S-PRGフィラー配合試作レジンセメントの 機械的性質とフッ素徐放に関する研究

Mechanical properties and fluoride release of an experimental resin cement containing S-PRG filler

岡山大学大学院医歯薬学総合研究科 機能再生・再建科学専攻 生体機能再生・再建学講座 歯科保存修復学分野 71421083 塩出 信太郎

合着用セメントとして、これまでリン酸亜鉛セメントが 100 年以上にわたって用いられ てきたが,それに代わってカルボキシレートセメントやグラスアイオノマーセメントなど 歯質に接着するセメントが開発され、嵌合力だけでなく化学的な結合力も応用できるよう になった.補綴物や修復物を歯質に接着させることができるようになったことで、保持形 態や抵抗形態など歯質や修復物を保持・保護するための歯質切削量は少なくなってきてい る.これにより過剰な切削を伴わない最小限の侵襲による歯科治療,また歯冠色修復材料 を用いて審美的な歯科治療を行う Minimally Invasive Cosmetic Dentistry(MICD)¹⁾という 概念が誕生してきている. このようなことから接着技術は現在の歯科臨床において非常に 重要なものとなっている.間接法修復において、合着用セメントの機械的性質は修復物や 補綴物の予後を決める要因として知られている.接着力が低いと脱離の原因となり,また 長期間の使用によりセメントの溶解が起こった場合はマージン部から細菌が侵入し二次う 蝕を引きおこす可能性が考えられる 25). そのため機械的性質を評価することが必要になっ てくるが、レジンセメントの評価は同じ合着用セメントであるリン酸亜鉛セメントについ ての日本工業規格 (JIS)⁶⁾ やアメリカ歯科医師会規格 (ADAS)⁷に準じて行われている. JIS や ADAS では圧縮強さ、被膜厚さ、標準稠度、硬化時間、崩壊率、ヒ素含有率につい ての試験項目が定められており,さらにコンポジットレジンの評価方法として曲げ強さ, 曲げ弾性率が挙げられる.また、接着性の評価方法として象牙質微小引張接着強さやせん 断接着強さを測定する方法がある.

一方,セメントへのフッ化物の配合は、二次う蝕の発生や重症化の抑制に寄与している と考えられている⁸⁻¹¹⁾.接着性修復材料にフッ素徐放性を持たせるために、フッ化ナトリウ ムを配合している材料,およびグラスアイオノマーセメントのようにフルオロアルミノシ リケートガラスを配合している材料など様々な材料が存在している.その一つにフッ素徐 放性材料として知られているグラスアイオノマーを用いた Surface reaction-type Pre-Reacted Glass-ionomer (S-PRG)フィラーが用いられている.このフィラーは多機能性 ガラス(フルオロボロアルミノシリケートガラス)と、ポリカルボン酸との酸一塩基反応が起 こった反応生成物であるグラスアイオノマー相を含んでいる.この相には多機能性ガラス から溶出してきた各種イオン(F, Al³⁺, SiO³², Sr²⁺, Na⁺, Bo³³)が、ポリカルボン 酸のカルボキシル基とキレート結合することでトラップされた状態で存在しており、これ らのイオンを徐放することができる¹²⁾.この S-PRG フィラーは歯質強化作用¹³⁾,酸緩衝 能¹⁴⁾,細菌の付着抑制¹⁵⁾と抗プラーク形成能¹⁶⁾が知られている.また、シリカがフッ素よ りも象牙質の石灰化を促進する能力を有しているとの報告¹⁷⁾や、ホウ素が抗菌作用を有し ているとの報告^{18,19)}がある.

しかしながらこのS-PRGフィラーのグラスアイオノマー相は水を含む水和ゲルになって いることから,他のフィラーを含む接着性修復材料と比較し,機械的性質が劣っている. このグラスアイオノマー相を補強する目的で,S-PRGフィラーの最表層には,表面改質層 (多孔性無機シリカガラス質)が形成されているが、レジンセメントに多量に含有されるとレジンセメントの機械的性質を低下させると考えられる。

そこで本研究は、 S-PRG フィラー配合レジンセメントを試作し、S-PRG フィラーが最 も効果的に作用する配合率を検討することを目的として、機械的性質を圧縮強さ、三点曲 げ強さ、曲げ弾性率、象牙質微小引張接着強さの測定により評価し、さらにフッ素徐放性 をフッ素徐放量、フッ素リチャージ量の測定により評価することとした.

材料及び方法

1. 実験材料

使用した試作レジンセメントの組成を表1に示す. この試作レジンセメントは UDMA をベースレジンとしており,フィラーとして Surface reaction type Pre-Reacted Glass-ionomer (S-PRG)と Fluoroaluminosilicateglass (FASG)が含まれている. S-PRG フィラーは Paste A に配合されており,S-PRG フィラーの配合率を表2のように変化せ て試作レジンセメントを7種類作製した. S-PRG フィラーが配合されていないものを RCPRG-0とし,以降配合率が少ないほうから順に RCPRG-1,2,3,4,5,6と名付け た. この試作レジンセメントは歯質との接着時には歯面に試作プライマーを用いてプライ マー処理を行う必要があり表3にその組成を示す.

- 2. 実験方法
 - 1) 実験条件

圧縮強さ,曲げ強さ,曲げ弾性率,象牙質微小引張接着強さの測定ではそれぞれの試料 を作製し,24時間水中保管後に測定する TC 0 群と,24時間水中保管した後,5℃と55℃ の水中に交互に1分間浸漬するサーマルサイクルを20,000回負荷後に測定する TC 20,000 群を設定した.また各試料数は10 個とした.

2) 圧縮強さの測定

ISO9917-1 に準拠し,高さ 6mm,直径 4mm のステンレスモールドに試作レジンセメントを填入し,スライドガラスで上下から圧接した.裏表から 40 秒ずつ Blueshot(松風)にて光照射を行った.その後モールドから取り外し,37℃の精製水中に 24 時間保管した.次に,オートグラフ(AGS-10kND,島津)を用いて,クロスヘッドスピード 1.0mm/min の条件で荷重を与え試料が破断したときの荷重から圧縮強さを求めた.

