Erysiphe graminis の formae speciales とそれらの宿主との相互関係の遺伝

日浦 運治・部田 英雄

緒 言

Flor (1955) によれば、ある作物の品種と病原菌の race が抵抗関係にあるときは、品種には 抗性性遺伝子があり、race はその抵抗性遺伝子に対応した 特異的非病原性遺伝子がある。ところで、カモジグサの うどんこ病菌（E. graminis f. sp. agropyri 以下 agropyri と略す）はカモジグサ属を侵すが コムギを侵さない。 コムギの うどんこ病菌（E. graminis f. sp. tritici 以下 tritici と略す）はコムギ属を侵すがカモジグサを侵さない。こうした formae speciales とその宿主の属との特異関係はほとんど無担当性になっているのであろう。 しかし、formae speciales とそれらの宿主との関係にも Flor の遺伝子 対遺伝子説が当てはまるならば、formae speciales の非病原性の遺伝の仕方が、それに対応した宿主の抵抗性遺伝子を推定できるであろう。この研究の目的は、うどんこ病菌の agropyri と tritici が容易に交雑できることを利用し（日浦と部田 1968）。これらの formae speciales のカモジグサおよびコムギに対する病原性の遺伝を明らかにし。それによって、formae speciales とそれらの宿主との特異関係の仕組を推察することである。

日浦と部田（1973）はこの研究の一環として、agropyri × tritici の雑種系をコムギ品種に接種した結果を報告した。 今回は前回に使ったと全く同じ雑種系をカモジグサ 17 系統に接種した 結果を報告し、コムギとカモジグサに対する接種結果から formae speciales とそれらの宿主との相互関係の仕組について考察する。

遺伝子対遺伝子説によれば、agropyri のコムギに対する非病原性遺伝子によって、コムギの agropyri に対する抵抗性遺伝子を推察できる。 しかし、agropyri はコムギを侵さないから agropyri なのはない。 我々が知りたいのは、agropyri がなぜ特異的にカモジグサ属を侵さすことである。 遺伝子対遺伝子説ではつぎの 3 つの組合せ、すなわち、抵抗性：病原性、罹病性：病原性、および罹病性：非病原性の場合病気が起こる。進化の立場からすれば、病原菌は病原性であるが、たまたま宿主が罹病性であるため生き残ってきたとは考えられない。宿主はもうどんな抵抗性を持ち、絶えず進化している。 遺伝子対遺伝子説によれば、病原菌は同一病原菌の病原性遺伝子の働きの結果として起こる。宿主の抵抗性遺伝子は病原菌が対応した病原性遺伝子を持っているときは不活性であり、病原菌が対応した非病原性遺伝子を持っているときは活性である。 本報告では、Flor の遺伝子対遺伝子説を Favret の解釈に従って適用
した。また、病原性（virulence）あるいは非病原性（avirulence）は、病原菌がある品種あるいは系統を特異的に侵すあるいは侵さない性質を意味し、病原力（aggressiveness）は病原菌がそれぞれの品種あるいは系統を侵す程度を表すために使った（Plank 1969）。

本研究に使用したカモジグサ系統の収集にあたり、貴重なカモジグサの種および系統を分離していた京都大学植物生産質研究施設の阪本敏男博士に深甚の謝意を表します。また、荒木隆男（北海道農試）、高橋（岩手大学）、佐々木（草薙試験場）、天野幸治（元新潟大学）、久能均（三重大学）、尾崎茂（島根農試）および松本省平（九州農試）の各博士から、それぞれの地域のカモジグサ株をお送りいただきました。厚くお礼申し上げます。

実験材料および方法

うどんこ病菌は活物寄生菌であるから、培養宿主（最初に子のう胞子を接種し、そこにできた培養を保存するために使用する宿主）によって、種種集団は決定的選択をする。前報告（日浦と朝田 1973）では agropyri の菌系 A1 と tritici の菌系 t2 を交雑し、できた雑種の子のう胞子をカモジグサ葉上で単胞子分離したA-培養およびコムギ葉上で単胞子分離したW-培養の 2 つの培養集団を使用した。今回も前回とまったく同じ 2 つの培養集団を使った。

