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In hot strip rolling mills, the looper control system is automated. However, the looper’s
behavior tends to be unstable in threading. Therefore, human expert always intervenes and

stabilizes the looper’s behavior by tuning PID gains and interposing manipulation variable
of looper control system. In this paper, we propose a method based on the recurrent neural
network to express PID gains tuning action by human. Furthermore, we propose two meth-

ods to update the model by learning. To check the effectiveness of the proposed learning
methods, numerical simulation applied to the looper height control is carried out.

1 Introduction

In these years, plant control systems are being highly
automated. But both the performances of plant and
controller change with the passage of time, so it is nec-
essary to tune them. This is why human experts inter-
vene and tune the control system to improve the total
plant performances.

In this paper, it is targeted especially to tune looper
control gain in threading of hot strip mills. In hot strip
mills, the looper height control system is set up among
stands. By use of them, the rolling operation are kept
to be stable. The looper control system is governed
by PID controller. Usually PID gains are determined
by gain table according to a variety of strip kinds, but
the optimal gain varies with time due to the deteriora-
tion of plant characteristics. Now, it is often the case
that the skillful operators tune these gains. It is neces-
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sary to tune the PID gains optimal in order to stabilize
the looper’s behavior. In the past, the looper control in
the steady state has been widely built up as the control
technique [1]. Contrary to this, in threading condition
of the looper’s behavior tends to unstable, and then
human expert never fail to intervene and stabilize the
looper’s behavior by tuning PID gains and interposing
manipulated variable of looper height control system.

In general, it is difficult to automatize human’s ac-
tion because of flexibility and diversity of human op-
eration not only in hot strip rolling but also in other
objects. In this paper, we try to automatize PID gains
tuning action of human. That is, the method of using
recurrent neural networks (RNN) [2][3](4] is proposed.
Because human can memorize the past tuning whether
old or new, human’s tuning action depends on past tun-
ing experiences. RNN is a simple mechanism generat-
ing its outputs depending on the past data. Firstly, hu-
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man tuned PID gains of looper control system. These
data are stored in the data base as the training data of
RNN model. Then RNN is trained by the tuning data,
and the results are shown. Furthermore, we propose
methods to update the RNN model by using learning
algorithm. The algorithm is checked by the numerical
examples.

2 Looper Height Control in Hot
Strip Rolling

The looper angle is determined by the difference of
strip velocities between adjacent rolling stands. In the
following, the mathematical model of looper control
in hot strip rolling, strip thickness control and looper
control are described.

2.1 Mathematical
Rolling Mills

Model for Hot

The fundamental equations for rolling phenomenon
are described as follows

Pi = U\/R{(Hi — h,’)Q,’ (1)
i T
Q; = Hl i {garctan
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where P; is rolling force, o is flow stress, H; is en-
try strip thickness, h; is exit strip thickness, R; is roll
radius, s; is roll gap, f; is forward slip, b; is backward
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slip, M; is mill modulus, and subscript ¢ denotes **
stand.

Using f; and b; led by solving above equations, exit
strip speed vy; and entry strip speed vs; can be ob-
tained as follows

Vai(1+ f3)
Vri(1 + b;)

(10)
(11)

Vfi

Vo =

where Vg, is the rolling velocity of i* mill.

2.2 Mathematical Model
System

of Looper

As shown in Fig.1l, the distance between mills is
L = Ly + Lj, exit strip speed of ¢** mill is vy; ,and
entry strip speed of (i + 1) mill is vpi41.

The strip loop angle 8 can be obtained as follows

1 T
sec =1 + E/ (Ufi — Ubi+1)dt (12)
0

where the integral is started when the strip gets into
(4 + 1) mill.

The strip loop figure can be approximated as isosce-
les triangle. That is, if # ~ §', and looper angle a is
given by

sina:% (étan@ﬁ-é—'r) (13)

The dimensions of looper are shown in Table.1.

mill

- Ly—efe—— [, ———

Fig.1: Looper

Table.1l: Dimensions of Looper
(symbolfdimension [mm)] |

l 600 1
] 150
L 2100
Ly 3400

r 100
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2.3 Mass Flow Rule

Mass flow rule is used in order to determine set point
of rolling velocity. Mass flow rule can be described as

h{VR1(1 + f1) = haVR2(1 + f2) = h3VRa(1 + f3) (14)

where h¢ is the desired value of strip thickness at ¢*"
stand.

