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Abstract  

Nitric oxide (NO) is produced from the conversion of L-arginine by NO synthase 

(NOS) and regulates a variety of processes in the gastrointestinal tract. Considering the 

increased activity of arginase in colitis tissue, it is speculated that arginase could inhibit 

NO synthesis by competing for the same L-arginine substrate, resulting in the 

exacerbation of colitis. We examined the role of arginase and its relationship to NO 

metabolism in dextran sulfate sodium (DSS)-induced colitis. Experimental colitis was 

induced in mice by administration of 2.5% DSS in drinking water for 8 days. Treatment 

for arginase inhibition was done by once daily intraperitoneal injection of 

Nω-hydroxy-nor-arginine (nor-NOHA). On day 8, we evaluated clinical parameters 

(body weight, disease activity index, and colon length), histological features, the 

activity and expression of arginase, L-arginine content, the expression of NO synthase 

(NOS), and the concentration of NO end-product (NOx: nitrite + nitrate). 

Administration of nor-NOHA improved the worsened clinical parameters and 

histological features in DSS-induced colitis. Treatment with nor-NOHA attenuated the 

increased activity of arginase, upregulation of arginase Ι at both mRNA and protein 

levels, and decreased the content of L-arginine in colonic tissue in the DSS-treated mice. 

Conversely, despite the decreased expression of NOS2 mRNA, the decreased 
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concentration of NOx in colonic tissues was restored to almost normal levels. The 

consumption of L-arginine by arginase could lead to decreased production of NO from 

NOS, contributing to the pathogenesis of the colonic inflammation; thus, arginase 

inhibition might be effective for improving colitis.  

 

Introduction   

The prevalence of inflammatory bowel diseases, including Crohn’s disease and 

ulcerative colitis, has been increasing [1]. These disorders manifest several clinical 

symptoms, including weight loss, diarrhea, bleeding, and fever, and are characterized by 

a clinical course with remission and exacerbation [2-3]. Specific histological findings 

for inflammatory bowel diseases include inflammatory cell infiltration, including 

eosinophils, neutrophils, monocytes and mast cells into the gut mcucosa, goblet cell 

depletion, crypt abscesses, and distortion of mucosal glands [4].   

  Nitric oxide (NO) is known as a free radical that regulates a variety of processes in 

the gastrointestinal tract, including blood flow, vascular permeability, mucosal defense, 

leukocyte recruitment, immune regulation, fluid secretion, and intestinal motility [5,6]. 

NO is largely produced from L-arginine as a substrate by three isoforms of NO synthase 

(NOS). Two isoforms of NOS, neuronal (nNOS, NOS1) and endothelial (eNOS, NOS3), 
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are constitutively expressed and are calcium dependent. The third isoform of NOS is 

inducible NOS (iNOS, NOS2), expressed in macrophages, neurons and endothelial cells 

and, when induced, can produce a large amount of NO compared to other 

constitutive-type NOS [7,8]. Interestingly, there is some evidence that supplementation 

of nitrite [9] or L-arginine [10] ameliorates the colonic injury of experimental colitis, 

while administration of NOS inhibitor worsens the injury [11]. Given the findings, it is 

likely that NOS-derived NO plays an important role in healing ulcerative colitis.  

  In addition to NOS, L-arginine is also used by arginase I or II to maintain the urea 

cycle. Arginase may inhibit NO synthesis by limiting the supply of intracellular 

L-arginine to NOS [12-14]. In experimental asthma and human asthmatic patients, it is 

suggested that upregulated arginase I consumed L-arginine and resulted in the depletion 

of NO to enlarge bronchial smooth muscle [15-18]. Considering that the activity and 

expression of arginase was increased in human inflammatory bowel disease [19], in 

ulcerative colitis it is speculated that overexpression of arginase might modulate NO 

metabolism by the consumption of L-arginine; however, there is no evidence to clarify 

the role of arginase and its relationship to NO production in the pathogenesis of 

ulcerative colitis.  