接種に使用したカモジグサ属はカモジグサ（Agropyron tsukushiensе var. transiens Ohwi 以下 Ag. t. と略す）13 系統およびアオカモジグサ（Agropyron ciliare Franchet 以下 Ag. c. と略す）4 系統である。これら 17 のカモジグサ系統は、日本の各地から収集したカモジグサ 40 株の中、tritici の菌系 t2 には抵抗性であるが agropyri の菌系 A1 に感染型 3 以上に感染し、菌系 A1×菌系 t2 の雑種に対して、互に異なった抵抗性を示した系統である。これらの系統は採集地名を系統名とした（第 1 表）。なお、本文中単にカモジグサといった場合は、アオカモジグサも含まれている。

実験方法は前報告（日浦と朝田 1973）と同じである。

実験結果と考察

E. graminis f. sp. tritici のカモジグサに対する非病原性の遺伝

A-培養 96 菌系および W-培養 94 菌系をカモジグサ 17 系統に接種した結果は第 1 表の通りである。感染型 3 ～ 4 および 4 を病原性とし、感染型 3 以下をなんらかの非病原性遺伝子が関与しているとすると、そのカモジグサ系統に対する非病原性にもいくつかの非病原性遺伝子が関与していることになる。しかも、17 系統は互に異なった抵抗性を示しているから、17 系統全体に関与する非病原性遺伝子はかなりの数となり、カモジグサ系統にはそれに対応した多くの抵抗性遺伝子が予想される。しかし、第 1 表では考察を容易にするため、感染型 0 ～ 1 以下を非病原性、感染型 1 以上を病原性とした。そうすると、W-培養は 3 系統上で非病原性：病原性が 1：1 となり、A-培養は 9 系統上で 1：1 の分離を示した。17 の系統はそれぞれ異なった抵抗性を示している。系統三島を培養宿主とした

が学研究
第１表 *Erysiphe graminis* f. sp. *agropyri* 菌系 A4 と *E. graminis* f. sp. *tritici* 菌系 A4 との微生物をカモジダサ 17 系統に接種したときの病原性の分離

<table>
<thead>
<tr>
<th>カモジダサ 系統名</th>
<th>品種名</th>
<th>観察菌系の反応</th>
<th>A-A培養</th>
<th>観察菌系</th>
<th>W-A培養</th>
<th>観察菌系</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1 t1</td>
<td>t2</td>
<td>A3 t1</td>
<td>I V</td>
</tr>
<tr>
<td>西部関野</td>
<td>Ag. t.</td>
<td>3 0</td>
<td>71 35</td>
<td>0 3:1</td>
<td>76 18</td>
<td>0 3:1</td>
</tr>
<tr>
<td>新潟 1</td>
<td></td>
<td>3-4</td>
<td>47 47</td>
<td>2 1:1</td>
<td>45 49</td>
<td>0 1:1</td>
</tr>
<tr>
<td>新潟 2</td>
<td></td>
<td>3-4</td>
<td>71 21</td>
<td>0 3:1</td>
<td>79 15</td>
<td>0 3:1</td>
</tr>
<tr>
<td>山梨</td>
<td></td>
<td>4 0</td>
<td>67 29</td>
<td>0 3:1</td>
<td>68 24</td>
<td>2 3:1</td>
</tr>
<tr>
<td>鳥取</td>
<td></td>
<td>2 0</td>
<td>46 49</td>
<td>1 1:1</td>
<td>70 22</td>
<td>2 3:1</td>
</tr>
<tr>
<td>藤原</td>
<td></td>
<td>3 0</td>
<td>71 24</td>
<td>1 3:1</td>
<td>74 20</td>
<td>0 3:1</td>
</tr>
<tr>
<td>藤原 3</td>
<td></td>
<td>3 0</td>
<td>79 17</td>
<td>0 3:1</td>
<td>73 21</td>
<td>0 3:1</td>
</tr>
<tr>
<td>藤原 4</td>
<td></td>
<td>3 0</td>
<td>75 19</td>
<td>2 3:1</td>
<td>62 31</td>
<td>1 3:1</td>
</tr>
<tr>
<td>農業</td>
<td></td>
<td>2 1 0</td>
<td>51 11</td>
<td>0 1:1</td>
<td>41 52</td>
<td>1 3:1</td>
</tr>
<tr>
<td>農業 4</td>
<td></td>
<td>1 0</td>
<td>39 56</td>
<td>1 1:1</td>
<td>71 19</td>
<td>4 3:1</td>
</tr>
<tr>
<td>北海道</td>
<td></td>
<td>3 0 0-1</td>
<td>68 28</td>
<td>0 3:1</td>
<td>39 47</td>
<td>8 1:1</td>
</tr>
<tr>
<td>岩手</td>
<td></td>
<td>3-4 0-1</td>
<td>71 22</td>
<td>3 3:1</td>
<td>73 18</td>
<td>3 3:1</td>
</tr>
<tr>
<td>秋田</td>
<td></td>
<td>3 0 0-1</td>
<td>47 49</td>
<td>0 1:1</td>
<td>69 25</td>
<td>0 3:1</td>
</tr>
<tr>
<td>岩手 1</td>
<td>Ag. c.</td>
<td>4 0 0-1</td>
<td>47 47</td>
<td>2 1:1</td>
<td>68 25</td>
<td>1 3:1</td>
</tr>
<tr>
<td>萩原</td>
<td></td>
<td>3-4 0-1</td>
<td>52 43</td>
<td>1 1:1</td>
<td>71 22</td>
<td>1 3:1</td>
</tr>
<tr>
<td>萩原 1</td>
<td></td>
<td>3-4 0-1</td>
<td>52 40</td>
<td>4 1:1</td>
<td>75 17</td>
<td>2 3:1</td>
</tr>
<tr>
<td>北海道 1</td>
<td></td>
<td>4 0 0-1</td>
<td>47 47</td>
<td>2 1:1</td>
<td>63 25</td>
<td>6 3:1</td>
</tr>
</tbody>
</table>

