{if } k = n, \\
-\xi_{n-1} & \text{if } k = n-1 \text{ and } n \geq 2, \\
0 & \text{otherwise},
\end{cases}
\]
is the inverse of \(C(\xi)\), that is, \(C(\xi)(\Delta(\xi)y) = \Delta(\xi)(C(\xi)y) = y\) for all \(y \in \omega\). If \(\xi = e\) we get \(\Delta(e) = \Delta\), where \(\Delta\) is the well–known operator of the first difference defined by \(\Delta_ny = y_n - y_{n-1}\) for all \(y \in \omega\) and all \(n \geq 1\), with the convention \(y_0 = 0\). It is usual to write \(\Sigma = C(e)\). We note that \(\Delta\) and \(\Sigma\) are inverse to one another, and \(\Delta, \Sigma \in \mathcal{S}_R\) for any \(R > 1\).

To simplify notation, for \(t > 0\) and \(\xi \in U^+\), we write \(\xi'_n = t^{-n}\xi_n\) and
\[
c_n(t, \xi) = [C(\xi') \xi'_n]_n = \frac{t^n}{\xi_n} \sum_{k=1}^{n} \frac{\xi_k}{t^k} \quad \text{for all } n,
\]
and
\[
c_n(\xi) = c_n(1, \xi) = \frac{1}{\xi_n} \sum_{k=1}^{n} \xi_k \quad \text{for all } n.
\]
We also consider the sets
\[
\hat{C} = \{ \xi \in U^+ : c_n(\xi) \to l \ (n \to \infty) \text{ for some scalar } l \},
\]
\[
\hat{C}_1 = \left\{ \xi \in U^+ : \sup_n c_n(\xi) < \infty \right\},
\]
\[
\hat{\Gamma} = \left\{ \xi \in U^+ : \lim_{n \to \infty} \left(\frac{\xi_{n-1}}{\xi_n} \right) < 1 \right\},
\]
\[
\Gamma = \left\{ \xi \in U^+ : \limsup_{n \to \infty} \left(\frac{\xi_{n-1}}{\xi_n} \right) < 1 \right\}
\]
and
\[
G_1 = \{ \xi \in U^+ : \text{there are } C > 0 \text{ and } \gamma > 1 \text{ such that } \xi_n \geq C\gamma^n \text{ for all } n \}.
\]
We obtain the next lemma by [3, Proposition 2.1, p. 1786] and [9, Proposition 2.2, p. 88].

Lemma 3.1. We have \(\hat{C} = \hat{\Gamma} \subset \Gamma \subset \hat{C}_1 \subset G_1\).
4. On the (SSIE) $s_x^{(c)}(B(r, s)) \subset s_x^{(c)}(B(r', s'))$ for real numbers r, s, r' and s'

In this subsection we determine, for given real numbers r, s, r' and s', the set of all $x \in U^+$ such that

$$\frac{ry_n + sy_{n-1}}{x_n} \to l \quad \text{implies} \quad \frac{r'y_n + s'y_{n-1}}{x_n} \to l' \quad (n \to \infty)$$

for all y and for some scalars l and l'. We will see that this is equivalent to determining the set of all $x \in U^+$ that satisfy the (SSIE)

$$(4.1) \quad s_x^{(c)}(B(r, s)) \subset s_x^{(c)}(B(r', s')),$$

where $B(r, s)$ and $B(r', s')$ are the generalized operators of the first difference.

We recall the next result which is a direct consequence of the famous Silverman-Toeplitz theorem.

Lemma 4.1. We have:

i) $\Lambda \in (c, c)$ if and only if

$$\Lambda \in S_1, \quad \lim_{n \to \infty} \sum_{k=1}^{\infty} \lambda_{nk} = l \quad \text{and} \quad \lim_{k \to \infty} \lambda_{nk} = l_k \quad \text{for all} \quad k \geq 1$$

for some scalars l and l_k (see, for instance, [15, Theorem 1.3.6]).

ii) Let $\Lambda \in (c, c)$ and $y \in c$. If $\lim_{k \to \infty} \lambda_{nk} = 0$ for all $k \geq 1$, then

$$\lim_{n \to \infty} y_n = L \quad \text{implies} \quad \lim_{n \to \infty} \Lambda_n y = lL$$

(see, for instance, [15, Theorem 1.3.8]).

To state the next theorem we need the following result.

Proposition 4.2. Let $x \in U^+$. Then

$$c_n(x) = \frac{1}{x_n} \sum_{k=1}^{n} x_k \to l \quad \text{if and only if} \quad \frac{x_{n-1}}{x_n} \to 1 - \frac{1}{l} \quad (n \to \infty)$$

for some scalar l.

Proof. We put $L = 1 - 1/l$ and $\Sigma_n = \sum_{k=1}^{n} x_k$ and note that $l \geq 1$, since $\Sigma_n/x_n = 1 + \Sigma_{n-1}/x_n \geq 1$ for all n.