2.4 Strip Thickness Control

Gauge meter equation is written by

B
hi=si+ 4+

where h;, s;, P; and M are exit strip thickness, roll
gap, rolling force and mill modulus.

The control scheme of Gauge Meter AGC(Automatic
Gauge Control) is given by

(15)

Ah;
AS,’ =

hi — RO
—k; ARy

(16)
(17)

where k; is AGC gain. AGC is started to operate
when head end of strip arrives at the next stand.

2.5 PID Control of Looper Angle

PID control is described as

m(t) = K, (e(t) + Erl‘ / e(t)dt + T d‘;(tt)) (18)

where m(t) is manipulated variable and in this case
Vi, e(t) is error and in this case looper deviation, K}, is
proportional gain, T; is integral time, and Ty is deriva-
tive time of PID control.

In simulator, PID control is used with velocity form

algorithm
Vei = Vemi+AVg: (19)
T,
AVRi = Kp {(en - en—l) + ’i-,"en
T
+%(en - 2311—1 + en—2)} (20)

where T, is sampling time interval, e, is error at sam-
pling time nT}, e,-1 is error at sampling time (n—1)T},
and e, is error at sampling time (n — 2)Ts.

In order to decouple two loopers, rolling velocity at
1°t stand is express as follows

1
Vri = Va1 + AVgy + AVRQﬂ

1+ 1 (1)
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3 Simulator of Looper Control
System

The simulator used in this paper consists of three
stands and two loopers between them. The looper an-
gle is controlled by changing rolling speed of the up-
stream stand. Simulation program of looper height
control system will be stated below.

3.1 Simulation of Rolling Characteris-
tics

Using Eqgs.(1) to (5) rolling force P is calculated.
Then exit strip thickness h is calculated by Eq.(9). The
method of the calculation is described in the flow chart
of Fig.2. Table.2 summarizes the parameters used in
the calculation.

Input Parameters
(s, 0, H,RM)

Calculation P and R”
{Eqs.(1) to (5))

Convergence?

Calculation h
(Eq.(9)

Modification of h

Fig.2: Flow Chart for Calculation P

Table.2: Parameters for Calculation
[ symbol scale
M 400t /mm
o 10t /mm?
R 400mm
H 30mm
hS 18mm
9 12mm
3 7mm
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3.2 Simulation of Inter Stands Looper
Dynamics

Fig.3 shows three stands hot strip mill system with
controller. The block diagram showing dynamic char-
acteristics of inter stands looper are given as one in
Fig4.

Firstly, rolling velocity and roll gap is determined
initial setting value. Where Vgs is set at 2m/s and
rolling velocity is determined by mass flow rule, and
mitial setting value of roll gap is calculated as follows

si-——h;’—-—

i (22)

When the strip arrives at 1°° stand, rolling charac-
teristics of the stand is started to calculate by flow in
Fig.2. After 1—95‘—1 [sec], the strip arrives at 2"? stand.
Then rolling characteristics of the stand is started to
calculate and the looper angle between #1 and #2 is
started to calculate and PID control and AGC of stand

#1 are started too. In the same way, after -% [sec], the

v

strip arrives at 3™ stand. Then rolling characteristics
of the stand is started to calculate and the looper an-
gle between #2 and #3 is started to calculate and PID

control and AGC of stand #2 are started too. And

b

o

Aot

AVz:
PID Conirolier
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when the strip arrives at X-ray AGC after U%‘f; [sec],
AGC of stand #3 is started.

The rolling characteristics at it" stand calculated by
flow of Fig.2, is named G; and used in the block dia-
gram abbreviatedly. The looper angle at j** looper by
Eq.(13), is named A; and used in the block diagram.

Table.3 shows simulation parameters about base
rolling condition. Where «° is desired value of looper
angle, 1, T, and T), are time constant of first order
lag element. They are expressed as time-lag by looper
angle sensor, time-lag by mill motor, and time-lag by
rolling of AGC respectively. Ly is distance from stand
#3 to X-ray.