1）A-A培養 = A1×t1 菌系をカモジダサ Agropyron tsukushienne var. transiens Ohwi 系統三島上で単胞子培養した 96 系統
2）W-A培養 = A1×t1 菌系をコムギ農林 4 号葉上で単胞子培養した 94 系統
3）A = 非病原性, I = 中間性, V = 病原性
4）Ag. t. = Agropyron tsukushienne var. transiens Ohwi
5）Ag. c. = Agropyron cilare Franchet

A-A培養が なぜ抵抗性の異なる系統にもよく発生するのであろうか、第１表では 7 つの系統が W-A培養より A-A培養に明らかによく発生している。これら 7 系統と系統三島 (A-A培養の培養宿主) に対する W-A培養の非病原性の関係は第 2 表の通りである。

第２表 W-A培養のカモジダサ系統三島に対する非病原性と他の系統に対する非病原性との相互関係

<table>
<thead>
<tr>
<th>カモジダサ 系統</th>
<th>X(1:1)</th>
<th>y(3:1)</th>
<th>それぞれの病原性を示した観察菌系</th>
<th>3:1:3:1に対する P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AxAy</td>
<td>AxVv</td>
</tr>
<tr>
<td>三島</td>
<td>羽島</td>
<td>45</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>羽島</td>
<td>萩原</td>
<td>45</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>萩原</td>
<td>萩原</td>
<td>45</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>羽島</td>
<td>萩原</td>
<td>39</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>萩原</td>
<td>萩原</td>
<td>41</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>羽島</td>
<td>萩原</td>
<td>42</td>
<td>7</td>
<td>33</td>
</tr>
<tr>
<td>羽島</td>
<td>萩原</td>
<td>35</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>Chancellor</td>
<td>Asosan</td>
<td>52</td>
<td>2</td>
<td>24</td>
</tr>
</tbody>
</table>

1）x(1:1)=x 系統上において、W-A培養の非病原性は 1:1 の分離をする
2）y(3:1)=y 系統上において、W-A培養の非病原性は 3:1 の分離をする
3）AxAy=系統 x、系統 y に非病原性
4）VxVv=系統 x、系統 y に病原性