  Therefore, the aim of this study was to address the contribution of arginase to 
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experimental colitis induced by dextran sulfate sodium (DSS). Using an arginase 

inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA), we investigated whether the clinical 

signs of DSS-induced colitis were improved by the regulation of NO production via 

modulating L-arginine metabolism.  

 

Methods 

Animals   

Male 6-week-old C3H mice were obtained from Charles River Laboratories Japan 

(Yokohama, Japan). All mice were maintained under a 12-h light/12-h dark cycle and 

had free access to standard laboratory food and tap water. They were acclimatized for at 

least 1 wk before the experiments. The care and handling of the animals were in 

accordance with the Guidelines for the Care and Use of Laboratory Animals at Shikata 

Campus of Okayama University and approved by the Okayama University Institutional 

Animal Care and Use Committee.  

 

Induction of colitis and treatment of nor-NOHA   

Experimental ulcerative colitis was induced in mice by administrating 2.5% (w/v) 

dextran sulfate sodium (molecular weight 5000; Wako Pure Chemicals, Osaka, Japan) in 
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drinking water for 8 days [9,20]. Treatment for inhibition of arginase was done by once 

daily intraperitoneal injection of nor-NOHA (8.5 or 17 mg/kg, Bachem, Bubendorf, 

Switzerland) after DSS administration. The first administration of nor-NOHA was just 

before the start of DSS administration. Control mice were allowed to drink only water. 

Body weight of mice was recorded daily and is expressed as a change from baseline.  

 

Evaluation of severity of colon damage   

To assess colon damage severity, the disease activity index was determined 

macroscopically as the sum of the scores from three major clinical signs (body weight 

loss, diarrhea, and rectal bleeding), as described previously [20]. Body weight, diarrhea 

score, and bleeding score of each mouse were assessed daily. Change in body weight in 

the mice was calculated as the difference between the expected and actual weight. The 

formula for predicted body weight was derived by simple regression using the body 

weight data for the control group. The following formula was used: Y = a + kx, where Y 

= body weight change (loss or gain), k = daily increase in body weight, x = day, a = 

starting body weight. Diarrhea was defined as mucus or fecal material adhering to anal 

fur. The presence or absence of diarrhea was scored as either 1 or 0, respectively. Rectal 

bleeding was defined as diarrhea containing visible blood and/or mucus or gross rectal 
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bleeding and was scored as either 1 or 0, respectively.  

 

Harvest of colon tissue and measurement of colon length   

All mice were euthanized 8 days after treatment and the colon was harvested. The 

length of the colon was measured from the ileo-cecal junction to the anal verge.  

 

Preparation of colon specimen   

After measuring the colon length, part of the colon tissue samples was used for a 

histological examination and extraction of total RNA for reverse transcription (RT)-PCR. 

The remaining colon tissues were homogenized in homogenizing buffer [20mM 

Tris-HCl, pH7.5, 150 mM NaCl, and 1 mM EDTA containing a protease inhibitor 

cocktail (Roche, Mannheim, Germany)] with or without 1% Triton X-100, and used for 

further analysis.  

 

Histological evaluation   

The colon tissues were fixed in 10% neutral phosphate-buffered formalin, and 

embedded in paraffin. Sections were cut and stained with hematoxylin and eosin. A 

histological assessment of the colonic mucosa was performed as described previously 
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[21,22]. The severity of inflammation (0-3), extent of inflammation (0-3), and crypt 

damage (0-4) were individually scored, and the sum was used as a score of histological 

injury.  

 

Immunohistochemistry   

An immunohistochemical analysis was performed as described previously [15,23] . 