3)三点曲げ強さの測定

ISO4049 に準拠し、高さ2mm、幅2mm、長さ25mmのテフロンモールドに試作レジ ンセメントを填入し、スライドガラスで圧接した.20秒間ずつ照射野が半分ずつ重なるよ うに5回光照射を行った.その後モールドから取り外し37℃の精製水中に24時間保管し た.次に、オートグラフ(AGS-10kND、島津)を用いてクロスヘッドスピード1.0mm/min、 支点間距離20mmの条件で荷重を与え試料が破断したときの荷重から曲げ強さを求めた. また、三点曲げ試験終了後の試料を走査型電子顕微鏡(SEM, DS-750, TOPCON)を用いて 2 通りの方法で観察した.1つ目は、試料表面を観察する目的で、スライドガラスで圧接した面を金蒸着(IB-3, Eiko)して観察した.もう一方は、サーマルサイクルが表面からどの程度まで影響を与えているかを観察する目的で、スライドガラスで圧接した面に厚めに金蒸着を行い、エポキシ樹脂(EpoFix Kit, Struers)で包埋し、試料の長軸に直交する面を鏡面研磨した後、白金蒸着(MSP-1S, vacuum device)して観察した.

4)曲げ弾性率の測定

三点曲げ強さ測定用の試料を前述の方法で作製し、オートグラフ(AG-X 20kN,島津)を 用いてクロスヘッドスピード 1.0 mm/min,支点間距離 20 mm の条件で試験を行った.静 的材料試験機用ソフトウェア(TRAPEZUM,島津)を用いて、応力が 6 N から 24 N の間の 応力ひずみ曲線から曲げ弾性率を求めた.

5)象牙質微小引張接着強さの測定

歯周炎により抜歯されたヒト大臼歯を保存液(0.9%塩化ナトリウム水溶液, 0.02%アジ化 ナトリウム水溶液)中に保存した.抜去歯を試験直前に取り出し、咬合面はモデルトリマー (モリタ東京製作所, MT-7)を用いて平坦に研削した.次に 600 番のシリコンカーバイドペ ーパーを用いて象牙質平坦面を流水下で研磨した. 試作プライマーA, B を等量採取し, 歯 面へ塗布後 10 秒放置した. その後, 弱圧でエアー乾燥を行い 10 秒間光照射した. 被着体 として硬質レジン(セラマージュ, 松風)を用いた. セラマージュを製造者指示に従い硬化さ せ,被接着面をサンドブラスト処理(0.1MPa)した後,超音波洗浄を行った.そして,シラ ン処理(松風ポーセレンプライマー, 松風)の後, 自然乾燥させた. シラン処理済みセラマー ジュに試作レジンセメントを塗布し、歯面処理済み象牙質被着面に2kgw で加圧し被膜厚 さは 20 µm となるように圧接した. 余剰セメントを除去し,4 方向から 20 秒間光照射を行 い5分間圧接し続けた後,37℃の精製水中に24時間保管した.その後精密低速切断機 (Isomet low speed saw, Buehler)を用いて接着界面に対して垂直に切断し、1 mm×1 mm の円柱状の試料を作製した.クロスヘッドスピード 1.0 mm/min の条件で小型卓上試験機 (EZ test, 島津)を用いて微小引張接着強さを測定した.また, 微小引張接着試験後の試料 は金蒸着を行い, SEM を用いて破断面形態の観察を行った. 破断面形態は以下のように分 類した.すなわち,破断面の 80%以上を象牙質凝集破壊が占めるときを象牙質凝集破壊と し, 破断面の80%以上を象牙質界面破壊が占めるときを象牙質界面破壊とし,破断面の 80%以上をセメント凝集破壊が占めるときをセメント凝集破壊とし,破断面の 80 %以上を 被着体のセラマージュの凝集破壊が占めるときをレジン凝集破壊とし、上記に分類されず いくつかの破壊様式が組み合わさっているときを混合破壊とした.

また本実験の抜去歯の使用に際して「ヘルシンキ宣言(ヒトを対象とする生物学的研究に 携わる医師の為の勧告)」に基づく倫理的原則を遵守するとともに、岡山大学大学院医歯薬 学総合研究科の倫理委員会の許可(承認番号 189 号)を得て実施された.

6)フッ素徐放量の測定

高さ1mm, 直径15mmのモールドに試作レジンセメントを填入後スライドガラスで圧 接し照射野を移しながら20秒間ずつ4回光照射し,円盤状の試料を作製した.光照射後モ ールドから取り外し600番のシリコンカーバイドペーパーを用いて研磨した.この試料を 37℃,2mlの脱イオン水に浸漬し1,2,3,7,14以降7日ごとに182日目まで6ヵ月間 新しい脱イオン水と交換し,浸漬液中に溶出したフッ素イオン量を測定した.測定は浸漬 液から1mlを採取し,イオン強度調整用緩衝液(TISABII, Thermo, Orion)を1ml加えフ ッ素イオンメーター(290A+, Thermo, Orion)に複合電極(9609BNWP, Thermo, Orion)を 接続して行った.試料は各5個とした.

7)フッ素リチャージ量の測定

フッ素徐放量の測定と同様に試料を作製し、同様の方法で1,2,3,4,5,6,7日目に 浸漬液の交換とフッ素イオン量の測定を行った.7日目のフッ素イオン量の測定後,試料を 1,000ppmのフッ化ナトリウム水溶液中に5分間浸漬し,脱イオン水中で洗浄しタオルドラ イを行い再び新しい脱イオン水中で洗浄しタオルドライ後新しい脱イオン水中に浸漬した. 再び8,9,10,11,12,13,14日目にフッ素イオンメーターを用いてフッ素イオン濃度 を測定した.上記の方法で測定した群をリチャージ(+)群とし7日目のフッ素リチャージを しなかった群をリチャージ(-)群とした.リチャージ(+)群のフッ素イオン量の総和とリチャ ージ(-)群のフッ素イオン量の差をリチャージ量とした.試料は各5個とした. 8)統計処理

統計分析は, 圧縮試験, 三点曲げ試験, 象牙質微小引張接着強さについては one-way ANOVA, tukey's test および t 検定を用いた. フッ素徐放量の測定では one-way ANOVA と tukey's test を用いた. フッ素リチャージ量の測定では回帰分析を用いた. 破断面形態の分 析では Pearson chi-square test を用いた.

結果

1. 圧縮強さ

圧縮強さの測定の結果をTC 0 群とTC 20,000 群ともに表4に示す.TC 0 群では RCPRG-0 と比較して RCPRG-5, RCPRG-6 で有意に圧縮強さが低下しており(p<0.05), TC 20,00 群でも RCPRG-0 と比較して RCPRG-5, RCPRG-6 で有意に圧縮強さが低下して いた(p<0.05).また,同じ S-PRG フィラー配合率の試料をサーマルサイクル負荷の有無で 比較した場合,圧縮強さの有意な低下は認められなかった(p>0.05).