56 卷 (1977) 241
W-培養の非病原性: 病原性は三島上で1:1, 羽島上で3:1であった。もし, 三島と羽島に対する非病原性遺伝子がすべて異なっているとすると, 非病原性に関する4つの表現型は3:1:3:1になるはずである。第2表の観察結果はこの期待値に適合していない。もし, 羽島に対する2つの非病原性遺伝子の中1つは三島に対する遺伝子と共通であるとすると, 両系統に非病原性: 羽島だけに非病原性: 両系統に病原性が2:1:1となり, 三島だけに非病原性はないはずである。しかし, 実験結果では, わずかではあるが観察されている。これは, 感染型1以上を病原性としたため, 三島に対する非病原性の分離が1:1に見えたのであって, 実際には三島には羽島にない抵抗性遺伝子があると考えなければならないようであるが, 分離した4菌系を無視すると2:1:1の期待値によく適合している。

第2表の一番下に示したAsosan x Cc 8はBriggle (1969)によって, コムギ品種ChancellorにAsosanの抵抗性遺伝子が導入されたnear-isogenic lineである。それゆえ, Asosan x Cc 8はChancellorと共通の抵抗性遺伝子を持っているはずであるが, ChancellorとAsosan x Cc 8に対するW-培養の分離状況は三島と羽島のそれに対極めてよく似ている。これらの結果から, 三島と羽島は1つは共通の抵抗性遺伝子をもっているといえよう。系統研究4および系統由良もまったく同様である。

A-培養は系統三島によって類似分けられた菌系群で, すなわち, 三嶋の抵抗性遺伝子に対する病原性遺伝子を持ち菌系群である。系統三島と共通の抵抗性遺伝子を持たない羽島, 農研4および由良がW-培養よりA-培養によく感染するのはそのためである。

系統岐阜1, 芦屋, 岡山1および北見に対する非病原性と三島に対するそれとは独立の分離を示している。しかし, 三島だけに非病原性の菌系が少ない傾向がある。やはり, こ

<table>
<thead>
<tr>
<th>カモジダサ系统</th>
<th>それぞれの病原性を示した観察菌系数</th>
<th>1:1:1:1に対するP</th>
</tr>
</thead>
<tbody>
<tr>
<td>農研3</td>
<td>AxAy</td>
<td>.7 〜 .5</td>
</tr>
<tr>
<td>羽島1</td>
<td>AxVx</td>
<td>.3 〜 .2</td>
</tr>
<tr>
<td>農研4</td>
<td>VxVy</td>
<td>極小</td>
</tr>
<tr>
<td>由良1</td>
<td>VxVy</td>
<td>.8 〜 .7</td>
</tr>
<tr>
<td>岐阜1</td>
<td>AxVy</td>
<td>.9 〜 .8</td>
</tr>
<tr>
<td>芦屋星</td>
<td>AxVy</td>
<td>.3 〜 .2</td>
</tr>
<tr>
<td>北見星</td>
<td>AxVy</td>
<td>.9 〜 .9</td>
</tr>
</tbody>
</table>

第3表 カモジダサ9系統に対するA-培養の非病原性の相互関係（9系統上において, A-培養の非病原性は単性雑種の分離をする）
それらの系統も三島と共通の抵抗性遺伝子を持っているが、感染型1以上を病原性としたため、検出できなかったのかも知れない。
つぎに、A-培養は9系統上の1:1の分離をした。これら9系統に対するA-培養の非病原性の相互関係は第3表の通りである。4つの組合わせにおいて顕著な遺伝的関連が認められる。分離状況から連鎖が予想される。しかし、つぎにあげる理由によって、第3表の顕著な遺伝的関連が主報遺伝子の連鎖だけによるものか、あるいは共通の非病原性遺伝子などへの影響によるものかもしれない。まず、1）これらの系統上で非病原性が1:1の分離を示すのは、感染型1以上を病原性としたからであって、実際はいくつかの微弱非病原性遺伝子が関与していると考えられる。2）関連が認められるのは同一系統内である。すなわち、農研3と農研4はstukushienseである。また、芦屋、岐阜1、岡山1および匹見はciliareである。stukushienseの系統とciliareの系統間には関連は認められない。
3）関連が認められるciliareの4系統をどのように組合せてもよく似た分離状況を示す。
4）コムギ品種に対する非病原性間にも関連が認められるが、コムギとカモジサに対する非病原性間には関連は認められない。これについては次の報告で述べる。
5）Chul×Ce8およびSonora×Ce8はChancellorとnear-isogeniclinesであるから、共通の抵抗性遺伝子を持っていると考えられる。カモジサ系統間の連鎖らしい分離状況と極めてよく似た分離を示している。
6）E. graminisの染色体は2本といわれている（Kimber and Wolfe 1966）が、Hiura（1964）およびMoseman（1966）によれば、連鎖が認められた例は非常に少ない。