Briefly, colon tissue sections were incubated in methanol containing 1% H2O2 for 30 

min. After three washes in Tris-buffered saline, sections were incubated in 5% normal 

goat serum. The specimens were stained at 4°C overnight with rabbit polyclonal 

antibodies against arginase (1:40, H-52, Santa Cruz Biotechnology Inc., Santa Cruz, 

CA), or NOS2 (1:1000, M-19, Santa Cruz Biotechnology Inc.). The specimens were 

then treated with goat anti-rabbit immunoglobulin conjugated with peroxidase-labeled 

polymer (DakoCytomation Inc., Carpinteria, CA) for 1 h at room temperature, 

visualized with 3,3-diaminobenzidine tetrahydrochloride (DakoCytomation Inc.), and 

counterstained with hematoxylin.  

 

RT-PCR   

To examine the expression of mRNA for arginase and NOS isoform, the total RNA of 
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each sample of colon tissue was extracted with ISOGEN (Nippon Gene, Tokyo, Japan). 

RT-PCR was performed using TaKaRa RNA PCR kit AMV ver.3.0 (TaKaRa Bio Inc., 

Otsu, Japan) and a TaKaRa PCR thermal cycler MP (TaKaRa Bio Inc.) with oligo-dT 

primers according to the manufacturer’s instructions. Primer sets and PCR conditions 

are detailed in Table 1. We preliminarily employed the cycle-dependent linearity of PCR 

bands. Each PCR product was detected by agarose gel electrophoresis and ethidium 

bromide staining. The density of each PCR band was quantified by ImageJ software 

(National Institute of Health, Bethesda, MD) and normalized against GAPDH.  

 

Measurement of arginase activity   

Arginase activity was measured as described previously [15,16,23,24]. Briefly, the 

colon tissue homogenates treated with 1% Triton X-100 were centrifuged at 10,5000 x g 

for 60 min at 4ºC (Beckman TL-100; Beckman Coulter, Fullerton, CA). Supernatant 

was preincubated in the presence of MnCl2 at 55°C for 10 min, and then incubated with 

L-arginine at 37ºC for 60 min. The reaction was stopped by an acid solution 

(H2SO4:H3PO4:H2O = 1:3:7 vol). After the addition of α-isonitrosopropiophenenone, 

the mixture was heated at 100ºC for 45 min. The amount of reaction product, urea, was 

measured colorimetrically at 540 nm.   
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Western blot analysis   

To investigate the protein expression of arginase isoform, Western blot analysis was 

performed as described previously [15,16,23]. An equal amount of protein from colon 

homogenate with 1% Triton X-100 was subjected to sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis and transferred onto polyvinylidene 

difluoride membranes (Millipore Corp., Billerica, MA). After blocking with 5% dried 

skimmed milk in Tris-buffered saline containing 0.5% Tween 20 (TBS-T), membranes 

were incubated with polyclonal rabbit antibodies for arginase I or arginase II (1:200, 

Santa Cruz Biotechnology Inc.). Goat horseradish peroxidase (HRP)-conjugated 

anti-rabbit immunoglobulin antibody (1:2000; Sigma-Aldrich, St. Louis, MO) was used 

as a secondary antibody. Antibody-specific bands were detected using an enhanced 

chemiluminescence Western blot detection system (Perkin-Elmer, Boston, MA). The 

membranes were stripped and reprobed with anti-β-actin antibody (Sigma-Aldrich). 

Antibody-specific bands were quantified by Scion Image software (Scion Corp., 

Frederick, MD), and the level of arginase isoform was normalized to that of β-actin.  

 

Measurement of NOx production   
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To estimate the generation of NO in colon tissue, the concentration of NOx, nitrite 

(NO2
- ) and nitrate (NO3

-), in the colon homogenate was determined using an NO 

analyzer (Model-280i NOA with a Purge Vessel; Sievers, Boulder, CO), as described 

previously [15,16,23,25]. Briefly, the homogenate was treated with nitrate reductase 

(Sigma-Aldrich) to convert NO3
- to NO2

- at room temperature for 30 min. The proteins 

were removed by centrifugation after addition of acetonitrile. NO2
- in the supernatant 

was further reduced to NO in a Purge Vessel containing the reducing agent potassium 

iodide on acetic acid, and NO was subsequently detected by the 

ozone-chemiluminescence method.  