It was shown in [3, Proposition 2.1, p. 1786] that $c_n(x) \to l \quad (n \to \infty)$ implies $x_{n-1}/x_n \to 1 - 1/l \quad (n \to \infty)$. To show the converse implication, we assume $x_{n-1}/x_n \to 1 - 1/l \quad (n \to \infty)$.

Since we have $\hat{C} = \hat{\Gamma}$ by Lemma 3.1, we can write $\Sigma_n/x_n \to l_1 (n \to \infty)$ for some scalar l_1, and must show $l_1 = l$. We have for every $n > 2$

$$\frac{x_{n-1}}{x_n} = \frac{\Sigma_{n-1} - \Sigma_{n-2}}{x_n} = \frac{\Sigma_{n-1}}{x_{n-1}} - \frac{\Sigma_{n-2}}{x_{n-2}} \frac{x_{n-1}}{x_n}$$

and

$$\frac{\Sigma_{n-1} - \Sigma_{n-2}}{x_n} \to l_1 L - l_1 L^2 = L \ (n \to \infty).$$

If $L \neq 0$ then we have $l_1 = 1/(1 - L)$ and since $L = 1 - 1/l$, we conclude

$$l_1 = \frac{1}{1 - \left(1 - \frac{1}{l}\right)} = l.$$

If $L = 0$ then we have $l = 1$ and

$$\frac{\Sigma_n}{x_n} = \frac{\Sigma_{n-1}}{x_{n-1}} \frac{x_{n-1}}{x_n} + 1 \to 1 \ (n \to \infty).$$

\[\square\]

We recall that $B(r, s)$, where r and s are real numbers, is the lower triangular matrix

$$B(r, s) = \begin{pmatrix} r & s & 0 \\ s & r & 0 \\ 0 & s & r \\ \vdots & \vdots & \ddots \end{pmatrix}.$$

For $r, s \neq 0$, the matrix $B(r, s)$ was introduced by Altay and Basar [1] and was called the generalized operator of the first difference.

In the next theorem we confine our studies to the case when $\alpha = -s/r > 0$ if $\delta = rs' - r's \neq 0$.

Theorem 4.3. Let r, s, r' and s' be real numbers with $r, s \neq 0$, and $\delta = rs' - r's \neq 0$.

i) If $\delta = 0$, then (SSIE) (4.1) holds for all x.

ii) If $\delta \neq 0$ and $\alpha = -s/r > 0$, then (4.1) holds if and only if

$$\lim_{n \to \infty} \frac{x_{n-1}}{x_n} < \frac{1}{\alpha}.$$

Proof. Inclusion (4.1) is equivalent to $I \in (s_x^c(B(r, s)), s_x^c(B(r', s')))$, that is, to

$$\tilde{B} = B(r', s')B^{-1}(r, s) \in \left(s_x^c, s_x^c\right).$$

This means

$$D_{1/x} \tilde{B} D_x \in (c, c).$$

(4.2)
Since \(r \neq 0 \), the matrix \(B(r, s) \) is invertible, its inverse is a triangle and elementary calculations give

\[
[B^{-1}(r, s)]_{nk} = \frac{1}{r} \alpha^{n-k} \quad \text{for} \quad 1 \leq k \leq n.
\]

Then we obtain \(\tilde{B}_{nn} = r'/r \), and have for \(k \leq n - 1 \)

\[
\tilde{B}_{nk} = s' \left[B^{-1}(r, s)\right]_{n-1,k} + r' \left[B^{-1}(r, s)\right]_{nk}
\]

\[
= s' \frac{1}{r} \alpha^{n-k-1} + r' \frac{1}{r} \alpha^{n-k}
\]

\[
= \alpha^{n-k-1} \left(\frac{s'}{r} + \frac{r'}{r} \frac{1}{\alpha} \right) = \alpha^{n-k-1} \frac{\delta}{r^2}.
\]

It follows that

\[
\left[D_{1/x} \tilde{B}D_x\right]_{nk} = \begin{cases}
\frac{1}{x_n} \alpha^{n-k-1} \frac{\delta}{r^2} x_k & \text{for } k \leq n - 1, \\
\frac{r'}{r} & \text{for } k = n.
\end{cases}
\]

We deduce from the characterization of \((c, c)\) in Lemma 4.1 (i) that (4.2) holds if and only if

\[
\sum_{k=1}^{n} \left[D_{1/x} \tilde{B}D_x\right]_{nk} = \frac{r'}{r} - \frac{\delta}{rs} \bar{C}_n(\alpha, x) \to l \quad (n \to \infty)
\]

for some scalar \(l \), where

\[
\bar{c}_n(\alpha, x) = c_n(\alpha, x) - 1 = \frac{1}{x_n} \sum_{k=1}^{n-1} \frac{x_k}{\alpha^k}.
\]