以上第1、2および3表に示した結果をまとめると、菌系A1のカモジサに対する非病原性にはかなり多くの非病原性遺伝子が関与し、これら非病原性遺伝子にはいくつかのカモジサ系統に対し共通のもの、あるいは連鎖したものがある。カモジサにはそれら非病原性遺伝子に対応した抵抗性遺伝子があり、多くの系統間で共通の抵抗性遺伝子を予想される。菌系A1にはこれらの抵抗性遺伝子に対応した病原性遺伝子がある。

菌系A1×菌系t2雑種のカモジサおよびコムギに対する病原性の範囲と感染型との関係

A-培養およびW-培養は17のカモジサに対する病原性によって、それぞれ86および77の病原型に分けられる。病原型は病原型の範囲の問題である。他方、第1表を見ればわかるように、病原性というのも、感染型4よりいろんな程度の中間性が多い、活動寄生菌では感染型すなわち病原力と考えてよいから、雑種の病原性の範囲とその感染型は、それらの雑種がある宿主上で生き残れるかどうかに直接関係する問題である。

第4表は菌系A1×菌系t2雑種のカモジサ17系統（第1表）およびコムギ30品種（日浦と部田1973）に対する病原性の範囲と感染型との関係をまとめたものである。カモジサ17系統に接種した場合は、病原性の範囲を非病原性、狭病原性（1～5系統に病原性）および広病原性（6系統以上に病原性）の3階級に分けた。感染型は低感染型（感染型1～1～2）、中感染型（感染型2～3）および高感染型（感染型3～4～4）の3階級に分けた。そうすると、W-培養を接種した場合、病原性の範囲が狭い菌系は低感染型といえる。その他の場合は、そうした傾向はあるが、有意な差は認められなかった。

コムギ30品種に接種した場合は、病原性の範囲を非病原性、狭病原性（1～6品種に
病原性、中病原性（7～14品種に病原性）および非病原性（15品種以上に病原性）の4
階級に分け、この場合は病原性の範囲と感染型には顕著な平行性が認められた。すなわ
ち、病原性菌系には低感染型が多く、広病原性菌系には高感染型が多い。

第4表 菌系A₁×菌系t₂雑種をカモジグサ17系統およびコムギ30品種に
接種したときの病原性の範囲と感染型との関係

<table>
<thead>
<tr>
<th>接種された植作物</th>
<th>菌系</th>
<th>病原性の範囲（品種数）</th>
<th>観察菌系数</th>
<th>感染数</th>
<th>それぞれの感染型の頻度 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1～5</td>
<td>41</td>
<td>150</td>
<td>55.3*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6～17</td>
<td>52</td>
<td>477</td>
<td>47.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1～5</td>
<td>4</td>
<td>0</td>
<td>55.8*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6～13</td>
<td>45</td>
<td>113</td>
<td>48.7*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1～6</td>
<td>24</td>
<td>0</td>
<td>76.8**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7～14</td>
<td>49</td>
<td>113</td>
<td>47.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15～29</td>
<td>45</td>
<td>95</td>
<td>44.2**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1～6</td>
<td>29</td>
<td>107</td>
<td>62.6**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7～14</td>
<td>31</td>
<td>325</td>
<td>43.7**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15～30</td>
<td>29</td>
<td>544</td>
<td>33.1**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1～5</td>
<td>3</td>
<td>0</td>
<td>62.6**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6～17</td>
<td>5</td>
<td>0</td>
<td>43.7**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1～5</td>
<td>5</td>
<td>0</td>
<td>33.1**</td>
</tr>
</tbody>
</table>