 

Measurement of L-arginine   

The concentration of L-arginine in colon tissue was quantified by high-performance 

liquid chromatography (HPLC) with fluorescence detection, as described previously 

[15,16,23,26]. Briefly, colon homogenates were mixed with monomethylarginine as an 

internal standard. The mixture was applied to Oasis MCX solid phase-extraction 

cartridges (Waters, Milford, MA). The analyte containing arginine and 

monomethylarginine was eluted with methanol/water/ammonia solution (50:45:5, 

vol/vol/vol) and dried in a vacuum centrifuge. The residue was dissolved in water and 
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mixed with an equal amount of derivatization reagent (1 mg/ml ortho-phthaldialdehyde, 

2% methanol, 0.1% 3-mercaptopropionic acid in 200 mM borate buffer, pH 8.5), and 

equilibrated for 30 min at room temperature. The sample was injected into the HPLC 

system consisting of a solvent delivery system and fluorometer (HITACHI Ltd, Tokyo, 

Japan). A Wakosil 5C18 (4.6 × 250 mm, 5 μm; Wako Pure Chemicals) was used as an 

analytical column. The mobile phase was 9% acetonitrile in acetate buffer, pH 6.3, at a 

flow rate of 1.5 ml/min, and the fluorescence excitation and emission wavelengths were 

340 and 455 nm, respectively.  

 

Statistical analysis   

All results are expressed as the mean ± SE and the data were statistically analyzed by 

one-way ANOVA with a post-hoc test, a multiple comparison test, to determine whether 

the means differed significantly from each other or the vehicle using the SPSS 11.0 

Windows program. The results were considered significantly different at P < 0.05.  

 

Results   

Effect of nor-NOHA on clinical signs of DSS-induced colitis   

We assessed the effects of arginase inhibitor, nor-NOHA, on the clinical parameters of 
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DSS-induced experimental colitis. Compared with control mice, body weight gradually 

decreased in DSS-treated mice; however, the loss of weight in DSS-treated mice was 

dose-dependently attenuated by treatment of nor-NOHA (Figure 1A). We also assessed 

the disease activity index by scoring the clinical signs, including weight loss, diarrhea 

and rectal bleeding. DSS treatment resulted in increases in the disease activity index. 

Interestingly, the increase in the disease activity index was dose-dependently decreased 

by the administration of nor-NOHA to DSS-treated mice (Figure 1B). Furthermore, 

treatment with nor-NOHA reduced the shortening of the colon induced by DSS 

treatment in a dose-dependent manner. All of these findings indicate that the 

administration of nor-NOHA improves clinical parameters in DSS-induced colitis.  

    Moreover, given that the treatment with 17 mg/kg of nor-NOHA significantly 

ameliorated the clinical signs of DSS-induced colitis, which was almost restored to the 

level of control mice, in further experiments, we decided to treat with17 mg/kg of 

nor-NOHA. 

 

Effect of nor-NOHA on the histological features of DSS-induced colitis   

We evaluated the histopathology of the colonic tissues. A histologial analysis of colonic 

sections from DSS-treated mice showed marked transmural inflammation, extensive 
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infiltration of inflammatory cells, and crypt damage. In contrast, reduced inflammation 

and crypt damage were observed in the colon tissue of DSS plus nor-NOHA-treated 

mice. Furthermore, histological scores, assessed by the severity and extent of 

inflammation, and crypt damage were significantly lower in the DSS plus 

nor-NOHA-treated mice than in the DSS-treated mice (Figure 2). These results suggest 

that the administration of nor-NOHA attenuated the histological damage in 

DSS-induced colitis.  

 

Effect of nor-NOHA on activity, mRNA, and protein levels of arginase   

We measured the activity of arginase in colonic tissue. A significant increase in arginase 

activity was observed in DSS-induced colonic tissues compared with the control mice. 

The increased activity of arginase in DSS-treated mice was significantly reduced by 

nor-NOHA administration (Figure 3).    

