A GENERALIZATION OF THE DADE'S THEOREM ON
LOCALIZATION OF INJECTIVE MODULES

KAZUHIKO HIRATA AND U SYU

In general the localization does not preserve the injectivity. E. C. Dade
gave a necessary and sufficient condition which assures the preservation of
the injectivity for commutative rings in [1] Theorem 13. Recently one of
the authors tried to generalize it to non commutative rings in [3]. But it
does not seem to be enough sufficient. So we retried to solve this problem.
We refer to [2] on the terminologies and notations mainly.

Let A be a ring not necessary commutative, \mathcal{F} a class of right ideals
of A which defines a hereditary torsion theory on the category of right
A-modules. First, we refer to [2] Chapter IX, Proposition 2.7, namely,

Let M be a torsion free A-module. Then the localization $M_\mathcal{F}$ of M is
$A_\mathcal{F}$-injective if and only if the following holds:

For any right ideal I of A and any homomorphism $g : I \to M$
there exists $B \in \mathcal{F}$ containing I and a homomorphism $p : B \to$
M such that $p|_I = g$.

We start with the following diagram:

\[
\begin{array}{c}
B \\
i \\
I \\
g \\
0 \longrightarrow t(E) \overset{\alpha}{\longrightarrow} E \overset{\beta}{\longrightarrow} \tilde{E} \longrightarrow 0
\end{array}
\]

where E is an injective module, $t(E)$ the \mathcal{F}-torsion submodule of E, $\tilde{E} = E/t(E)$ and I and B are right ideals of A. From this we can construct the
following row exact commutative diagram:
where F and G are projective modules. Furthermore if there was given a homomorphism $p : B \to E$ then we obtain the following:

\begin{equation}
\begin{array}{ccccccccc}
0 & \rightarrow & H & \overset{\alpha_2}{\rightarrow} & G & \overset{\beta_2}{\rightarrow} & B & \overset{0}{\rightarrow} \\
& & k & & j & & i & & \\
0 & \rightarrow & K & \overset{\alpha_1}{\rightarrow} & F & \overset{\beta_1}{\rightarrow} & I & \overset{0}{\rightarrow} \\
& & e & & f & & g & & \\
0 & \rightarrow & t(E) & \overset{\alpha}{\rightarrow} & E & \overset{\beta}{\rightarrow} & E & \overset{0}{\rightarrow}
\end{array}
\end{equation}

in which the rectangular parts are commutative.

Lemma 1. In the above diagram if $g = pi$ holds then there exists a homomorphism $u : F \to t(E)$ such that $e = rk + u\alpha_1$.

As the proof is an easy exercise we shall omit it.

Next we start from the following row exact commutative diagram:

\begin{equation}
\begin{array}{ccccccccc}
0 & \rightarrow & H & \overset{\alpha_2}{\rightarrow} & G & \overset{\beta_2}{\rightarrow} & B & \overset{0}{\rightarrow} \\
& & k & & j & & i & & \\
0 & \rightarrow & K & \overset{\alpha_1}{\rightarrow} & F & \overset{\beta_1}{\rightarrow} & I & \overset{0}{\rightarrow} \\
& & e & & f & & g & & \\
0 & \rightarrow & t(E) & \overset{\alpha}{\rightarrow} & E & \overset{\beta}{\rightarrow} & E & \overset{0}{\rightarrow}
\end{array}
\end{equation}
where \(E \) is injective and \(i \) is a monomorphism. Furthermore if there was given a homomorphism \(r : H \to t(E) \), then we obtain the following diagram:

\[
\begin{array}{ccccccccc}
O & \to & H & \xrightarrow{\alpha_2} & G & \xrightarrow{\beta_2} & B & \to & 0 \\
\downarrow{k} & & \downarrow{j} & & \downarrow{i} & & & & \\
0 & \to & K & \xrightarrow{\alpha_1} & F & \xrightarrow{\beta_1} & I & \to & 0 \\
\downarrow{e} & \downarrow{r} & \downarrow{f} & \downarrow{g} & \downarrow{p} & & & & \\
0 & \to & t(E) & \xrightarrow{\alpha} & E & \xrightarrow{\beta} & E & \to & 0
\end{array}
\]

(2)

Lemma 2. In the above diagram, if there exists a map \(u : F \to t(E) \) such that \(e = rk + u\alpha_1 \), then there exists a homomorphism \(p_0 : B \to \hat{E} \) such that \(g = p_0i \).