Indeed this condition implies \(D_{1/x} \tilde{B}D_x \in S_1 \) and \((x_n/\alpha^n)_n \in \tilde{C}\). Since we have \(\tilde{C} \subset G_1 \) by Lemma 3.1, we deduce \(x_n/\alpha^n \to \infty \) \((n \to \infty)\) and have for each \(k \) and for \(n > k \)

\[
\left[D_{1/x} \tilde{B}D_x\right]_{nk} = \frac{1}{x_n} \alpha^{n-k-1} \frac{\delta}{r^2} x_k = \frac{1}{x_n} \alpha^{n-k} \left(\alpha^{k-1} \frac{\delta}{r^2} x_k \right) = o(1) \quad (n \to \infty).
\]

i) If \(\delta = 0 \) then the sum in (4.3) reduces to \(r'/r \) and inclusion (4.1) holds for all \(x \).

ii) If \(\delta \neq 0 \) then inclusion (4.1) means that (4.3) is convergent and

\[
\bar{c}_n(\alpha, x) \to -\frac{l - \frac{r'}{r}}{1 - \frac{r}{rs} \delta} \quad (n \to \infty),
\]
so we have \((x_n/\alpha^n)_n \in \widehat{C}\). By Lemma 3.1 we have \(\widehat{C} = \widehat{\Gamma}\), and so (4.2) is equivalent to
\[
\lim_{n \to \infty} \frac{x_{n-1} \alpha^n}{\alpha^{n-1} x_n} = \alpha \lim_{n \to \infty} \frac{x_{n-1}}{x_n} < 1.
\]
This shows ii).

□

The following result can easily be shown when \(r = 0\) or \(s = 0\).

Theorem 4.4. Let \(r, s, r'\) and \(s'\) be real numbers.

i) Let \(r \neq 0\) and \(s = 0\).
 a) If \(s' \neq 0\), then (4.1) holds if and only if
 \[
 \frac{x_{n-1}}{x_n} \to l \ (n \to \infty) \text{ for some scalar } l.
 \]
 b) If \(s' = 0\), then (4.1) holds for all \(x\).

ii) Let \(r = 0\) and \(s \neq 0\).
 a) If \(r' \neq 0\), then (4.1) holds if and only if
 \[
 \frac{x_n}{x_{n-1}} \to l' \ (n \to \infty) \text{ for some scalar } l'.
 \]
 b) If \(r' = 0\), then (4.1) holds for all \(x\).

iii) Let \(r = s = 0\).
 a) If \(r' \neq 0\), or \(s' \neq 0\), then (4.1) has no solution.
 b) If \(r' = s' = 0\), then (4.1) holds for all \(x\).

Proof. We only prove Part i), the proofs of the other parts are left to the reader.

i) Let \(r \neq 0\) and \(s = 0\).

Since \(B(r, s) = rI\) we have \(s_x^{(c)}(B(r, s)) = s_x^{(c)}\). So inclusion (4.1) is equivalent to \(D_{1/\delta}B(r', s')D_x \in (c, c)\). This means that there are \(K \geq 0\) and \(L\) such that
\[
(*) \quad \begin{cases}
|r'| + |s'| \frac{x_{n-1}}{x_n} \leq K \text{ for all } n, \\
r' + s' \frac{x_{n-1}}{x_n} \to L \ (n \to \infty).
\end{cases}
\]

a) If \(s' \neq 0\) then we have
 \[
 \frac{x_{n-1}}{x_n} \to \frac{L - r'}{s'} \ (n \to \infty).
 \]
 b) If \(s' = 0\) then the system (*) is satisfied for all \(x\).

□

In the general case when \(r, s, \delta, \alpha \neq 0\) we can state the following remark.
Remark. Condition (4.1) holds if and only if

\[(i) \quad \frac{\alpha_n}{x_n} \sum_{k=1}^{n-1} x_k \alpha_k \to l \quad (n \to \infty),\]

\[(ii) \quad \frac{|\alpha_n|}{x_n} \sum_{k=1}^{n-1} \frac{x_k}{|\alpha_k|^k} \leq K \text{ for all } n\]

and

\[(iii) \quad \frac{\alpha_n}{x_n} \to l' \quad (n \to \infty)\]

for some scalars \(l\) and \(l'\), and a constant \(K > 0\). This result is a direct consequence of condition (4.2) in the proof of Theorem 4.3.

5. The case of regularity

5.1. The set of all \(x \in U^+\) such that \(x_n^{-1}B(r,s)y_n \to l\) implies \(x_n^{-1}B(r',s')y_n \to l \quad (n \to \infty)\) for all \(y\) and for some \(l\). A matrix \(A \in (c,c)\) and the corresponding operator \(\Lambda\) are said to be regular if \(y_n \to l\) implies \(A_n y \to l \quad (n \to \infty)\) for all \(y \in \omega\) and for some scalar \(l\). We then write \(A \in (c,c)_{reg}\). As a direct consequence of Lemma 4.1, we have the known result (see, for instance, [15, Theorem 1.3.9])

Lemma 5.1. We have \(\Lambda \in (c,c)_{reg}\) if and only if the next statements hold,

a) \(\Lambda \in S_1\),

b) \(\sum_{k=1}^{\infty} \lambda_{nk} \to 1 \quad (n \to \infty)\),

c) \(\lambda_{nk} \to 0 \quad (n \to \infty)\) for \(k = 1, 2, \ldots\).