  Furthermore, we examined the expression of protein and mRNA for arginase isoform 

in colonic tissues by Western blot and RT-PCR, respectively. Upregulation of protein 

and mRNA expression of arginase I was observed in the colon of DSS-treated mice. 

Importantly, the treatment of nor-NOHA significantly attenuated DSS-induced 

expression of protein and mRNA for arginase I (Figure 4A, B); however, there was no 
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significant difference in the expression of protein and mRNA of arginase II between 

DSS and DSS plus nor-NOHA-treated mice.  

  These results suggest that treatment of nor-NOHA attenuated the increased activity 

and expression of arginase I, not arginase II, in the colonic tissues of DSS-induced 

colitis.   

 

Effect of nor-NOHA on L-arginine content   

We examined the concentration of L-arginine, a substrate for arginase, in colon tissue by 

HPLC with fluorescence detection. The concentration of L-arginine in colon tissue was 

significantly lower in DSS-treated mice than in control mice. Interestingly, additional 

administration of nor-NOHA to DSS recovered the reduced levels of L-arginine, which 

were almost restored to normal levels (Figure 5). These data suggest that administration 

of nor-NOHA restored the decreased concentration of L-arginine in colonic tissues of 

DSS-induced colitis.  

 

Effect of nor-NOHA on mRNA expression of NOS isoforms and NOx concentrations   

Because L-arginine is a substrate for NOS as well as arginase, we investigated the 

mRNA expression of NOS isoforms in colonic tissues. The mRNA expression of NOS2 
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was upregulated by DSS treatment, whereas NOS1 and NOS3 mRNA levels were 

unchanged. Additional administration of nor-NOHA to DSS-treated mice inhibited 

mRNA expression of NOS2, whereas mRNA levels of NOS1 and NOS3 were not 

changed (Figure 6).    

  Moreover, we measured the concentration of NOx, the end product of NO produced 

by NOS, in colonic tissues. The concentration of NOx was significantly lower in the 

colonic tissues of DSS-treated mice than in those of control mice. Interestingly, there 

was a significant increase in NOx in the colonic tissues by additional administration of 

nor-NOHA to DSS, compared to DSS alone (Figure 7).  

  These results suggest that administration of nor-NOHA ameliorated the attenuation of 

NOx in colonic tissues in DSS-induced colitis, which likely did not result from 

increased expression of NOS.   

 

Immunohistochemistry for arginase I and NOS2 

We examined the immunolocalization of arginase I and NOS2 in the colonic tissues of 

DSS-treated mice. Immunostaining for arginase I and NOS2 was present in the 

infiltrating inflammatory cells. When compared with serial sections from the same 

tissues, positive cells for arginase I and NOS2 did not exclusively colocalize (Figure 8).  
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Discussion and conclusions   

  Arginase has been suggested to compete with NOS for their common substrate, 

L-arginine. To elucidate the involvement of arginase in the regulation of NO production 

in DSS-induced colitis, we examined the enzymatic activity and expression of arginase, 

L-arginine content, and the concentration of NOx, the end-product of NO produced by 

NOS, in the colonic tissues by administration of an arginase inhibitor, nor-NOHA, to 

DSS-induced mice. We demonstrated for the first time that the inhibition of arginase 

increased NO production and ameliorated clinical signs in colonic tissue in 

DSS-induced colitis.  

  In this study, we used a murine model of colitis induced by DSS. DSS is a 

heparin-like polysaccharide that provokes experimental colon damage similar to the 

pathophysiological features of colitis, such as extensive ulceration of the epithelial layer, 

massive bowel wall edema, fibrotic thickening of the mucosa, and a dense cellular 

infiltrate. DSS has been linked to direct epithelial cytotoxicity and interference with the 

normal interaction between intestinal lymphocytes and epithelial cells [20,27].  