2. 曲げ強さ

三点曲げ強さの測定の結果を表5に示す.TC0群ではS-PRGフィラー配合率が増加しても曲げ強さに有意な差は認められなかった(p>0.05).TC 20,000群においても同様にS-PRGフィラー配合率が増加しても曲げ強さに有意な差は認められなかった(p>0.05).しかしながら,同じS-PRGフィラー配合率の試料をサーマルサイクル負荷の有無で比較すると,すべての配合率において有意に曲げ強さが低下していた(p<0.05).

試料表面の SEM 像の代表例を図1に示す. TC 0 群では S-PRG フィラー配合率の増加 による表面性状の変化は認められず,わずかな凹凸はあるものの平滑であった. 一方 TC 20,000 群では S-PRG フィラー配合率の増加による表面性状の変化は認められなかったが, TC 0 群と比較して試料表面にフィラーの脱落と考えられる欠損が観察された. 図2 は欠損 を側方から観察したもので,図の右側の部分にエポキシ樹脂が観察され,左側の部分にレ ジンセメントが観察された. 中央右寄りに矢印で示した縦に伸びている白線が厚く金蒸着 した部分で,エポキシ樹脂とレジンセメントが明確に区別されている. TC 20,000 群の図中 央にはフィラーの脱落と考えられる欠損が観察された. また,欠損部付近のフィラーと周 囲のマトリックスレジンとの間にクラックが観察されたが,そのクラックは表面から 6 μm 程に限局して存在していた。

曲げ弾性率

曲げ弾性率測定の結果を表6に示す. TC0群ではS-PRGフィラー配合率が増加しても 曲げ弾性率に有意な差は認められなかった(p>0.05).また,TC20,000群においても同様に S-PRGフィラー配合率が増加しても曲げ弾性率に有意な差は認められなかった(p>0.05). しかし,同じS-PRGフィラー配合率の試料をサーマルサイクル負荷の有無で比較すると, すべての試料で曲げ弾性率が低下していた(p<0.05).

4. 象牙質微小引張接着強さ

象牙質微小引張接着強さ測定の結果を表7に示す.TC0群ではS-PRGフィラー配合率 が増加しても象牙質微小引張接着強さに有意な差は認められなかった(p>0.05).TC20,000 群においても同様にS-PRGフィラー配合率が増加しても,象牙質微小引張接着強さに有意 な差は認められなかった(p>0.05).また同じS-PRGフィラー配合率の試料をサーマルサイ クル負荷の有無で比較しても,象牙質微小引張接着強さの低下は認められなかった(p>0.05).

象牙質微小引張接着強さ試験後の破断面形態の割合を図3に示す. TC0群では混合破壊 の割合が最も多く次いでレジン凝集破壊が多く認められた. 破断面形態の割合を有意水準 5%で Pearson chi-square test で統計処理した結果各 S-PRG フィラー配合率の試料の間で 有意な差は見られなかった. TC 20,000 群ではレジン凝集破壊が最も多く観察され次いで混 合破壊が多く観察された. セメント凝集破壊は観察されなかった. 統計処理の結果, TC 20,000 群では各 S-PRG フィラー配合率の試料の間で破断面形態の割合に有意な差が認め られ(p<0.05), S-PRG フィラーの配合率が増加するに従い, レジン凝集破壊が減少し, 混 合破壊が増加する傾向が観察された. 破断面観察で得られた混合破壊を呈する SEM 像の代 表例を図4に示す. TC0 群では左下の a で示した部分にはレジンセメントの凝集破壊が 観察された. 中央部の b で示した部分は試作プライマーの凝集破壊が観察され, 右側の c で示された部分は,象牙質凝集破壊の様相を呈しておりコラーゲン線維と開口した象牙細 管が観察された. また, 矢印で示した一部の象牙細管にはレジンタグが形成されておりそ のレジンタグが凝集破壊されていた. TC 20,000 群では、下部の d で示される部分は象牙質界面破壊の様相を呈していた.ス メアー層は試作プライマーにより一部除去されており開口した象牙細管にレジンタグが形 成されておりそのレジンタグが凝集破壊されていた(矢印). 中央部 a にはレジンセメン ト層が観察されその上部 e にはセラマージュの球状フィラーが付着していた. この球状フ ィラーにはマトリックスレジンが付着しておりセラマージュが凝集破壊していると考えら れた.

5. フッ素徐放量

フッ素徐放量の測定結果を図 5 に示す.フッ素徐放量は S-PRG フィラーの配合率の増加 に伴い増加した.最初の 14 日間で 6 か月間に徐放されたフッ素のうち RCPRG-0 では 24 %, RCPRG-6 では 43 %のフッ素イオンが徐放していた.S-PRG フィラー配合率と徐放された フッ素イオン量の間に強い相関が認められた(R=0.97). RCPRG-0 と比較し RCPRG-3, RCPRG-4, RCPRG-5, RCPRG-6 で有意に多くのフッ素を徐放した (p<0.05) (図 6). 6. フッ素リチャージ量

フッ素リチャージ量の測定結果を図7に示す.フッ素リチャージ量は、S-PRGフィラーの配合率の増加に伴い増加した.S-PRGフィラーの配合率の増加とフッ素リチャージ量との間に相関が認められた(R=0.92).

考察

現在の歯科臨床では審美的要求の高まりや歯科用合金の生体適合性への懸念から歯冠色 材料を用いての修復を行う頻度が増加している. 歯冠色修復材料の作製方法として CAD/CAM が用いられるようになってきているが、これの窩洞への適合性はあまり高いと は言えず, 歯質と修復物との間に 50 µm から 100 µm の間隙が存在するとの報告もある 20-22). このことから合着用材料には十分な機械的性質が要求されている. レジンセメントは従来 から用いられているグラスアイオノマーセメントと比較して高い耐摩耗性,接着性,曲げ 強さ、圧縮強さや低い溶解性など優れていることが多い. S-PRG フィラーをレジンセメン トに配合するとフッ素イオンを徐放し、二次う蝕の発生や重症化を抑制できる可能性が考 えられる. そこで本研究ではレジンセメントに S-PRG フィラーを配合したレジンセメント を試作し、その性質を評価することとした.評価方法としては JIS や ADAS に準じて機械 的性質の評価のために曲げ強さ,曲げ弾性率と圧縮強さを測定した.しかしながらこれら の試験結果だけで臨床で要求されるセメントの性質を把握することは困難である.また、 工業用セメントでは、圧縮強さと曲げ強さとの比をもろさ係数 23,24と呼び、この強度比は セメントの脆さを表す尺度として有効である. さらに, この研究で使用されるレジンセメ ントは接着性を持っている、従来からセメントの接着性の評価方法として、せん断接着強 さを測定して評価している報告があるが 25.26)、せん断接着試験は引張接着試験と比較して、 主に接着界面付近に応力が集中し接着界面付近においての破壊が多くなる.一方,垂直方 向に力が加わる引張接着試験は、被着体、接着界面およびレジンセメントのいずれかの脆

弱な部分で破壊が起きるとされており^{27,28)},それぞれの部位の機械的性質もレジンセメントの接着性に関する重要な因子である.本研究では、レジンセメントの機械的性質と被着体への接着強さという2つの観点より、象牙質とレジンインレーなどの硬質レジンとの接着性の評価を行うために、象牙質微小引張接着試験と破断面形態の観察を行った.

