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Recent efficient pairings such as Ate pairing use two efficient rational point subgroups such that
π(P ) = P and π(Q) = [p]Q, where π, p, P , and Q are the Frobenius map for rational point, the
characteristic of definition field, and torsion points for pairing, respectively. This relation accelerates not
only pairing but also pairing–related operations such as scalar multiplications. It holds in the case that
the embedding degree k divides r − 1, where r is the order of torsion rational points. Thus, such a case
has been well studied. Alternatively, this paper focuses on the case that the degree divides r + 1 but
does not divide r − 1. Then, this paper shows a multiplicative representation for r–torsion points based
on the fact that the characteristic polynomial f(π) becomes irreducible over Fr for which π also plays a
role of variable.
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1 Introduction

Pairing–based cryptographies have attracted many
researchers in these years since it realizes some innova-
tive cryptographic applications such as ID–based cryp-
tography [1] and group signature authentication [2]. Pair-
ing is a bilinear map between two rational point groups
on a certain pairing–friendly curve and a multiplica-
tive group in a certain finite field, for which rational
points need to form a torsion group structure of rank
2 [3]. Since it takes a lot of calculation time compared
to other operations such as a scalar multiplication for
rational point, Ate pairing [4], for example, applies two
special rational point subgroups for accelerating pair-
ing. The two special rational point groups are identified
by the factorization of the characteristic polynomial of
pairing–friendly curve. In detail, let E(Fp) be a pairing–
friendly curve over prime field Fp of embedding degree
k and thus E(Fpk) has a torsion group structure, where
p is the characteristic. Then, let t be the Frobenius
trace of E(Fp) and r be the order of one cyclic group in
the torsion group, the characteristic polynomial f(π) is
given by and factorized over Fr as

f(π) = π2 − tπ + p

≡ (π − 1)(π − p) mod r, (1)
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where π is Frobenius map for rational points in E(Fpk)
with respect to Fp. Ate pairing applies the kernels of
the maps (π − 1) and (π − p). Then, several efficient
techniques are available not only for accelerating pairing
[4] but also scalar multiplications [5], [6]. Thus, these
special groups of r–torsion points have play important
roles and been well researched. For those efficiencies,
the embedding degree k and the group order r need to
satisfy k | (r− 1) and implicitly k > 1. In what follows,
let r be a prime, E(Fpk)[r] denotes the torsion group of
which every rational point has the order r.

This paper alternatively deals with ordinary, in other
words non–supersingular, pairing–friendly elliptic curve
E(Fpn) such that n - (r−1) especially with the minimal
embedding field Fpl , l = 1, 2 [8]. The motivation of this
research comes from the fact that it has not been well
researched [7], [9] and thus there are some unclear prop-
erties especially for its torsion group structure. First,
this paper reviews that the characteristic polynomial
f(π) becomes an irreducible polynomial over Fr with
respect to π. In other words, f(π) cannot be factor-
ized to the form of Eq.(1) with some scalars modulo
r for which π also plays a role of variable. Then, us-
ing f(π) as the modular polynomial, this paper gives
a multiplicative representation of every r–torsion point
for which two cases of definition field Fp and Fpn are
considered, where n is a certain prime number. In de-
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tail for the former case, skew Frobenius map π̂d with
twist technique of degree d = 3, 4, and 6 is applied [5] in
which the twisted characteristic polynomial f ′(π̂d) is ap-
plied as the modular polynomial. Then, every r–torsion
point is represented in the same manner of elements in
the second extension field Fr2 such as ([a0] + [a1]π)P ,
P ∈ E(Fpn)[r], where E(Fpn)[r] denotes the set of r–
torsion points and a0, a1 ∈ Fr. Thus, they form groups
with respect to not only elliptic curve addition but also
a multiplicative operation defined as

PA = [A]P = ([a0] + [a1]π)P, (2a)

PB = [B]P = ([b0] + [b1]π)P, (2b)

PC = [C]P = [A · B]P, (2c)

where a0, a1, b0, b1 ∈ Fr, C ≡ A · B modulo f(π). It will
be easily induced from complex number field. Then, this
paper also shows some properties and how to prepare
such pairing–friendly elliptic curves. According to the
technical term minimal embedding field proposed in [8],
it is shown that the cases considered in this paper have
the minimal embedding field Fp or Fp2 . Restricting d is
equal to 3 and n is an odd prime, this paper especially
deals with the cases of minimal embedding field Fp .