Now we consider the next question, where \(r, s, r'\) and \(s'\) are real numbers. What is the set of all \(x \in U^+\) such that

\[(5.1) \quad \frac{ry_n + sy_n-1}{x_n} \to l \text{ implies } \frac{r'y_n + s'y_n-1}{x_n} \to l \quad (n \to \infty)\]

for some scalar \(l'\)? The answer to this question is given by the following theorem where we confine our studies to the case \(-s/r > 0\) when \(\delta \neq 0\).

Theorem 5.2. Let \(r, s, r'\) and \(s'\) be real numbers.

i) Let \(\delta \neq 0\) and \(\alpha = -s/r > 0\).

a) If \(\tau = (r - r')/(s - s') \leq 0\), then (5.1) holds if and only if

\[\lim_{n \to \infty} \frac{x_{n-1}}{x_n} = -\tau.\]

b) If \(\tau > 0\), then (5.1) has no solutions.

ii) Let \(\delta = 0\) and \(r \neq 0\).

a) If \(r = r'\), then (5.1) holds for all \(x\).
b) If $r \neq r'$, then (5.1) has no solution.

Proof. First we note that statement (5.1) obviously means that

(5.2)

$$z_n = \left[D_{1/x} B(r,s)y \right]_n \to l$$

for all y and for some scalar l. Since $y = B^{-1}(r,s)D_xz$, for $r \neq 0$ statement (5.2) is equivalent to

$$z_n \to l \implies \left[D_{1/x} \tilde{B}D_xz \right]_n \to l \quad (n \to \infty)$$

where $\tilde{B} = B(r',s')B^{-1}(r,s)$. Then (5.1) is equivalent to

(5.3)

$$D_{1/x} \tilde{B}D_x \in (c,c)_{\text{reg}},$$

which, by Lemma 5.1, is equivalent to

$$D_{1/x} \tilde{B}D_x \in S_1,$$

and

$$\sum_{k=1}^{n} \left[D_{1/x} \tilde{B}D_x \right]_{nk} \to 1 \quad (n \to \infty),$$

Using this characterization of $(c,c)_{\text{reg}}$ and reasoning as in Theorem 4.3, we deduce that (5.3) holds if and only if

(5.4)

$$\sum_{k=1}^{n} \left[D_{1/x} \tilde{B}D_x \right]_{nk} = \frac{r'}{r} - \frac{\delta}{rs} \tilde{c}_n(\alpha, x) \to 1 \quad (n \to \infty).$$

i) Now we can show a) and b).

Putting $z_n = x_n\alpha^{-n}$, we have

$$\tilde{c}_n(z) = \frac{1}{z_n} \sum_{k=1}^{n-1} z_k \to L \quad (n \to \infty),$$

where

(5.5)

$$L = \frac{1 - \frac{r'}{r}}{\frac{r'}{\delta} - \frac{r'}{rs}} \geq 0.$$
Using (5.5) we immediately obtain \(L/(L + 1) = -\alpha \tau \). We conclude

\[
\frac{x_{n-1}}{x_n} = \frac{z_{n-1}}{z_n} \frac{1}{\alpha} \rightarrow -\tau \geq 0 \ (n \rightarrow \infty).
\]

ii) If \(\delta = 0 \) the sum defined in (5.4) reduces to \(r'/r = 1 \), that is, \(r = r' \). We then have \(s = s' \) and (5.1) holds for all \(x \).

Now give a remark in which we consider a Tauberian problem using the operator of the generalized difference sequence.

Remark. If \(r > 1 \) or \(r < 0 \), then \(ry_n + (1 - r)y_{n-1} \rightarrow l \) implies \(y_n \rightarrow l \) \((n \rightarrow \infty) \) for all \(y \) and for some scalar \(l \). Indeed, it is enough to take \(r' = 1 \), \(s' = 0 \) and \(x = e \) in Theorem 4.3. Then we have \(1 = -(r - 1)/s \) with \(-s/r > 0\).