一方、フッ素は歯質の脱灰抑制と再石灰化を促進することが知られている^{29,30}. そのた めフッ素を含む多様な製品が市販されている.フッ素徐放性はグラスアイオノマーセメン トが優れているが、レジン系材料でもフッ化ナトリウムを配合している材料、グラスアイ オノマーセメントの原料であるフルオロアルミノシリケートガラスをフィラーとして配合 している材料、S-PRGフィラーのようにグラスアイオノマー相を形成させたフィラーを有 しているものがある.そして、フッ素徐放性材料から徐放されるフッ素イオンは、窩壁周 囲の歯質に持続的に拡散し、歯質強化や修復歯の二次う触抑制に有効に作用することが報 告されている³¹⁾.また、フッ素リチャージ量の評価方法は特に定まった方法がなかったた め、本研究では本邦での歯磨剤に含まれるフッ素濃度の上限である1,000ppmのフッ化ナ トリウム水溶液に5分間浸漬しリチャージさせることにした.リチャージ量は、14日間毎 日新しい脱イオン水と交換し、7日目にリチャージを行った群から徐放されたフッ素イオン 量の総和から14日間毎日新しい脱イオン水と交換し、7日目にリチャージを行わなかった 群から徐放されたフッ素イオン量の総和を引くことで求めた.

1) 機械的性質の評価

ステンレスモールドは丈夫で変形がすくないがレジンとの分離が悪い.一方テフロンモ ールドは分離は良いが,外力が加わると変形する危険性があり,またフィラーによって表 面が傷つきやすい³²⁾.このような特性があることから曲げ試料作製時にはテフロンモール ドを使用し,圧縮試料作製時にはステンレスモールドを使用した.

圧縮試験の結果 TC 0 群, TC 20,000 群ともに RCPRG-0 と比較して RCPRG-5 と RCPRG-6 で有意に圧縮強さが低下していた.これは,水を含む水和ゲルとなっているグラ スアイオノマー相を持った S-PRG フィラーが多く含まれることにより,圧縮強さが低下し たと考えられた.しかし,同じ S-PRG フィラー配合率の試料をサーマルサイクル負荷の有 無で比較して圧縮強さが有意に低下したものはなかった.サーマルサイクル負荷によりフ ィラーのシランカップリング剤に加水分解が生じることが知られており³³⁾,シランカップ リング剤の加水分解によりフィラーとマトリックスとの間に微小なクラックが生じる. 宮 崎ら³⁴⁾は圧縮試験ではクラックを押しつぶしながら試験が進行するためクラックの影響が 表れにくいと報告しているが,本研究でも同様にクラックの影響が表れにくかったため圧 縮強さの低下がみられなかったのではないかと考えられた.また,図2で示されているよ うに 20,000 回のサーマルサイクル負荷の影響は試料表層に限局しており,内部まで加水分 解が進行していないことも圧縮強さの低下がみられなかった原因の一つであると考えられ た。以上のことから 20%以下の S-PRG フィラーの配合は,本試作レジンセメントの圧縮 強さを低下させないと示唆された.

曲げ試験の結果TC0群ではS-PRGフィラー配合率が増加しても曲げ強さに有意な差は 認められなかった.TC 20,000 群においても同様に S-PRG フィラー配合率が増加しても曲 げ強さに有意な差は認められなかった.しかしながら同じ S-PRG フィラー配合率の試料を サーマルサイクル負荷の有無で比較するとすべての配合率において有意に曲げ強さが低下 していた.曲げ試験は引張りと圧縮の両応力の影響を受け、表面に発生するクラックの影 響を引張り側で明瞭に受けると考えられている 35. また初期の破壊はフィラーとマトリッ クスの硬さの違いからフィラーとマトリックスとの表面で起こると考えられている 36. サ ーマルサイクルを行っていない TC 0 群では、表面は S-PRG フィラー配合率によらず平滑 な面であり,またクラックも観察されなかった(図 1, 2). そのため S-PRG フィラー配合率 が増加しても、曲げ強さに有意な差は認められなかったと考えられた.また、このことか ら S-PRG フィラーと FASG のシランカップリング剤の効果に違いはなく,3層構造をして いるS-PRGフィラーの最表面の表面改質層が脆弱なグラスアイオノマー相を効果的に補強 している可能性が示唆された.一方, TC 20,000 群では表面にフィラーの脱離と考えられる 欠損があった(図 1, 2).この脱離はフィラーの表面にあるシランカップリング剤が加水分解 を受けたために生じたものであると考えられ、この部分から初期破壊が生じて曲げ強さが TCO群と比較して有意に低下したのではないかと考えられた。また、曲げ試験の試料は体 積に比較して表面積が大きく、加水分解や吸水の影響を受けやすいことも原因の一つであ ると考えられた.一方, TC 20,000 群も同様に各 S-PRG フィラー配合率の試料の間で試料 の表面性状や S-PRG フィラーと FASG とのシランカップリング剤の効果に差がないため, TC 20,000 群の中では有意な差が認められなかったと考えられた. 以上のことから, S-PRG フィラーの配合は本試作レジンセメントの曲げ強さに影響を与えないことが示唆された.

曲げ弾性率は、TC 0 群では S-PRG フィラー配合率が増加しても曲げ弾性率に有意な差 は認められなかった.また、TC 20,000 群においても同様に S-PRG フィラー配合率が増加 しても曲げ弾性率に有意な差は認められなかった.しかし、同じ S-PRG フィラー配合率の 試料をサーマルサイクル負荷の有無で比較すると、すべての試料で有意に低下した.これ は、曲げ弾性率はフィラーの配合率によって影響を受けることが報告されており³⁷⁾、本研 究の条件では、S-PRG フィラーと FASG の総合的なフィラーの配合率は一定となっている ため、曲げ弾性率に S-PRG フィラー配合率の違いによる有意な差は認められなかったと考 えられた.