Throughout this paper, let p, r, and n be differ-
ent prime numbers as the characteristic of finite field,
the order of group, and the extension degree, respec-
tively. Let d be the twist degree. Then, Fp, Fpd , and
Fpn respectively denote a prime field, extension fields
of extension degrees d and n, respectively. In addition,
this paper especially deals with ordinary, in other words
non–supersingular, elliptic curves.

2 Fundamentals

On the viewpoint of torsion group, this section briefly
reviews elliptic curve, pairing–friendly elliptic curve, min-
imal embedding field, twist, Frobenius map π, skew
Frobenius map π̂d, characteristic polynomials f(π) and
f ′(π̂d), and some conventional researches.

2.1 Elliptic curve, its order, and Frobenius map

Let E be an elliptic curve defined over Fp as

E : y2 = x3 + ax+ b, a, b ∈ Fp. (3)

The set of rational points including the infinity point
O on the curve forms an additive Abelian group. It
is denoted by E(Fp). When the definition field is its
extension field Fpn , rational points on the curve E also
forms an additive Abelian group denoted by E(Fpn).
In the case that the extension degree n > 1, since the
coefficient field Fp of the elliptic curve E is a proper
subfield of the definition field Fpn , E(Fpn) is especially
called subfield elliptic curve.

For rational points R(xR, yR) ∈ E(Fpn), where xR,
yR are elements in Fpn , consider Frobenius map π with
respect to the coefficient field Fp. In detail, π becomes

an endomorphism defined by

π : E(Fpn) → E(Fpn)

(xR, yR) 7→ (xpR, y
p
R). (4)

Thus, πn = 1. On the other hand, it is well known that
every rational point R in E(Fpn) satisfies

(π2 − [t]π + [p])R = O, (5)

and the order #E(Fp) is written by

#E(Fp) = p+ 1− t, (6)

where t denotes the Frobenius trace of E(Fp). Then,
consider a polynomial f(π) with respect to the preced-
ing Frobenius map π as follows.

f(π) = π2 − tπ + p, (7)

it is often called characteristic polynomial. Since p is
a prime number and |t| ≤ 2

√
p [3], f(π) is obviously

irreducible over integers. Then, according to the Weil’s
theorem [3], the order #E(Fpn) is given by

#E(Fpn) = pn + 1− tn, (8)

where tn = αn + βn for which α and β are conjugate
complex numbers such that

f(α) = f(β) = 0. (9)

Using Dickson’s polynomial [10], tn is recursively deter-
mined from p = αβ and t1 = α + β. In addition, it is
easily found that #E(Fp) divides #E(Fpn). It ensures
that E(Fp) is a subgroup of E(Fpn). If the extension
degree n is a prime, the period of Frobenius map π for
rational points becomes 1 or n. The former period cor-
responds to the rational points in E(Fp).

In what follows, let the extension degree n be a
prime number for making the discussions simple. Let
r be a prime such that r | #E(Fpn) and r2 - #E(Fpn),
then the subgroup of rational points of order r denoted
by E(Fpn)[r] exists in E(Fpn) as a cyclic group. If
r - E(Fp), it is found that the extension degree n di-
vides r − 1 because n is the period of the map [11].

2.2 Pairing–friendly elliptic curve

Let r be a prime such that r | #E(Fp). In general,
the smallest positive integer k such that r divides pk−1
is called embedding degree. When k is larger than 1, it
is well–known that E(Fpk)[r] consists of torsion points

of order r under r2 | E(Fpk) [3]. In detail,

• there are r2 − 1 points of order r,

• E(Fpk)[r] forms a rank 2 group structure,

• there are r+ 1 cyclic groups order r in E(Fpk)[r],

• one of the r + 1 groups belongs to E(Fp).
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In addition, since r | #E(Fp), the characteristic poly-
nomial Eq.(7) modulo r becomes reducible as

f(π) ≡ (π − 1)(π − p) (mod r). (10)

Among the r + 1 cyclic groups of order r in E(Fpk)[r],
according to [3], Eq.(10) implicitly shows the existence
of the cyclic subgroup C[p] such that

(π − [p])A = O, A ∈ C[p]. (11)

It is just understood that C[p] ̸⊂ E(Fp). Since Eq.(11)
means that a scalar multiplication [p]A is easily deter-
mined by a Frobenius map π(A), pairing–based cryp-
tographies mostly apply this efficiency for accelerating
pairing calculations, scalar multiplications, and expo-
nentiations [4], [6]. Alternatively, this paper deals with
some cases that the characteristic polynomial becomes
irreducible modulo r.