Now we consider the equivalence

\[
(5.6) \quad \frac{ry_n + sy_{n-1}}{x_n} \rightarrow l \quad \text{if and only if} \quad \frac{r'y_n + s'y_{n-1}}{x_n} \rightarrow l \quad (n \rightarrow \infty)
\]

and for some scalar \(l \). Note that in [3] we determined the set of all \(x \in U^+ \) such that \(s_{x}^{(c)}(\Delta) = s_{x}^{(c)} \). In [7] we gave a necessary and sufficient condition under which \(a, b \in U^+ \) satisfy \(s_{a}^{(c)}(\Delta) = s_{b}^{(c)} \). Since we have \(B(-1,1) = \Delta \) and \(B(1,0) = I \), then \(s_{x}^{(c)}(B(-1,1)) = s_{x}^{(c)}(\Delta) \) and \(s_{x}^{(c)}(B(1,0)) = s_{x}^{(c)} \). Thus we see that condition (5.6) is an extension of [3, 7].

We obtain the next result as a direct consequence of Theorem 5.2.

Theorem 5.3. Let \(r, s, r' \) and \(s' \) be real numbers, all different from zero.

i) Let \(\delta \neq 0 \) and \(r/s, r'/s' \leq 0 \).
 a) If \(\tau = (r - r')/(s - s') \leq 0 \), then the solutions of (5.6) are defined by

\[
\lim_{n \rightarrow \infty} \frac{x_{n-1}}{x_n} = -\tau.
\]

b) If \(\tau > 0 \), then (5.6) has no solutions.

ii) Let \(\delta = 0 \).
 a) If \(r = r' \), then (5.6) holds for all \(x \).
 b) If \(r \neq r' \), then (5.6) has no solution.

Now we deal with the case when \(r = 0 \) or \(s = 0 \).

Theorem 5.4. i) We assume \(r \neq 0 \) and \(s = 0 \).
 a) Let \(s' \neq 0 \).
 \(\alpha) \) If \(\tau_1 = (r - r')/s' \geq 0 \), then (5.1) holds if and only if

\[
(5.7) \quad \lim_{n \rightarrow \infty} \frac{x_{n-1}}{x_n} = \tau_1.
\]
β) If $\tau_1 < 0$, then (5.1) has no solution.

b) Let $s' = 0$.

α) If $r = r'$, then (5.1) holds for all x.

β) If $r \neq r'$, then (5.1) has no solution.

(ii) We assume $r = 0$ and $s \neq 0$.

a) Let $r' \neq 0$.

α) If $l = 0$, then (5.1) is equivalent to $(x_n/x_{n-1})_n \in \ell_\infty$.

β) If $l \neq 0$, then condition (5.1) holds if and only if

$$\lim_{n \to \infty} \frac{x_n}{x_{n-1}} = \frac{s - s'}{r'} \geq 0.$$

b) Let $r' = 0$.

α) If $s' = s$, then (5.1) holds for all x.

β) If $s' \neq s$, then (5.1) has no solution.

(iii) Let $r = s = 0$.

a) If $r' \neq 0$, or $s' \neq 0$, then (5.1) has no solution.

b) If $r' = s' = 0$, then (5.1) holds for all x.

Proof. i) We assume $r \neq 0$ and $s = 0$. Since $B(r, s) = rI$, statement (5.1) is equivalent to $D_{1/x} B(r'/r, s'/r) D_x \in (c, c)_{\text{reg}}$, that is,

$$\left| \frac{r'}{r} \right| + \left| \frac{s'}{r} \right| \frac{x_{n-1}}{x_n} \leq K \text{ for all } n,$$

(5.8)

$$\frac{r'}{r} + \frac{s'}{r} \frac{x_{n-1}}{x_n} \to 1 \text{ } (n \to \infty).$$

(5.9)

a) Let $s' \neq 0$. Since condition (5.9) implies (5.8), statement (5.1) is equivalent to (5.7).

b) Let $s' = 0$.

α) If $r = r'$, then the previous system holds for all x.

β) If $r \neq r'$, then the system has no solution.

ii) We assume $r = 0$ and $s \neq 0$.

a) Let $r' \neq 0$. Then statement (5.1) reduces to

$$s \frac{y_{n-1}}{x_n} \to l \text{ implies } t_n = \frac{r'y_n + s'y_{n-1}}{x_n} \to l \text{ } (n \to \infty).$$

(5.10)

α) If $l = 0$, then we have

$$s^0_x (B(0, s)) = \left\{ y \in \omega : \frac{y_n}{x_{n+1}} = o(1) \text{ } (n \to \infty) \right\} = s_{x+},$$

where $x^+ = (x_{n+1})_n$. Then statement (5.1) with $l = 0$ is equivalent to $s^0_{x+} \subset s^0_x (B(r', s'))$, $B(r', s') \in (s^0_{x+}, s^0_x)$,
that is, to

\[(5.11)\quad |r'| \frac{x_{n+1}}{x_n} + |s'| \leq K \text{ for all } n.\]

Obviously the condition in (5.11) is equivalent to

\[(x_n/x_{n-1}) \in \ell_\infty.\]

\(\beta) \) If \(l \neq 0 \), we put \(z_n = s y_{n-1}/x_n \). Then (5.1) is equivalent to

\[z_n \to l \text{ implies } t_n = \frac{r'}{s} z_{n+1} + \frac{s'}{s} z_n \to l (n \to \infty),\]

that is, to

\[\frac{x_{n+1}}{x_n} = \frac{t_n - \frac{s'}{s} z_n}{r'} \to \frac{s - s'}{r'} (n \to \infty).\]

b) Let \(r' = 0 \). Then \(z_n = s y_{n-1}/x_n \to l \) implies \(s' y_{n-1}/x_n \to l = l s'/s \ (n \to \infty) \).