  L-arginine is known to be a substrate for arginase as well as NOS. There are two 

isoforms of arginase: arginase I is abundant in the liver and is important for the urea 
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cycle, and arginase II is abundant in the kidneys and is located in mitochondria [12]. 

Arginase is an endogenous antagonist to NOS because it competes for the same 

L-arginine substrate by metabolizing to L-ornithine and urea, whereas NOS catalyzes 

the oxidation of L-arginine to citrulline and NO with Nω-hydroxy-L-arginine (NOHA) 

formed as an intermediate [12-14]. nor-NOHA is a potent, reversible inhibitor of 

arginase compared to NOHA. In contrast, nor-NOHA is not a substrate for NOS 

isoforms and does not inhibit the activity of NOS [28,29]. Thus, we used nor-NOHA as 

an inhibitor of arginase in this study.  

  We observed significant increased activity and enhanced expression of arginase in the 

colonic tissue of DSS-treated mice. These results agree with the report that the activity 

and expression of arginase were increased in human colitis [19]. More importantly, we 

found that the administration of nor-NOHA resulted in the amelioration of the clinical 

signs, as shown by the improved weight loss, high disease activity index, and colon 

shortening. Similarly, treatment with nor-NOHA attenuated the histological features of 

DSS-induced colitis, including the marked transmural inflammation, extensive 

infiltration of inflammatory cells, and crypt damage. Taken together, we believe that the 

induction of arginase could contribute to the pathogenesis of colitis.  
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  Here, we have shown that the decreased concentration of L-arginine and NOx in 

colonic tissue in DSS-induced colitis was restored by the administration of nor-NOHA. 

We also found that there was no significant difference in the NOx concentration in 

colonic tissue between control (without DSS) and control plus nor-NOHA-treated mice 

(our unpublished data). Considering that arginase is an endogenous competitor of NOS 

for L-arginine, their common substrate [12-14], we think that inhibition of arginase 

could lead to increased production of NO by NOS in colitis tissues. Furthermore, our 

findings that the inhibition of arginase ameliorated DSS-induced colitis indicate the 

contribution of NO supply to healing colon damage.  

  Accumulating evidence has demonstrated that the production of L-ornithine and urea 

by arginase can contribute to tissue remodeling via the subsequent enhanced synthesis 

of L-proline and polyamine [18,30,31]. However, we did not examine the production of 

downstream products of arginase in the colonic tissue in the DSS- and DSS plus 

nor-NOHA-treated mice. Therefore, further studies are needed to uncover whether 

decreased production of these products by arginase suppression contributes to the 

protective effect of nor-NOHA on DSS-induced colitis.  

  We showed that treatment with nor-NOHA ameliorated the clinical signs of 

DSS-induced colitis in a dose-dependent manner. Furthermore, the decreased 
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concentration of L-arginine in the colonic tissues of DSS-treated colitis was 

dose-dependently restored by treatment with nor-NOHA (our unpublished data). Given 

these findings, it is likely that the protective effect of nor-NOHA on DSS-induced colitis 

is dose-dependent.  

  In this study, the administration of nor-NOHA inhibited the upregulation of arginase 

and NOS2 induced by DSS. These results coincide with our previous study indicating 

that the increased expression of arginase and NOS2 was reduced by treatment with 

nor-NOHA in an experimental model of asthma [16]. It has been demonstrated that the 

transcription factor nuclear factor (NF)-κB is involved in NOS2 induction [32]. 

Conversely, it has been reported that increased production of NO inhibits NF-κB 

activity by S-nitrosylation [33]. Considering that treatment with nor-NOHA increased 

NOx levels in the colonic tissues of the mice with DSS-induced colitis, regulation of the 

expression of arginase and NOS2 may be attributed to the modification of transcription 

factors, including NF-κB, by NO. Given that the cells expressing arginase and NOS2 

did not exclusively colocalize, it will be interesting for further studies to elucidate the 

exact mechanisms regulating the expression of these enzymes by the administration of 

nor-NOHA.  
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  In conclusion, in this study, we propose a new mechanism of DSS-induced colitis that 

increased the activity and upregulation of arginase I-induced low NO supply in colon 

microvessels due to the shift of L-arginine from NOS to arginase I. Moreover, our study 

suggested a potential therapeutic role for arginase inhibitor in the treatment of colitis.  
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Figure Legends 

Figure 1. Effect of nor-NOHA on body weight loss (A), disease activity index (B), and 

colon length (C) in DSS-induced colitis. Data are expressed as the means ± SE (n = 6 

mice/group). *** P < 0.01 vs DSS-treated mice.  