In the case that embedding degree k = 1 with or-
dinary pairing–friendly curves, there are some unclear
properties [7] though some researchers have studied [12]
and there are some pairing–based applications that uses
composite order pairing–friendly curves of embedding
degree k = 1 [13]. Especially, if the curve has some
twisted variants introduced in the next section, the same
efficiencies of Eq.(11) are available together with skew
Frobenius map [14].

2.3 Minimal embedding field [8]

The calculation result of a pairing of group order r
becomes a certain non–zero element of the same order
r in the multiplicative subgroup of a certain extension
field Fpl such that

r | (pl − 1) but r - (pi − 1), 0 ≤ i < l. (12)

Let the embedding degree of pairing be k, the extension
degree l of Fpl is equal to k in general. For example,
in the case of Barreto–Naehrig curve, k = l = 12 [15].
However, l sometimes becomes smaller than k. Thus,
Hirasawa et al. [8] have especially named the preceding
Fpl minimal embedding field. This paper deals with the
case that the minimal embedding field Fpl is the prime
field Fp and accordingly r | (p− 1).

2.4 Twists and skew Frobenius map

Let the twist degree for elliptic curve E(Fp) be d
such as 2, 3, 4, and 6, then its twisted curve E′ defined
over the extension field Fpd has its isomorphic subgroup
[4], where d | (p − 1). Let ψd be the isomorphic map
from E(Fp) to the isomorphic subgroup of order #E(Fp)
in E′(Fpd) [4], then skew Frobenius map π̂d for rational

points in E(Fp) is defined by π̂d = ψ−1
d πψd [5]. Thus,

skew Frobenius map satisfies π̂d
d = 1. Since π̂2 is just

the negation map [11], this paper focuses on only the
cases that d = 3, 4, and 6. These twists are available
for some special forms of curve as

d = 4 : y2 = x3 + ax, (13)

d = 3, 6 : y2 = x3 + b, (14)

where a, b ∈ Fp. In what follows, these curves are de-
noted by Ed and thus π̂d is available on Ed(Fp).

For example, in the case that the twist degree d is
equal to 3, the twisted curve E3 and the skew Frobenius
map π̂3 is given as follows [5].

Ed : y2 = x3 + bv, (15)

where v is a certain cubic non residue in Fp. Then, the
skew Frobenius map π̂3 for R ∈ E(Fp) is given by

π̂3 : E(Fp) → E(Fp)

(xR, yR) 7→ (ϵxR, yR), (16)

where ϵ is a primitive cubic root of unity that belongs
to Fr under 3 | (p− 1).

Consider a prime number r such that r | #Ed(Fp)
and d | (r − 1). Let t′ and λd be the Frobenius trace
of its twisted curve E′

d(Fp) and a primitive d–th root of
unity modulo r, respectively. The twisted characteristic
polynomial f ′(π̂d) is given by and factorized as

f ′(π̂d) = π̂2
d − t′π̂d + p (17a)

≡ (π̂d − λd)(π̂d − λ−1
d ) (mod r). (17b)

Since ∀R ∈ Ed(Fp) satisfies

(π̂d
d − [1])R = f ′(π̂d)R = O, (18)

the factorization Eq.(17b) is also found as the greatest
common divisor of π̂d

d − 1 and f ′(π̂d)). If Ed(Fp)[r] is
a cyclic group of order r, in other words rank 1, an
arbitrary rational point P in Ed(Fp)[r] satisfies

(π̂d − λd)P = O or (π̂d − λ−1
d )P = O, (19)

where it is uniquely determined by the isomorphic map
ψd [14]. If Ed(Fp)[r] consists of torsion points of order
r with rank 2, in the same of Sec.2.2, among the r + 1
cyclic groups of order r in Ed(Fp)[r], Eq.(19) shows the

existence of cyclic subgroups C[λd] and C[λ−1
d ] such that

(π̂d − [λd])B = O, B ∈ C[λd], (20a)

(π̂d − [λ−1
d ])C = O, C ∈ C[λ−1

d ]. (20b)

Then, these relations are available for accelerating some
pairing– related calculations such as pairing calculation
and scalar multiplication [5].