一方,サーマルサイクルにより,すべての試料で曲げ弾性率の低下がみられたのは,ベ ースレジンが吸水したためと考えられた.しかしながら,曲げ弾性率の低下はサーマルサ イクル負荷時の内部応力をセメント層で緩和できると考えられるので曲げ弾性率の低下は 接着耐久性においては有利に働くものと考えられた.

表8に示すように、TC0群の平均とTC20,000群の平均を比較するともろさ係数は有意 に大きな値を示していた(p<0.05). もろさ係数は圧縮強さと曲げ強さとの比で示される係 数であることから、サーマルサイクル負荷による曲げ強さの低下によりもろさを示すと考 えられた.また TC 0 群と TC 20,000 群の回帰分析の結果,TC 0 群では S-PRG フィラー 配合率ともろさに相関関係は認められなかったが,TC 20,000 群では S-PRG フィラーの配 合率が増加するにしたがってもろさ係数は小さな値を示した(R=0.89).これはサーマルサイ クル負荷により S-PRG フィラーのグラスアイオノマー相に吸水が起こり,より多く S-PRG フィラーを含んだ試料ほど弾性を示すようになったと考えられた.このことは曲げ弾性率 がサーマルサイクルにより低下したこととも矛盾しなかった.

象牙質微小引張接着強さは、TC 0 群のすべての S-PRG フィラー配合率で有意差が認め られなかった.TC 20,000 群でもすべての S-PRG フィラー配合率で有意差が認められなか った.また、サーマルサイクル負荷の有無で比較しても同じ S-PRG フィラー配合率の試料 では有意な差は認められなかった.TC 0 群の破断面形態の割合は、各 S-PRG フィラー配 合率の試料間において有意な差が認められなかった.破断面形態の分析の結果、混合破壊 が最も多く認められたがレジン凝集破壊が次に多く認められた.象牙質微小引張接着強さ は被着体、接着界面およびレジンセメントのいずれかの脆弱な部分で破壊が起きるとされ ており 25.26)、今回の実験の条件ではセラマージュの凝集破壊が多く認められた.このこと から試作レジンセメント自体の引張強さがセラマージュより優れていることが示唆された. TC 20,000 群の破断面形態の割合は、各 S-PRG フィラー配合率の試料間において有意な差 が認められ、S-PRG フィラー配合率が増えるにしたがって混合破壊が増加し、レジン凝集 破壊が減少した.これはサーマルサイクル負荷により、S-PRG フィラーが多く含まれてい る試料の方がセラマージュよりも劣化したことによるものと考えられた.しかしながら、 レジン凝集破壊はサーマルサイクル負荷により増加しており、S-PRG フィラー配合率が低 い試料ではセラマージュに比べサーマルサイクル負荷の影響が少ないことが示唆された.

本実験の条件では、象牙質界面破壊の割合が少なく S-PRG フィラーの配合によっても象 牙質との接着性が低下しなかった.これは、修復物を歯質に合着する場合セメントの濡れ 性も大きく影響を及ぼすとされており、分子量の大きい2官能性メタクリレートと多量の フィラーが含まれているようなレジンセメントは象牙質に対する濡れ性や浸透性がよくな い³⁸⁾.しかしながら本試作レジンセメントは象牙質プライマーを前処置として用いている. このことにより、プライマーが象牙質へ浸透し、樹脂含浸層を形成して、象牙質と強固に 接着することができたと考えられた.これは図4で観察されたようにスメアー層が一部除 去され、象牙細管中にレジンタグが形成されていることからも確認できたと考えられた. 以上のことから、S-PRG フィラーを配合しても象牙質との接着性に影響を与えることはな く、また長期間接着性を維持できることが示唆された.

2) フッ素徐放量の評価

6 か月間のフッ素徐放量の測定の結果,S-PRG フィラー配合率とフッ素徐放量の間に強い相関がみられた(R=0.97).また,RCPRG-0と比較して,RCPRG-3,RCPRG-4,RCPRG-5, RCPRG-6 で有意にフッ素徐放量が増加していた.このことから,S-PRG フィラー配合レジンセメントは,FASG 単独のレジンセメントよりも多くのフッ素を徐放することができる ことが分かった.また,最初の14日間で6か月間に徐放されたフッ素のうちRCPRG-0で は24%,RCPRG-6では43%のフッ素イオンが徐放していた.このことから,S-PRGフ ィラーは初期により多くのフッ素を徐放することが明らかとなった.これは,S-PRGフィ ラーはグラスアイオノマー相を含んでおり,この相には多機能性ガラスから溶出してきた 各種イオン(F, Al³⁺, SiO³², Sr²⁺, Na⁺, Bo³³)がポリカルボン酸のカルボキシル基 とキレート結合することでトラップされた状態で存在¹¹¹しているため,初期に各種イオン をFASGよりも多く徐放することができると考えられた.以上のことから,15%以上の S-PRGフィラー配合で有意にフッ素を徐放できることが示唆された.

フッ素リチャージ量の測定の結果,S-PRGフィラーの配合とフッ素リチャージ量のとの 間に相関が認められた(R=0.92).フッ素徐放と同様に,S-PRGフィラーはFASGよりも多 くのフッ素をリチャージすることが示唆された.これは試作レジンセメント周囲のフッ素 ナトリウム水溶液に存在する高濃度のフッ素イオンがS-PRGフィラーのグラスアイオノマ ー相に存在するカルボキシル基にキレート結合することによりトラップされたと考えられ た.そしてこのトラップされたイオンが徐放されてきたためと考えられた.

以上のことから, S-PRG フィラーの配合はフッ素の徐放だけでなくリチャージについて も有効であることが考えられた.このフッ素に関する性質により窩洞周囲の歯質の耐酸性 の向上が 期待でき,二次う蝕の抑制が図れる可能性が示唆された.

結論

本研究の条件下で S-PRG フィラーを配合した試作レジンセメントの機械的性質およびフ ッ素徐放性を検討し以下の結果を得た.

1. 圧縮強さは S-PRG フィラー20%以下の配合率では影響を受けなかった.

- 2. 曲げ強さは S-PRG フィラーの配合による影響を受けなかった.
- 3. 曲げ弾性率は S-PRG フィラーの配合による影響を受けなかった.
- 4. 象牙質微小接着引張強さは S-PRG フィラーの配合による影響を受けなかった.

5. フッ素徐放量は S-PRG フィラー15 %の配合により有意に増加し以降も配合量と相関し て増加した.

6. フッ素リチャージ量は S-PRG フィラーの配合量と相関して増加した.

以上の結果より,20%のS-PRGフィラー配合率は機械的性質に影響を与えず,かつ S-PRGフィラーを配合しない場合と比較して有意に多くのフッ素を徐放できることが示唆 された.