\(\alpha) \) If \(s' = s \), then statement (5.1) holds for all \(x \in U^+ \).

\(\beta) \) If \(s' \neq s \), then (5.1) has no solution.

iii) We assume \(r = s = 0 \). Then we must have \(B(r', s') \in (\omega, s_0^+) \) which implies \(r' = s' = 0 \). Indeed we assume either \(r' \neq 0 \) or \(s' \neq 0 \).

Let \(r' \neq 0 \). We consider the cases \(s'/r' \geq 0 \) and \(s'/r' < 0 \).

If \(s'/r' \geq 0 \), then we take \(y = (R^n x_n) \in \omega \) with \(R > 1 \), and obtain

\[\left| \frac{B(r', s') y_n}{x_n} \right| = \left| \frac{r'}{x_n} \right| y_n + \frac{s'}{r'} y_{n-1} \geq |r'| R^n \text{ for all } n.\]

Then we have \(|B(r', s') y_n/x_n| \to \infty \ (n \to \infty) \) and \(\omega \subset s_x(B(r', s')) \) is impossible.

If \(s'/r' < 0 \), then we take \(y_n = (-R)^n x_n \) with \(R > 1 \), and obtain

\[\left| \frac{B(r', s') y_n}{x_n} \right| = \left| \frac{r'}{x_n} \right| \left(y_n + \frac{s'}{r'} y_{n-1} \right) \geq |r'| R^n \left(1 - \frac{s' x_{n-1}}{r' R x_n} \right) \]

\[\geq |r'| R^n \text{ for all } n,\]

and we conclude as above.

The case \(s' \neq 0 \) can be treated similarly.
5.2. Applications. Let $r < 0$ and $s > -1$, and different from 0 and consider the sets
\[
S_1(r) = \left\{ x \in U^+ : \frac{ry_n + y_{n-1}}{x_n} \to l \text{ implies } \frac{\Delta y_n}{x_n} \to l \ (n \to \infty) \right\}
\]
for all $y \in \omega$ and for some scalar l}
and
\[
S_2(s) = \left\{ x \in U^+ : \frac{\Delta y_n}{x_n} \to l \text{ implies } \frac{sy_n}{x_n} \to l \ (n \to \infty) \right\}
\]
for all $y \in \omega$ and for some scalar l.
We can determine the set $S_1(r) \cap S_2(s)$. Since $\delta = -r + 1 \neq 0$, we have by Theorem 5.2
\[
S_1(r) = \left\{ x \in U^+ : \frac{x_{n-1}}{x_n} \to \frac{1 - r}{2} \ (n \to \infty) \right\},
\]
and similarly
\[
S_2(s) = \left\{ x \in U^+ : \frac{x_{n-1}}{x_n} \to \frac{1}{1 + s} \ (n \to \infty) \right\}.
\]
We conclude
\[
S_1(r) \cap S_2(s) = \begin{cases} S_2(s) & \text{if } s = (1 + r)/(1 - r), \\ \emptyset & \text{otherwise.} \end{cases}
\]
Note that if $r < 0$, then $S_1(r) \cap S_2(s) \neq \emptyset$ implies $|s| < 1$ and $s \neq 0$.

6. The α-Tauberian (SSIE) $s^{(c)}_x(B(r, s)) \subset s^{(c)}_a$

6.1. α-Tauberian (SSIE) with operators of the form $B(r, s)$. Here we consider the α-Tauberian (SSIE) problem for given $a \in U^+$, (see [6]), stated as follows. Let r, s, r' and s' be real numbers, and let a be a given sequence; what is the set S_a of all $x \in U^+$ such that
\[
\frac{ry_n + sy_{n-1}}{x_n} \to l \text{ implies } \frac{y_n}{a_n} \to l' \ (n \to \infty) \text{ for all } y,
\]
and for some scalars l and l'? This statement is equivalent to the solvability of the (SSIE)
(6.1) $s^{(c)}_x(B(r, s)) \subset s^{(c)}_a$.
As we will see in Proposition 6.1, since the condition on the sequence a is less restrictive for (6.1) than for the (SSIE) $s^{(c)}_a(B(r, s)) \subset s^{(c)}_x$ it is natural to begin with the study of the set S_a. To state the next result, we use the
set cs_b of all $x \in U^+$ such that $\sum_{k=1}^{\infty} x_k/b_k < \infty$, where $b \in U^+$. For $b = e$ we obtain $cs_e = cs \cap U^+$. Throughout this section we assume $\alpha = -s/r > 0$.