2.5 Viewpoint of ECDLP

While pairing for cryptographic applications such
as ID–based cryptography [1] has been well studied in
these years, Menezes–Okamoto–Vanstone (MOV) and
Frey–Rück (FR) reductions [3] have been well known
for attacking elliptic curve discrete logarithm problem
(ECDLP) on pairing–friendly curve. In the case that
the embedding degree k is small, they successfully solve
the ECDLPs in the multiplicative group of the embed-
ded definition field Fpk . Let e(, ) be the Weil pairing [3],
the following properties are known :
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• e(P, P ) = 1,

• e(P,Q) = e(Q,P )−1,

• e(P,Q+R) = e(P,Q) · e(P,R),

• e([a]P, [b]Q) = e(P,Q)ab, 0 ≤ a, b ≤ r − 1,

where P,Q, and R are r–torsion points in E(Fpk)[r].
For e(P, [x]Q) = e(P,Q)x, the scalar x is written as

x = loge(P,Q) e(P, [x]Q). (21)

If the size of Fpk is not sufficient for security, the log-
arithm x will be computationally solved in the multi-
plicative group of order r in F∗

pk = Fpk − {0}.

2.6 Conventional researches

As previously introduced, it is quite important that
the twist degree d or the extension degree n divides r−1
whichever the group of rational points of order r has a
rank 1 or 2 group structure. Then, the calculation costs
of some pairing–related operations are substantially re-
duced [4]–[6]. On the other hand, the other cases such
that d - (r − 1) or n - (r − 1) are briefly introduced [7],
[12] of which some properties have been unsolved as

• the relation of n, d, r, π, and π̂d,

• how to obtain such pairing–friendly curves [9],

• properties on self–pairings [7].

This paper considers a multiplicative extension for
representing the group structure that will give some use-
ful viewpoints for accelerating pairing–based operations
and solving discrete logarithms on such pairing–friendly
curves.

3 Multiplicative extension

As introduced in Sec.1, this paper considers the
cases that twist degree d or extension degree n respec-
tively for Ed(Fp)[r] or E(Fpn)[r] does not divide r − 1.
In addition, among such cases, this paper especially fo-
cuses on the following two cases1:

• d is equal to 3 and divides r + 1,

• n is an odd prime such that r - #E(Fpn), n ̸= r,
and n | (r + 1).

Such a curve explicitly has a torsion group structure,
in other words it is a pairing–friendly curve. Then, this
paper shows that every r–torsion rational point of order
r on such a pairing–friendly curve is able to be rep-
resented as and dealt with in the same manner of an
element in Fr2 .

In what follows, for the simplicity of notations, the
case of Ed(Fp) with twist degree d is mainly discussed.
Just replacing d, π̂d, and f

′(π̂d) to n, π, and f(π), re-
spectively, the same result with E(Fpn) is obtained.

1There will be some other cases such that n = r.

3.1 Variety of group structures

When the embedding degree k > 1, it is found that
d divides r(r−1). Thus, when r is a large prime number
for ensuring cryptographic security, d | (r − 1) will be
satisfied. Such a case has been well researched as intro-
duced in Sec.2.2. Alternatively, there are other cases
such that d divides r2 − 1. Thus, this paper deals with
the case that d divides r+1. Then, the order r satisfies
that r | (pl − 1), where l = 1 or 2. Since r is a prime
number,

p ≡

{
1 l = 1

−1 l = 2
(mod r), (22)

In brief, p ≡ ±1 (mod r). Note here that l = 1 and
p ≡ 1 (mod r) when d = 3 or n is an odd prime. Then,
there are the following two cases:

1. Ed(Fp)[r] has an r–torsion structure of rank 2,

2. E(Fpn)[r] has an r–torsion structure of rank 2 such
that r2 | #E(Fpn) and r - #E(Fp).

They are the target cases of this research. For the above
two cases, the embedded multiplicative group of order r
belongs to the multiplicative group of Fp. Especially for
the latter case, this paper introduces a technical term
minimal embedding field [8]. In detail, E(Fpn) is de-
fined over Fpn but its minimal embedding field is Fp. In
brief, it is said that both of the above two cases under
d | (r + 1) and n | (r + 1) have the minimal embed-
ding field Fp, respectively. In what follows, the case of
Ed(Fp) is mainly dealt with. Note that d and r are the
periods of skew Frobenius map π̂d and Frobenius map
π, respectively. Thus, they are closely related to the
divisibilities of d | (r − 1) and n | (r − 1).