謝辞

稿を終えるにあたり、本研究を行う貴重な機会を与えて頂き終始御懇篤なる御指導と御 校閲を賜りました岡山大学大学院医歯薬学総合研究科歯科保存修復学分野、吉山昌宏教授 に謹んで感謝の意を表します.本研究の遂行に際し、終始御指導頂き様々な面にわたり貴 重な御助言と御協力を下さいました岡山大学大学院医歯薬学総合研究科歯科保存修復学分 野,西谷佳浩准教授に深く感謝いたします.また,様々な面にわたり貴重な御助言と御協 力を下さいました岡山大学大学院医歯薬学総合研究科歯科保存修復学分野,山路公造講師, 岡山大学大学院医歯薬学総合研究科生体材料学分野,入江正郎助教ならびに岡山大学大学 院医歯薬学総合研究科歯科保存修復学分野の諸先生方に深く御礼申し上げます. 1) Qureshi T.: Minimally invasive cosmetic dentistry: Alignment, bleaching and bondinig (ABB). Dent. Update, 38, 586-592, 2011.

2) Unosson E, Cai Y, Jiang X, Lööf J, Welch K, Engqvist H.: Antibacterial properties of dental luting agents: potential to hinder the development of secondary caries. Int. J. Dent., 529495, 1-7, 2012.

3) Libby G, Arcuri M R, Lavelle W E, Hebl L.: Longevity of fixed partial denture. J. Prosthet. Dent., 78(2), 127-131, 1997.

4) Goodacre C J, Bernal G, Rungcharassaeng K, Kan J Y K.: Clinical complications in fixes prosthodontics. J. Prosthet. Dent., 90(1), 31-41, 2003.

5) 吉山昌宏, 伊藤博夫, 十河基文: MI 時代の歯科知識 - プラークコントロール サイエ ンス&プラクティス - 末永書店 2009.

6)日本工業規格:JIST 6602 歯科用リン酸亜鉛セメント,日本歯科材料工業協同組合, 1992.

7) Council on Dental Materials and devices : Revised American National Standards Institute/American Dental Association Specification No.8 for Zinc Phosphate Cement.

J. Am. Dent. Assoc., 96(1), 121-123, 1978.

8) Phillips RW.: Restorative materials containing fluoride. Council on Dental Materials, Instruments, and Equipment. J. Am. Dent. Assoc., 116:762-763, 1988.

9) Yap AU, Tham SY, Zhu LY, Lee HK.: Short-term fluoride release from various aesthetic restorative materials. Oper. Dent., 27:259-265, 2002.

10) Cildir SK, Sandnlli N.: Fluoride release/uptake of conventional and resin-modified glass ionomer cements and compomers. J. Dent., 29(4), 301-306, 2001.

11) Itota T, Al-Naimi OT, Carrick TE, Yoshiyama M, McCabe JF.: Fluoride release and neutralizing effect by resin-based materials. Oper. Dent., 30:522-527, 2005.

12) Fujimoto Y, Iwasa M, Murayama R, Miyazaki M, Nagafuji A, Nakatsuka, T.:

Detection of ions released from S-PRG fillers and their modulation effect. Dent. Mater. J., 29(4):392-397, 2010.

13) Ito S, Iijima M, Hashimoto M, Tsukamoto N, Mizoguchi I, Saito T.: Effects of surface pre-reacted glass-ionomer fillers on mineral induction by phosphoprotein. J. Dent., 39:72-79, 2011.

14) Itota T, Nakatsuka T, Tanaka K, Tashiro Y, Mccabe JF, Yoshiyama M.: Neutralizing effect by resin-based materials containing silane-coated glass fillers. Dent. Mater. J.

29(4), 362-368, 2010.

15) Yoneda M, Suzuki N, Masuo Y, fujimoto A, Iha K, Yamada K, Iwamoto T, Hirofuji T.: Effect of S-PRG eluate on biofilm formation and enzyme activity of oral bacteria. Int. J. Dent., 814913 1-6, 2012.

16) Saku S, Kotake H, Scougall-Vilchis RJ, Ohashi S, Hotta M, Horiuchi S, Hamada K, Asaoka K, Tanaka E, Yamamoto K.: Antibacterial activity of composite resin with glass-ionomer filler particles. Dent. Mater. J., 29:193-198, 2010.

17) Saito T, Toyooka H, Ito S, Crenshaw MA.: In vitro study of remineralization of dentin: effects of ions on mineral induction by decalcified dentin matrix. Caries Res., 37:445-449, 2003.

18) Baker S J, Akama T, Zhang Y K, Sauro V, Pandit C, Singh R, Kully M, Khan J, Plattner J J, Benkovic S J, Lee V, Maples K R.: Identification of a novel boron-containing antibacterial agent (AN0128) with anti-inflammatory activity, for the potential treatment of cutaneous diseases. Bioorganic and Medicinal Chemistry Letters, 16 (23), 5963-5967, 2006.

19) Luan Q, Desra T, Chehab L, Sanders V J, Plattner J, Graves D T.: Inhibition of experimental periodontitis by a topical bone-based antimicrobial. J. Dent. Res., 87, 148-152, 2008.

20) Irie M, Maruo Y, Nishigawa G, Suzuki K, Watts DC. Physical properties of dual-cured luting-agents correlated to early no interfacial-gap incidence with composite inlay restorations. Dent. Mater., 26, 608-615, 2010.

21) Irie M, Suzuki K.: Current luting cement: marginal gap formation of composite inlay and their mechanical properties. Dent. Mater., 17, 347-353, 2001.

22) Irie M, Suziki K, Watts DC.: Marginal and flexural integrity of three classes of luting cement, with early finishing and water storage. Dent. Mater., 20, 3-11, 2004.
23) 明石外世樹,,山路文夫:: コンクリートの伸び性能について セメント技術年報 11, 247-255, 1957.

24) 井田一夫,森脇 豊,山賀礼一:歯科用セメントと象牙質との接着性に関する研究 第
4報 各種セメントの機械的性質 歯材器誌 30(1),41-51,1973.

25) Komine F, Fushiki R, Koizuka M, Taguchi, K, Kamio S, Matsumura H.: Effect of surface treatment on bond strength between an indirect composite material and a zirconia framework. J. Oral Sci., 54(1) 39-46, 2012.

26) Munirathinam D, Mohanaj D, Beganam M.: Efficacy of various cleansing techniques on dentin wettability and its influence on shear bond strength of a resin luting agent. J .Adv. Prosthodont., 4(3) 1-8, 2012.