Proposition 6.1. We assume $(\alpha^n/a_n)_n \in c$. Then $x \in S_a$ if and only if

\[(6.2) \quad \left(\frac{\alpha^n}{a_n} \sum_{k=1}^{n} \frac{x_k}{\alpha^k}\right)_n \in c.\]

Moreover if $a_n \sim \lambda \alpha^n$ ($n \to \infty$) for $\lambda > 0$, that is, $a_n/\lambda \alpha^n \to 1$ ($n \to \infty$), then we have

$S_a = cs(\alpha^n)_n$.

Proof. We have $x \in S_a$ if and only if (6.1) holds, which is equivalent to

\[(6.3) \quad B^{-1}(r,s) \in \left(s_{x}^{(c)}, s_{a}^{(c)}\right),\]

that is, to $D_{1/a}B^{-1}(r,s)D_x \in (c,c)$. From the expression of $B^{-1}(r,s)$ in the proof of Theorem 5.2, and the characterization of (c,c), condition (6.3) is equivalent to (6.2) and $(\alpha^n/a_n)_n \in c$. Now we assume $a_n/\alpha^n \to \lambda > 0$ ($n \to \infty$). Then we have $x \in S_a$ if and only if

$$u_n = \frac{\alpha^n}{a_n} \sum_{k=1}^{n} \frac{x_k}{\alpha^k} \to L \ (n \to \infty)$$

for some scalar L, that is,

$$\sum_{k=1}^{n} \frac{x_k}{\alpha^k} = \frac{u_n}{\alpha^n} \to \frac{L}{\lambda} \ (n \to \infty),$$

and $x \in cs(\alpha^n)_n$. \hfill \Box

When $a = e$, we obtain the next Tauberian result.

Corollary 6.2. i) If $0 < \alpha \leq 1$, then $x \in S_e$ if and only if

$$\left(\frac{\alpha^n}{\alpha^n} \sum_{k=1}^{n} \frac{x_k}{\alpha^k}\right)_n \in c.$$

ii) If $\alpha = 1$, then $S_e = cs \cap U^+$.

As a direct application we also have the next result,

Corollary 6.3. We assume $0 < \alpha < 1$. Then $(x^n)_n \in S_e$ if and only if $0 < x \leq 1$.

Proof. First we assume $x \neq \alpha$. Since $x_k = x^k$ for all k, we have $(x^n)_n \in S_c$ if and only if

$$\alpha^n \sum_{k=1}^{n} \frac{x_k}{\alpha^k} = \alpha^n \frac{x}{\alpha} \frac{1}{1 - \frac{x}{\alpha}} - \alpha^n \left(\frac{x}{\alpha} \right)^{n+1} \frac{1}{1 - \frac{x}{\alpha}}$$

is convergent as n tends to infinity, that is, for $0 < x \leq 1$ and $x \neq \alpha$. If $x = \alpha < 1$, we have $\alpha^n \sum_{k=1}^{n} (x/\alpha)^k = n\alpha^n = o(1) \ (n \to \infty)$.

We immediately deduce the next examples.

Example. Let $u, v > 0$. Then $x \in U^+$ satisfies the condition

$$\frac{uy_n - vy_{n-1}}{x_n} \to l \text{ implies } \left(\frac{u}{v} \right)^n y_n \to l' \ (n \to \infty)$$

for all y and for some scalars l and l', if and only if $\sum_{k=1}^{\infty} (u/v)^k x_k < \infty$. This result can be obtained writing $\alpha = v/u$ and $a_n = \alpha^n$ in Proposition 6.1. In particular, if $u = v = 1$, then the set of all $x \in U^+$ such that

$$\frac{\Delta y_n}{x_n} \to l \text{ implies } y_n \to l' \ (n \to \infty)$$

is equal to $cs \cap U^+$.

Remark. We obtain a similar result when a and x are interchanged in (SSIE) (6.1). Indeed, let $a \in cs(\alpha_n)_n$ and let \overline{S}_a be the set of all $x \in U^+$ such that the (SSIE) $\overline{S}_a^{(c)}(B(r, s)) \subset \overline{S}_x^{(c)}$ holds. Then $x \in \overline{S}_a$ if and only if

$$\left(\frac{\alpha^n}{x_n} \right)_n \in c.$$ \hfill (6.4)

This result follows from the fact that here the condition $D_{1/x}B^{-1}(r, s)D_a \in (c, c)$ is equivalent to (6.4) and

$$\left(\frac{\alpha^n \sum_{k=1}^{n} a_k}{x_n \alpha^k} \right)_n \in c,$$ \hfill (6.5)

and we conclude since (6.4) implies (6.5).