 

Figure 2. Effect of nor-NOHA on histological features in DSS-induced colitis. 

Representative images of hematoxylin and eosin-stained sections and histological scores. 

Bars indicate 200 μm. Data are expressed as the means ± SE (n = 6 mice/group). *** 

P < 0.01 vs DSS-treated mice.  

 

Figure 3. Effect of nor-NOHA on arginase activity in colonic tissue in DSS-induced 

colitis. Data are expressed as the means ± SE (n = 6 mice/group). *** P < 0.01 vs 

DSS-treated mice. 

 

Figure 4. Effect of nor-NOHA on the expression protein (A) and mRNA (B) of arginase 

I and II in colonic tissue in DSS-induced colitis. Data are expressed as the means ± 

SE (n = 6 mice/group). *** P < 0.01 vs DSS-treated mice.  
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Figure 5. Effect of nor-NOHA on the concentration of L-arginine in colonic tissue in 

DSS-induced colitis. Data are expressed as the means ± SE (n = 6 mice/group). *** P 

< 0.01 vs DSS-treated mice. 

 

Figure 6. Effect of nor-NOHA on the mRNA expression of NOS isoforms in colonic 

tissue in DSS-induced colitis. Data are expressed as the means ± SE (n = 6 

mice/group). *** P < 0.01 vs DSS-treated mice. 

 

Figure 7. Effect of nor-NOHA on the NOx concentration in colonic tissue in 

DSS-induced colitis. Data are expressed as the means ± SE (n = 6 mice/group). *** P 

< 0.01 vs DSS-treated mice. 

 

Figure 8. Immunohistochemistry for arginase I and NOS2. Representative images of 

hematoxylin and eosin and immunostaining for arginase I and NOS2. Bars indicate 50 

μm.  
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Figure 8

HE Arginase I NOS2



 
 
 
 
 
  Table1. List of primers and RT-PCR conditions 
 

Target Gene Sense Antisense Denaturation Amplification Cycle Elongation 

Arginase I CAGAAGAATGGAAGAGTCAG CAGATATGCAGGGAGTCACC 95°C, 5 min 95°C, 20 s   56°C, 20 s   72°C, 30 s 35 72°C, 5 min 

Arginase II TGATTGGCAAAAGGCAGAGG CTAGGAGTAGGAAGGTGGTC 95°C, 5 min 95°C, 20 s   56°C, 20 s   72°C, 30 s 35 72°C, 5 min 

NOS1 CCTTAGAGAGTAAGGAAGGGGGCGGG GGGCCGATCATTGACGGCGAGAATGATG 94°C, 3 min 94°C, 45 s   60°C, 45 s   72°C, 60 s 35 72°C, 5 min 

NOS2 ATGGCTTGCCCCTGGAAGTTTCTC CCTCTGATGGTGCCATCGGGCATC 94°C, 3 min 94°C, 45 s   60°C, 45 s   72°C, 90 s 31 72°C, 5 min 

NOS3 GGGCTCCCTCCTTCCGGCTGCCACC GGATCCCTGGAAAAGGCGGTGAGG  94°C, 3 min 94°C, 45 s   60°C, 45 s   72°C, 90 s 33 72°C, 5 min 

GAPDH ACCACAGTCCATGCCATCAC TCCACCACCCTGTTGCTGTA 94°C, 3 min 94°C, 45 s   60°C, 45 s   72°C, 60 s 30 72°C, 5 min 
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