27) 初岡昌憲,恩田康平,保尾謙三,竹内 摂,福井優樹,善入寛仁,加茂野太郎,井上昌 考,山本一世:接着性レジンセメントの各種被着面に対する接着性に関する研究;日歯保 存誌 53(3):281-295, 2010.

28) 高橋世紀, 宮本弘平, 安倍 敏, 遠藤達夫, 奥田禮一, 小松正志: 新鮮抜去非包埋牛歯 象牙質面と歯科用セメントの剪断接着強さ一引張り接着強さとの比較一 日歯保存誌 43, 1281-1289, 2000.

29) ten Cate JM, Buijs JM, Miller CC, Exterkate RAM,.: Elevated Fluoride Products
Enhance Remineralized of Advanced Enamel Lesions. J. Dent. Res., 87, 943-947, 2008.
30) Ingram GS, Agalamanyi EA, Higham SM.: Caries and fluoride processes. J. Dent.,
33, 187-191, 2005.

31) 伊賀己記,小林恭子,宇井 崇,鳥井康弘,鳥居光男,土谷裕彦:フッ素徐放性レジンに よる歯根象牙質う蝕の再石灰化 日歯保存誌 34,798-803,1991.

32) 宮崎 隆: 圧縮試験による歯科材料の耐力測定―複合レジン材料について― 歯材器
 2(4), 347-367, 1983.

33) 西山典宏, 早川 徹:シランカップリング剤について 接着歯学 5,129-133,1987.
34) 宮崎 隆, 鈴木 暎, 宮治俊幸:サーマルサイクルが臼歯用コンポジットレジンの機械
的性質に及ぼす影響 歯材器 5,187-195,1986.

35) 原島 厚,山崎淳史,本多宗暁,長澤悠子,倉持健一,高橋洋子,新倉美奈子,山賀谷 一郎,日比野 靖,中嶌 裕:熱水浸漬後の支台築造用コンポジットレジンの曲げ強さと 圧縮強さの変化;歯材器 24(1),15-22,2005.

36) Taminoto Y, Nishiwaki T, Nemoto K, Ben G.: Effect of Filler Content on Bending Properties of dental Composites: Numerical Simulation with the Use of the Finite-Element Method. J. Biomed. Mater. Res., 71B, 188-195, 2004.

37) Tanimoto Y, Kitagawa T, Aida M, Nishiyama N.: Experimental and computational approach for evaluating the mechanical characteristics of dental composite resins with various filler sizes. Acta. Biomater., 2, 633-639, 2006.

38) 吉田圭一,舟木和紀,棚川美佳,松村英雄,田中卓男,熱田 充.市販接着性レジンセメントの機械的性質と歯質および貴金属合金との接着強さに関する研究 歯材器 13(6), 529-536,1994.

表1 試作レジンセメントの組成

組成

Paste A UDMA, TEGDMA, FASG, S-PRG filler, Initiator, Others

Paste B UDMA, TEGDMA, 2-HEMA, FASG, Initiator, Others

UDMA: Urethane dimethacrylate, TEGDMA: Triethyleneglycol dimethacrylate, 2-HEMA: 2-Hydroxyethyl methacrylate, FASG: Fluoroaluminosilicateglass Mean Particle Size : 1.0µm, S-PRG filler: Surface reaction type Pre-Reacted Glass-ionomer filler Mean Particle Size : 0.8µm

表2 試作レジンセメントのS-PRGフィラー配合率

	Paste	A	Paste B	S-PRGフィラー配合率
RCPRG-0:	S-PRG filler 0wt%	FASG 69wt%	FASG 68wt%	Owt%
RCPRG-1:	S-PRG filler 10wt%	FASG 59wt%	FASG 68wt%	5wt%
RCPRG-2:	S-PRG filler 20wt%	FASG 49wt%	FASG 68wt%	10wt%
RCPRG-3:	S-PRG filler 30wt%	FASG 39wt%	FASG 68wt%	15wt%
RCPRG-4:	S-PRG filler 40wt%	FASG 29wt%	FASG 68wt%	20wt%
RCPRG-5:	S-PRG filler 50wt%	FASG 19wt%	FASG 68wt%	25wt%
RCPRG-6:	S-PRG filler 60wt%	FASG 9wt%	FASG 68wt%	30wt%

S-PRG filler: Surface reaction type Pre-Reacted Glass-ionomer filler FASG:Fluoroaluminosilicateglass

表3 試作プライマーの組成

組成

Primer A	Water, Acetone, Initiator, Others
----------	-----------------------------------

Primer B Acetone, 2-HEMA, 4-AET, 6-MHPA, Others

2-HEMA: 2-Hydroxyethyl methacrylate 4-AET: 4-Acryloxyethel trimellitic acid, 6-MHPA: 6-Methacryloxyhexylphoaphonic acid acetate

表4 S-PRGフィラーの各配合率における圧縮強さ

	Mean ± S.D. (MPa)		<i>p</i> value*
	TC 0	TC 20,000	
RCPRG-0	304.8 ± 39.3^{a}	289.3 ± 26.3 ^c	NS
RCPRG-1	311.3 ± 36.3^{a}	278.4 ± 43.5 ^c	NS
RCPRG-2	313.4 ± 22.6^{a}	284.8 ± 36.1 ^c	NS
RCPRG-3	308.7 ± 38.2^{a}	278.6 ± 37.4 c	NS
RCPRG-4	282.8 ± 33.3	262.4 ± 37.4 ^c	NS
RCPRG-5	261.3 ± 34.4^{b}	254.1 ± 37.6 ^d	NS
RCPRG-6	265.8 ± 43.0^{b}	239.6 ± 42.8 ^d	NS

TC 0: 24時間水中浸漬後(サーマルサイクルなし) TC 20,000:24時間水中浸漬後,サーマルサイクル20,000回負荷

n=10, 同一文字間有意差なし (one-way ANOVA, tukey's test, P>0.05) *t-test, NS: 有意差なし (p>0.05)

	Mean ± S.D. (MPa)		<i>p</i> value*
	TC 0	TC 20,000	
RCPRG-0	157.7 ± 10.5^{a}	97.3 ± 14.1 ^b	<0.01
RCPRG-1	150.6 ± 11.2^{a}	101.9 ± 11.8 ^b	<0.01
RCPRG-2	149.1 ± 12.9 ^a	96.4 ± 17.8 ^b	<0.01
RCPRG-3	143.5 ± 10.0^{a}	100.9 ± 8.7 b	<0.01
RCPRG-4	150.9 ± 13.3 ^a	102.5 \pm 11.3 ^b	<0.01
RCPRG-5	147.6 ± 12.5 ^a	102.5 ± 13.4 ^b	<0.01
RCPRG-6	151.5 ± 10.6^{a}	100.1 ± 14.2 b	<0.01