We immediately deduce the following Tauberian result.
Remark. If $a \in cs(\alpha_n)_n$, then
\[
\frac{B(r, s)y_n}{a_n} \to l \text{ implies } y_n \to l' \quad (n \to \infty)
\]
for all y and for some scalars l and l', if and only if
\[
0 < -s/r \leq 1.
\]
This result comes from the fact that $e \in \overline{S}_a$ if and only if (6.6) holds.

6.2. The case of the operator of the first difference.

6.2.1. The general case. If $r = -s = 1$, then we obtain $B(r, s) = \Delta$. We confine our studies to the case when $a_n \to \infty$ ($n \to \infty$). We denote by \tilde{S}_a the set of all $x \in U^+$ such that
\[
\frac{\Delta y_n}{x_n} \to l \text{ implies } \frac{y_n}{a_n} \to l' \quad (n \to \infty)
\]
for all y and for some scalars l and l'.

We state the next elementary result.

Proposition 6.4. We assume $a_n \to \infty$ ($n \to \infty$). Then the set \tilde{S}_a is equal to the set of all $x \in U^+$ such that
\[
\frac{1}{a_n} \sum_{k=1}^{n} x_k \to L \quad (n \to \infty)
\]
for some scalar L; moreover we have $l' = lL$ in (6.7).

Proof. It is enough to apply Proposition 6.1 with $\alpha = 1$, and $a^n/a_n = 1/a_n \to 0$ ($n \to \infty$). By Lemma 4.1, we have $l' = lL$. \hfill \Box

6.2.2. Applications to the case when $a_n = n^{\beta + 1}$ with $\beta > -1$, or $a_n = \ln n$.

It is well known that if $\xi > -1$, then
\[
\sum_{k=1}^{n} k^\xi \sim \frac{n^{\xi+1}}{\xi+1} \quad (n \to \infty).
\]

The next result is a direct consequence of Proposition 6.4 and (6.9).

Corollary 6.5. Let β be a real number.

i) If $\beta > -1$, then
\[
\frac{\Delta y_n}{n^{\beta}} \to l \text{ implies } \frac{y_n}{n^{\beta+1}} \to \frac{l}{\beta+1} \quad (n \to \infty)
\]
for all y and for some scalar l.
ii) If \(\beta = -1 \), then

\[
\frac{\Delta y_n}{n^\beta} = n \Delta y_n \to l \text{ implies } \frac{y_n}{\ln n} \to l \quad (n \to \infty)
\]

for all \(y \) and for some scalar \(l \).

Proof.

i) Part i) is a direct consequence of Proposition 6.4 and (6.9), since

\[
v_n = \frac{1}{n^{\beta+1}} \sum_{k=1}^{n} k^\beta \to \frac{1}{\beta+1} \quad (n \to \infty).
\]

ii) Trivially we have

\[
1 + \ln \left(\frac{n+1}{2}\right) = 1 + \int_{2}^{n+1} \frac{dx}{x} \leq s_n = \sum_{k=1}^{n} \frac{1}{k} \leq 1 + \int_{1}^{n} \frac{dx}{x}
\]

\[
= 1 + \ln n \quad \text{for all } n.
\]

We immediately deduce that \(s_n/\ln n \to 1 \quad (n \to \infty) \) and \(n \Delta y_n \to l \)

imply

\[
\frac{y_n}{\ln n} \to l \lim_{n \to \infty} s_n / \ln n = l \quad (n \to \infty)
\]

for all \(y \).

□

As a direct consequence of the preceding result we obtain,

Corollary 6.6.

i) If \(\beta > -1 \), then

\[
y_n - \left(1 - \frac{1}{n}\right)^\beta y_{n-1} \to L \text{ implies } \frac{y_n}{n} \to \frac{L}{\beta+1} \quad (n \to \infty)
\]

for all \(y \).

ii) If \(\beta = -1 \), then

\[
y_n - \left(1 - \frac{1}{n}\right)^\beta y_{n-1} = y_n - \frac{n}{n-1} y_{n-1} \to L
\]

implies

\[
\frac{y_n}{n \ln n} \to L \quad (n \to \infty)
\]

for all \(y \).
References

[5] de Malafosse, B., *Sum of sequence spaces and matrix transformations mapping in $s_0^\alpha \left((\Delta - \lambda I)^h + s_\beta^{(c)} \left((\Delta - \mu I)^l \right)\right)$, Acta Math. Hung. 122 (2008) 217-230

[9] de Malafosse, B., Malkowsky, E., *Matrix transformations in the sets $\chi (N^p N_q)$ where χ is in the form s_c, or s_0^α, or $s_\beta^{(c)}$, Filomat 17 (2003) 85-106.

Bruno de Malafosse
LMAH Université du Havre
25 rue Philippe Lebon, BP 540
76058 Le Havre cedex, France
e-mail address: bdemalaf@wanadoo.fr

Eberhard Malkowsky
Fatih University
34500 Büyükçekmece
İstanbul Turkey
e-mail address: eberhard.malkowsky@math.uni-giessen.de

(Received March 28, 2012)
(Revised November 13, 2012)