Proof. By the commutativity of the diagram there holds

\[
0 = \alpha(e - rk - u\alpha_1) = f\alpha_1 - q\alpha_2k - au\alpha_1 = (f - qj - \alpha u)\alpha_1.
\]

Therefore \(f - qj - \alpha u \) induces a homomorphism \(v : I \to E \) such that \(f - qj - \alpha u = v\beta_1 \) holds. Then there holds

\[
0 = \beta(f - qj - \alpha u - v\beta_1) = g\beta_1 - p\beta_2j - \beta v\beta_1 = (g - pi - \beta v)\beta_1.
\]

As \(\beta_1 \) is an epimorphism there holds \(g = pi + \beta v \). Last, since \(i \) is a monomorphism and \(\hat{E} \) is injective \(v \) is extended to a homomorphism \(v_1 : B \to \hat{E} \) such that \(v_1i = v \). Set \(p_0 = p + \beta v_1 \) then there holds \(g = p_0i \).

Now we are in a position to treat the main theorem. We remark that if \(e = rk + u\alpha_1 \) holds then by setting \(M = \ker u \) and \(N = \ker r \) there holds \(k^{-1}(N) \cap \alpha_1^{-1}(M) \subseteq \ker e \).

For a right ideal \(I \) we fix a presentation of \(I \):

\[
0 \to K \to F \to I \to 0
\]

(3)

where \(F \) is a projective module. Consider the following condition for (3).

(4) Let \(L \) be a submodule of \(K \) such that \(K/L \) is a \(\mathcal{F} \)-torsion module. Then there exists \(B \) in \(\mathcal{F} \) containing \(I \) and if we construct the row exact
commutative diagram:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & H & \overset{\alpha_2}{\longrightarrow} & G & \overset{\beta_2}{\longrightarrow} & B & \longrightarrow & 0 \\
\downarrow k & & \downarrow j & & \downarrow i & & & & \\
0 & \longrightarrow & K & \overset{\alpha_1}{\longrightarrow} & F & \overset{\beta_1}{\longrightarrow} & I & \longrightarrow & 0
\end{array}
\]

where \(G \) is projective and \(i \) is the inclusion, there exist submodules \(M \) and \(N \) of \(F \) and \(H \) respectively such that

\[
\begin{align*}
(4a) & \quad F/M \text{ and } H/N \text{ are } \mathcal{F}\text{-torsion modules}, \\
(4b) & \quad k^{-1}(N) \cap \alpha_1^{-1}(M) \subseteq L.
\end{align*}
\]

Theorem. Let \(A \) be a ring, \(\mathcal{F} \) a class of right ideals of \(A \) which defines a hereditary torsion theory on the category of right \(A \)-modules. Then the localization \(E_{\mathcal{F}} \) of any injective module \(E \) is an injective \(A_{\mathcal{F}} \)-module if and only if each right ideal \(I \) of \(A \) has a presentation (3) satisfying (4). In that case any presentation (3) of any such right ideal satisfies (4).