* 5%で病原性の範囲間に有意差あり， ** 1%で病原性の範囲間に有意差あり。

コムギ品種に対してはこのような顕著な傾向が認められるのに、カモジグサに対しては
有意差が認められないのはたぶんにゆくであろうか。まず第1に、第1表に示したように、供
試カモジグサ系は菌系A₁に対して感染型4を示すものが少なく、ほとんどが感染型
3あるいは3～4である。しかも菌系t₂に完全な抵抗性でなく、感染型0（1）あるいは
0～1のものが多い。このため、A₁×t₂雑種の感染率に幅がある。感染型の類似が困難で
あった。コムギ30品種はほとんどが菌系A₁に感染型0，菌系t₂に感染型4であった。第
2に、カモジグサでは播種から接種までの期間は長く、供試苗の感受性が環境の影響を
受けやすい。また株2～3 mmの第1葉上での感染型の判定はかなり困難である。以上の
ような理由で、カモジグサはコムギの場合のような顕著な傾向は認められなかったと思
われるが、実験材料および方法を改めれば、コムギの場合と同様の現象が認められると考え
る。

formae speciales とそれらの宿主との相互関係の仕組

カモジグサの17系統および系統三島に対し、agropyriの菌系A₁は病原性であるが、
triticの菌系t₂は非病原性である。もし、菌系A₁と菌系t₂の差がただ1つの主働遺
伝子の働きであるならば、系統三島を培養宿主としたA培養96菌系は17系统すべてにも
病原性でなければならない。実験結果は17系統すべてに非病原性から17系統すべてに病原
性までいろいろである。このことは、すでに述べたように，カモジグサの菌系t₂に対し
ている抵抗性遺伝子を持っているが、菌系A₁はそれらに対応した病原性遺伝子を持
っていると考えられる。

244 農学研究
Cotter と Roberts (1963) は Puccinia graminis avenae と P. graminis agrostidis との雑種菌系を使って、従来黒さび病に罹病性と考えられていた多くのエンパク品種から抵抗性遺伝子を検出した。Sanghi と Luig (1971) も異常な非病原性遺伝子を持った P. graminis の菌系 (P. graminis f. sp. tritici と f. sp. secalis の雑種) を使って、ツメキ品種 Mentana から 5 つ、Yalta から 4 つの黒さび病抵抗性遺伝子を報告している。筆者らも菌系 A₁×菌系 t₂ の雑種を使って、うどんこ病に罹病性のツメキ品種中に、菌系 t₂ には罹病性であるが、菌系 A₁ には抵抗性の遺伝子が多数あることを確認している (未発表)。これらの事実から、罹病性といわれている品種にも他の formae speciales に対しがはいくつかの抵抗性遺伝子があることがわかる。

この実験に使用した 17 のカモジサ系統のうどんこ病に対する抵抗性遺伝子について、宿主の交配による直接的分析は行なっていないが、これまでに述べた実験結果から、つぎの仮説が導き出される。1) formae speciales 間の差は病原性に関与する多くの遺伝子の差の集積である。2) 罹病性といわれる宿主もうどんこ病に対するいろんな抵抗性遺伝子を持っており、これらの抵抗性遺伝子は同一の種あるいは属の系統中に共通しているものである。3) それぞれの抵抗性遺伝子の作用力は弱いか、それぞれ特異性があり、うどんこ病菌の非病原性遺伝子との間に Flor の遺伝子対遺伝子説が成立する。4) 宿主のすべての抵抗性遺伝子に対応した病原性遺伝子があるとき感染型 4 となり、抵抗性遺伝子に対応した非病原性遺伝子の組合わせが多いほど病原性の範囲は狭く、低感染型となる。

この仮説に基づいて、宿主と formae speciales の雑種との関係を示すと第 5 表のようになる。

第 5 表 宿主の抵抗性遺伝子型と formae speciales 間雑種の非病原性遺伝子型との関係

<table>
<thead>
<tr>
<th>宿主の遺伝子型</th>
<th>V₁V₂V₃×A₁A₂A₃ における雑種の遺伝子型</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁R₂R₃R₄</td>
<td>V₁V₂V₃</td>
</tr>
<tr>
<td>R₁R₂R₃R₄</td>
<td>V₁I</td>
</tr>
</tbody>
</table>