3.2 Irreducibility of f ′(π̂d)

In the case that d does not divide r− 1, π̂d does not
correspond to any scalar multiplications. It is because
any primitive d–th roots of unity does not exist in F∗

r .
Thus, it is easily found that the twisted characteristic
polynomial f ′(π̂d) becomes an irreducible polynomial
of degree 2 with respect to π̂d over Fr for which π̂d also
plays a role of a variable.

It is also understood from the viewpoint of cyclo-
tomic polynomials. In detail, let d = 3 for f ′(π̂d) given
by Eq.(17a), substitute p ≡ 1 (mod r) and t′ ≡ −1
(mod r) [14], where the former is introduced in Sec.3.1
and the latter is obtained. Then, f ′(π̂d) in the case of
d = 3 is given by

f ′(π̂d) = f ′(π̂3) = π̂2
3 + π̂3 + 1 ≡ 0 (mod r). (23)

It is the cyclotomic polynomial of period 3 with respect
to π̂3. Since 3 - (r − 1), it does not correspond to any
scalar multiplication and thus it is shown that f ′(π̂3)
becomes irreducible over Fr. In what follows, this paper
briefly uses the notation d such as f ′(π̂d).

Using f ′(π̂d) as the modular polynomial enables to
construct the second extension field Fr2 . An arbitrary
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element A ∈ Fr2 is represented as

A = a0 + a1π̂d, a0, a1 ∈ Fr. (24)

The above representation is polynomial representation
with the polynomial basis {1, π̂d}. Thus, all of the r–
torsion rational points are able to be represented in the
same manner of elements Fr2 .

Let G = g0 + g1π̂d, g0, g1 ∈ Fr be a generator of the
multiplicative cyclic group F∗

r2
, every element in F∗

r2
is

represented as a certain power Gi, where 1 ≤ i ≤ r2−1.
Accordingly, let Gi = gi0 + gi1 π̂d, gi0 , gi1 ∈ Fr, every
r–torsion points in Ed(Fp)[r] are represented as

[Gi]P = ([gi0 ] + [gi1 ]π̂d)P

= [gi0 ]P + [gi1 ]π̂d(P ), (25)

where P is an arbitrary r–torsion point in Ed(Fp)[r] −
{O}. It enablesmultiplicative representaions for r–torsion
points. The property that every r–torsion point is repre-
sented as Eq.(25) corresponds to the fact that the skew
Frobenius map π̂d is not congruent to any scalar mul-
tiplications in Ed(Fp)[r] when d - (r + 1). Thus, each
cyclic subgroup of rational points of order r corresponds
to the prime field Fr.

3.2.1 Viewpoint of discrete logarithms

Consider a non–zero r–torsion point P in Ed(Fp)[r].
Using Weil pairing e(, ), determine e(P, π̂d(P )) that is a
certain element in the multiplicative subgroup of order
r in Fp. Let A be a0+a1π̂d, where a0, a1 ∈ Fr, consider
an r–torsion point PA = [A]P . In detail,

PA = [A]P = [a0]P + [a1]π̂d(P ). (26)

According to the properties of Weil pairing,

e(P, P ) = e(π̂d(P ), π̂d(P )) = 1. (27)

Thus, since the following relations hold,

e(π̂d(P ), PA) = e(π̂d(P ), [a0]P + [a1]π̂d(P ))

= e(π̂d(P ), [a0]P ) · e(π̂d(P ), [a1]π̂d(P ))
= e(π̂d(P ), P )

a0 , (28a)

e(P, PA) = e(P, [a0]P + [a1]π̂d(P ))

= e(P, [a0]P ) · e(P, [a1]π̂d(P ))
= e(P, π̂d(P ))

a1 , (28b)

the coefficients a0 and a1 of A are given as

a0 = loge(π̂d(P ),P ) e(π̂d(P ), PA), (29a)

a1 = loge(P,π̂d(P )) e(P, PA). (29b)

As shown above, if P and PA are known, the coefficients
a0 and a1 of A are uniquely obtained.