Proof. Assume that for any injective module \(E \) the localization \(E_{\mathcal{F}} \) is \(A_{\mathcal{F}} \)-injective. In the presentation (3) of \(I \), let \(L \) be a submodule of \(K \) such that \(K/L \) is a torsion module. Now take an injective module \(E \) containing \(K/L \), then \(K/L \) is in \(t(E) \) and letting \(e \) be the composition map \(K \to K/L \hookrightarrow t(E) \), we can construct the following row exact commutative diagram:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & K & \overset{\alpha_1}{\longrightarrow} & F & \overset{\beta_1}{\longrightarrow} & I & \longrightarrow & 0 \\
\downarrow e & & \downarrow f & & \downarrow g & & & & \\
0 & \longrightarrow & t(E) & \overset{\alpha}{\longrightarrow} & E & \overset{\beta}{\longrightarrow} & \bar{E} & \longrightarrow & 0.
\end{array}
\]

By [2] Chapter IX, Proposition 2.7 there exists \(B \in \mathcal{F} \) containing \(I \) and a homomorphism \(p : B \to \bar{E} \) such that \(g = pi \) where \(i \) is the inclusion \(I \subseteq B \). From these we obtain the diagram (1). By Lemma 1, there exists a homomorphism \(u : F \to t(E) \) and there holds \(e = rk + u\alpha_1 \). Let \(M = \ker u \) and \(N = \ker r \) then \(M \) and \(N \) satisfy (4a) and (4b).

Conversely, suppose that for any right ideal \(I \) of \(A \) the presentation (3) of \(I \) satisfies (4). Let \(E \) be an injective module and a homomorphism \(g : I \to \bar{E} \) was given. Then we have the following row exact commutative
diagram:

\[
\begin{array}{ccccccc}
0 & \longrightarrow & K & \overset{\alpha_1}{\longrightarrow} & F & \overset{\beta_1}{\longrightarrow} & I & \longrightarrow & 0 \\
\downarrow{e} & & \downarrow{f} & & \downarrow{g} & & \\
0 & \longrightarrow & t(E) & \overset{\alpha}{\longrightarrow} & E & \overset{\beta}{\longrightarrow} & \overline{E} & \longrightarrow & 0.
\end{array}
\]

Let \(L = \ker e \), then \(K/L \) is a torsion module. By (4) there exists \(B \in \mathcal{F} \) containing \(I \) and there are submodules \(M \) and \(N \) of \(F \) and \(H \) respectively satisfying (4a) and (4b). From these we have the following diagram:

\[
\begin{array}{ccccccc}
K/k^{-1}(N) \cap \alpha_1^{-1}(M) & \longrightarrow & K/k^{-1}(N) \oplus K/\alpha_1^{-1}(M) & \longrightarrow & H/N \oplus F/M \\
\downarrow{e} & & & & \\
K/L \subseteq t(E) & \overset{\alpha}{\longrightarrow} & E
\end{array}
\]

where the composition of the upper row is a monomorphism and \(\bar{e} \) is the natural map obtained from the condition (4b). As \(E \) is injective \(\bar{e} \) is extended to \(e_0 : H/N \oplus F/M \to E \) and its image is really in \(t(E) \) since \(H/N \oplus F/M \) is a \(\mathcal{F} \)-torsion module. The natural maps \(H \to H/N \) and \(F \to F/M \) composed with \(e_0 \) induce homomorphism \(r : H \to t(E) \) and \(u : F \to t(E) \). It is easily seen that there holds \(e = r \bar{k} + u \alpha_1 \) and from these we can construct the diagram (2). By Lemma 2 there exists \(p_0 : B \to \overline{E} \) such that \(g = p_0i \). Therefore \(E_{\mathcal{F}} \) is an \(A_{\mathcal{F}} \)-injective module by [2] Chapter IX, Proposition 2.7. This completes the proof. \(\square \)

REFERENCES

KAZUHIKO HIRATA
DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE
CHIBA UNIVERSITY
1-33, YAYOI-CHO, CHIBA-CITY, JAPAN

U SYU
4-5-2-209, TAKASU, MIHAMA-KU CHIBA-CITY, JAPAN
e-mail address: mshouyu@math.s.chiba-u.ac.jp
(Received June 30, 2000)