Rₙ = 抵抗性遺伝子, Vₙ = 病原性遺伝子, Aₙ = 非病原性遺伝子, V = 病原性, I = 中間性,
A = 非病原性, AA = 高度非病原性

第 5 表は最も単純な例として、宿主に 3 種類の抵抗性遺伝子 R₁, R₂ および R₃ がある場合のモデルである。それぞれの宿主は少なくとも 2 つ以上の抵抗性遺伝子を持っているということと、宿主の抵抗性遺伝子型は 4 種類となる。非病原性の forma specialis の遺伝子型は A₁A₂A₃ であり、病原性の forma specialis の遺伝子型は V₁V₂V₃ である。そうすると 2 つの formae speciales の雑種の遺伝子型は第 5 表のように 8 種類となる。一つの抵抗性遺伝子とそれに対応した非病原性遺伝子の組合わせ R-A があるとき中間性 (感染型 1, 2 あるいは 3) となり、2 つの R-A があると非病原性 (感染型 0-1), 3 つ以上の R-A があると高度非病原性 (感染型 0) となり、すべての組合わせが R-V のとき病原性 (感染型 3-4 あるいは 4) となるとする。そうすると、第 5 表の病原性：中間性：非病原
第6表 モデルにおける感染型の頻度と接種実験で得た感染型の頻度との比較

<table>
<thead>
<tr>
<th>モデルおよび実験の種類</th>
<th>それぞれの感染型の頻度（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>病原性</td>
</tr>
<tr>
<td>宿主の抵抗性遺伝子が3種類としたモデル</td>
<td>22</td>
</tr>
<tr>
<td>宿主の抵抗性遺伝子が4種類としたモデル</td>
<td>19</td>
</tr>
<tr>
<td>宿主の抵抗性遺伝子が5種類としたモデル</td>
<td>16</td>
</tr>
<tr>
<td>カモジグサ17系統にA-培養64菌系を接種した場合</td>
<td>1</td>
</tr>
<tr>
<td>カモジグサ17系統にW-培養94菌系を接種した場合</td>
<td>2</td>
</tr>
<tr>
<td>コムギ30品種にA-培養64菌系を接種した場合</td>
<td>0.5</td>
</tr>
<tr>
<td>コムギ30品種にW-培養94菌系を接種した場合</td>
<td>9</td>
</tr>
</tbody>
</table>

性：高度非病原性は22:47:28:3となる。もし抵抗性遺伝子を4あるいは5種類と想定すると、第6表に示したように、17のカモジグサあるいは30のコムギ品種菌系A1×菌系t2の雑種を接種した結果における程度を示す。第5表では抵抗性遺伝子の種類に影響され、すべてのR-A組合わせの作用力を同一に扱った。実際には抵抗性遺伝子の種類によってR-A的作用力はそれぞれ異なっているであろうし、非病原性遺伝子間に関連がある。また、第5表は、同一の属の宿主は一方のform specialisにはすべて抵抗性であるが、他方のform specialisにはすべて罹病性という最も単純な場合のモデルである。実際には、各地から収集したカモジグサは同じtsukushienseでも菌系A1に抵抗性の系統がかなりあった。また、tsukushienseおよびciliare以外のAgropyron 9種にも菌系A1を接種したがすべて抵抗性であった。それゆえ宿主の属とそのform specialisとの関係はより複雑である。

摘 要

カモジグサのうどんご病菌Erysiphe graminis f.sp. agropyriの菌系A1とコムギのうどんご病菌E. graminis f. sp. triticiの菌系t2との雑種をカモジグサ17系統に接種した結果を報告した。この接種結果から、カモジグサのうどんご病菌agropyriに罹病性のカモジグサ系統にもコムギのうどんご病菌に対しては、いずれも抵抗性遺伝子があり、大抵のカモジグサ系統は共通の抵抗性遺伝子を持っていることが推察された。また、供試雑種菌系のカモジグサあるいはコムギに対する病原性の範囲と感染型との間の平行的関係が認められた。すなわち、病原型の範囲が狭い菌系ほど低感染型（感染型1あるいは1－2）を示すことが多かった。これらの事実から、formae specialaeとそれらの宿主との相互関係の仕組について作業仮説を提出した。

文 献

日浦運治・部田英雄. 1968. Erysiphe graminis f. sp. tritici×Erysiphe graminis f. sp. agropyri 雑種のコムギ品種に対する病原性. 坂本教授還暦記念論文集 199-204.