表5 S-PRGフィラーの各配合率における曲げ強さ

TC 0: 24時間水中浸漬後(サーマルサイクルなし) TC 20,000:24時間水中浸漬後,サーマルサイクル20,000回負荷

n=10, 同一文字間有意差なし (one-way ANOVA, tukey's test, P>0.05) *t-test, (p<0.05)

表6 S-PRGフィラーの各配合率における曲げ弾性率

	Mean ± S.D. (GPa)		p value*
	TC 0	TC 20,000	
RCPRG-0	6.72 ± 0.44 ^a	6.15 ± 0.24^{b}	<0.05
RCPRG-1	7.00 ± 0.34 ^a	5.84 ± 0.38^{b}	<0.01
RCPRG-2	7.33 ± 0.65 ^a	6.13 ± 0.21^{b}	<0.01
RCPRG-3	7.08 ± 0.44	$6.00 \pm 0.28 \mathrm{b}$	<0.01
RCPRG-4	7.33 ± 0.53	5.69 ± 0.42^{b}	<0.01
RCPRG-5	7.41 ± 0.87 ^a	6.01 ± 0.36^{b}	<0.01
RCPRG-6	7.77 ± 0.58 ^a	6.06 ± 0.22^{b}	<0.01

TC 0: 24時間水中浸漬後(サーマルサイクルなし) TC 20,000:24時間水中浸漬後,サーマルサイクル20,000回負荷

n=10, 同一文字間有意差なし (one-way ANOVA, tukey's test, P>0.05) *t-test, (p<0.05)

	Mean ± S.D. (MPa)		<i>p</i> value*
	TC 0	TC 20,000	
RCPRG-0	22.5± 5.9 ^a	20.5 ± 8.0^{b}	NS
RCPRG-1	22.6 ± 3.8^{a}	20.8 ± 7.4 ^b	NS
RCPRG-2	23.9 ± 3.0^{a}	21.0 ± 3.6 ^b	NS
RCPRG-3	23.3 ± 6.2^{a}	$20.9 \pm 6.6 {}^{b}$	NS
RCPRG-4	24.1 ± 5.8^{a}	18.9 \pm 7.0 ^b	NS
RCPRG-5	22.8 ± 6.4^{a}	17.7 ± 5.5^{b}	NS
RCPRG-6	23.4 ± 6.6^{a}	18.8 ± 6.7 ^b	NS

表7 S-PRGフィラーの各配合率における象牙質微小引張接着強さ

TC 0: 24時間水中浸漬後(サーマルサイクルなし) TC 20,000:24時間水中浸漬後,サーマルサイクル20,000回負荷

n=10, 同一文字間有意差なし (one-way ANOVA, tukey's test, P>0.05) *t-test, NS: 有意差なし (p>0.05)

表8 S-PRGフィラーの各配合率におけるもろさ係数

	TC 0	TC 20,000	<i>p</i> value*
RCPRG-0	1.93	2.97	
RCPRG-1	2.07	2.73	
RCPRG-2	2.10	2.95	
RCPRG-3	2.15	2.76	
RCPRG-4	1.87	2.56	
RCPRG-5	1.77	2.48	
RCPRG-6	1.75	2.39	
平均	1.93 ± 0.16	2.70 ± 0.22	<0.01

TC 0: 24時間水中浸漬後(サーマルサイクルなし) TC 20,000:24時間水中浸漬後, サーマルサイクル20,000回負荷 もろさ係数: 圧縮強さ/曲げ強さ *t-test, (p<0.05)

TC 0群

TC 20,000群

図2 三点曲げ試験後の試料横断面のSEM観察

TC 0群

n=10

TC 0群 TC 20,000群

図4 象牙質微小引張接着強さ測定後のSEMによる破断面観察

図5 S-PRGフィラー配合率とフッ素徐放量の関係 n=5

図6 6か月間に徐放量されたフッ素とS-PRGフィラー配合量との関係

脚注

岡山大学大学院医歯薬学総合研究科 生体機能再生・再建学講座 歯科保存修復学分野

(主任:吉山 昌宏教授)

図1 三点曲げ試験後の試料表面の SEM 観察

図2 三点曲げ試験後の試料横断面の SEM 観察

図右側のエポキシ樹脂と左側のレジンセメントが矢印(金蒸着を行った層)で示される 層で明確に区別されている. TC 20,000 群では中央にフィラーの脱落と考えられる欠損が観 察された.また,この欠損周囲に存在するフィラーの表面にギャップが観察された.

図3 破断面形態の分析

TC 0 群: S-PRG フィラー配合率の違いによる破断面形態に有意差なし(Chi-square test p>0.05)

TC 20,000 群: S-PRG フィラー配合率の違いによる破断面形態に有意差あり (Chi-square test p<0.05)

図4 象牙質微小引張接着強さ測定後の SEM による破断面観察

a: セメント凝集破壊

b: 試作プライマー凝集破壊

c:象牙質凝集破壞

d:象牙質界面破壞

e: レジン凝集破壊

TC 0 群では左下の a で示した部分にはレジンセメントの凝集破壊が観察された.中央部の b で示した部分は試作プライマーの凝集破壊が観察され,右側の c で示された部分は,象牙質凝集破壊の様相を呈しておりコラーゲン線維と開口した象牙細管が観察された.また,矢印で示した一部の象牙細管にはレジンタグが形成されておりそのレジンタグが凝集破壊されていた.

TC 20,000 群では、下部の d で示される部分は象牙質界面破壊の様相を呈していた.ス メアー層は試作プライマーにより一部除去されており開口した象牙細管にレジンタグが形 成されておりそのレジンタグが凝集破壊されていた(矢印). 中央部 a にはレジンセメン ト層が観察されその上部 e にはセラマージュの球状フィラーが付着していた. この球状フ ィラーにはマトリックスレジンが付着しておりセラマージュが凝集破壊していると考えら れた.

図5 S-PRG フィラー配合率とフッ素徐放量の関係

最初の 14 日間で 6 か月間の水中浸漬により徐放されたフッ素の累積量のうち RCPRG-0 では 24%, RCPRG-6 では 43%のフッ素イオンが徐放していた.

- 図 6 6か月間に徐放量されたフッ素と S-PRG フィラー配合量との関係
 同一文字間有意差なし (tukey's test, P>0.05)
- 図7 S-PRG フィラー配合率とフッ素リチャージ量の関係