Let us remember that the minimal embedding field
in this paper is Fp. Its size for pairing–based crypto-
graphic use with sufficient security, for example, needs
to be more than 1024 bits in which the above logarithms

will not be practically computed. Thus, as introduced
in Sec.1, the above and below considerations will just
give some theoretic properties of r–torsion group struc-
tures regardless of their contributions to cryptographic
applications or attacks.

3.3 Multiplicative operation for r–torsion points

If the discrete logarithms are easily solved by calcu-
lating some pairings as Eqs.(29), one can newly consider
a multiplication for r–torsions points as follows.

Let PA and PB be given by

PA = [A]P = ([a0] + [a1]π̂d)P, (30a)

PB = [B]P = ([b0] + [b1]π̂d)P, (30b)

where a0, a1, b0, and b1 are in Fr. Then, corresponding
to the following C ≡ A · B modulo f ′(π̂d),

C = (a0 + a1π̂d)(b0 + b1π̂d)

= a0b0 + (a1b0 + a0b1)π̂d + a1b1π̂
2
d

= (a0b0 − a1b1) + (a1b0 + a0b1 + a1b1)π̂d, (31)

where note that f ′(π̂d) = 0 is given by Eq.(23). Thus,
the following multiplication for r–torsion points PA and
PB is explicitly defined.

PC = [C]P = [A · B]P = PA · PB. (32)

Together with the above multiplicative law for r–torsion
points, let G, P , and + be a generator of F∗

p2 , a non–zero

r–torsion point, and the usual elliptic curve addition for
rational points, respectively,

⟨
{[Gi]P,O}, +, ·

⟩
forms

an extension field isomorphic to Fr2 . In the case that
the twist degree d is equal to 3, the isomorphic relation
is easily understood.

Let us consider how to carry out a multiplication
for non–zero r–torsion points. Consider two r–torsion
points R1 and R2. They will be written as follows.

R1 = [Gi1 ]P = ([r10] + [r11]π̂d)P, (33)

R2 = [Gi2 ]P = ([r20] + [r21]π̂d)P, (34)

where 1 ≤ i1, i2 ≤ r2 − 1, r10, r11, r20, r21 ∈ Fr. Accord-
ing to Eq.(31), R3 = R1 ·R2 is given as

R3 = [Gi1+i2 ]P

= (r10r20 − r11r21)

+(r11r20 + r10r21 + r11r21)π̂d (35a)

= [Gi3 ]P = (r30 + r31π̂d)P, (35b)

where 1 ≤ i3 ≤ r2 − 1, r30, r31 ∈ Fr. Note here that
r10, r11, r20, and r21 are possible to be determined as
Eqs.(29) with P and π̂d(P ) even if they are random r–
torsion points. After solving the logarithms, r30 and r31
are constructed as Eq.(35a) though the determination of
i3 is another discrete logarithm problem.
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3.3.1 Division

Division will be defined as a multiplication by the
inverse. For PA and PB shown in Eqs.(30), consider

PC = [C]P = [A · B−1]P = PA · P−1
B . (36)

According to Itoh–Tsujii inversion algorithm [16] with
Eq.(31), the inverse B−1 for P−1

B = [B−1]P in the case
of d = 3, for example, is given by

B−1 = Br · (B · Br)−1

= (b0 + b1π̂3) · {(b0 + b1π̂3) · (b0 + b1π̂
r
3))}

−1

= (b0 + b1π̂3) ·
{
(b0 + b1π̂3) · (b0 + b1π̂

−1
3 ))

}−1

= (b0 + b1π̂3) ·
(
b20 + b21 − b0b1

)−1

= w · b0 + w · b1π̂3, (37)

where w = (b20+ b
2
1− b0b1)−1 mod r and π̂r

3 = π̂−1
3 mod-

ulo f ′(π̂3) = 0. Thus, division is also available with the
same manner of that of Fr2 .

4 Future works

This paper has given a multiplicative representation
of r–torsion rational points in the same manner of el-
emenets in the second extension field Fr2 . Then, it was
shown that all of r–torsion points except for the infinity
O form a cyclic group in the same of the multiplicative
group F∗

r2
. As a future work, based on the approach

shown in this paper, some cryptographic applications
or attacks toghther with pairing will be given. Though
this paper did not deal with, the case that period n
divides order r will have some interesting properties.
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