Table.3: Simulation Parameters

bymbol | scaleJ

a° 30deg
VR3 2IT1/S
k1 0.05
ko 0.05
ka 0.01
T 0.05sec
§ 0.05sec
Th 0.05sec
Lx 2000mm
T 0.0bsec

k.

AV ge

PID Controller

Fig.3: Hot Strip Mill
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Looper System

Fig.4: Block Diagram of Hot Strip Mill

Using these mechanisms shown in Figs. 2 to 4, simu- 4  (Gain ’_'[‘uning Model by Neural
lator of looper control has been developed. Fig.5 shows
Network

display of simulated results describing dynamic behav-
ior of rolling variables such as looper angle, rolling In the following, formation procedure for gain tun-
force, rolling speed and roll gap. ing model by neural network is described. The train-
ing procedure of PID gains tuning model is shown in
Fig.6(a). The detail of the procedure is described as

follows.

T P -

IR . . ,

s 1. Human makes PID gains tuning watching looper
L nErm simulator in Fig.5 by trial and error.

=T r 2. The tuned data sequence of PID gains are stored
& oo

—- in data base and used in the next step.

Sl 3. The RNN model is trained using the tuning data

il i
4l

stored in data base.
. The tuned data is prepared for one inter stand
looper between #1 and #2 stands.

Then RNN model tune PID gains in two inter stand
looper systems between #1 and #2 stands and #2 and
Fig.b: Display Screen of Simulator #3 stands simultaneously as shown in Fig.6(b).
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Simulator of Hot Strip Rolling

Looper
Behavior
< PID Gains .
1* Looper Behavior
—» Human ¥ e PID Gains of
I |
- ; ) 2™ Y ooper
Looper Behavior Dafa*- = === -==-g==-==~~- 4+ Gains by Human P » ‘
(n-th time) ( [rrt]-th time) |
T 274 Looper Behavior ) ;
— e Gl 1 iting Mo del 2% )
Gt Tualag Ko o} / p| Gsin Tuning Model( 1
Evaluation ’ . . PID Gains of
Bahaion | Vabe | po |1 |Cemeby Gin 1% Loaper
Convetter | | 7, Tuning Model
¥ { [+ 1]-th time)

(b) Tuning by Gain Tuning Model

(a) Training for Gain Tuning Model
Fig.6: Gain Tuning Model by Neural Network

The results are shown in Fig.7 and Fig.8. Human be-
gan to tune PID gains until number of rolling 17. RNN
is trained by the data and constant data until number
of rolling 26 in order to make output of RNN being
convergent. That is, the training data set is 25.

4.1 Generation of Training Data

The training data is generated under the condition
of AVg, is -0.05m/s. It becomes harder condition that
1%t looper is gotten up. Human made PID gains tun-
ing using simulator in Fig.5 watching looper’s behavior.

0.1 T T
0.08
= 0.06 +
=
0.04 -
0.02
0 : L 0 L L 0 . L
0 10 20 0 10 20 0 10 20
number of rolling number of rolling number of rolling
(a) Ky (b) T; (c) Ta
Fig.7: PID gains (Human)
— 60 60 Y : 60 . .
) = .
F a0 th th .
-5 sof o' sob 107 1 &so 12
Bonac L 3 6 -3 th
2 sof ool 1 S 14
5 30f %ﬂ 30 %" 30 PN
S o0l o 20 \ e 5 20 i
S o th a. th
_810- g0 8 - g 10 17 .
0 _ L 1 = 0 L 1 - 0 L "
[§] 10 20 30 0 10 20 30 [¢] 10 20 30
time [sec] time [sec] time [sec]

(a) lst ~5£h'

Fig.8: Looper Angle (Human)

(b) gth~10th

(€] 11thnainth
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4.2 RNN Model

4.2.1 Structure of RNINN Model

The structure of RNN model is shown in Fig.9. The
The first layer is the in-
put layer, which consists of two parts. The one is the
plan layer, which is input evaluation value changed the
performance index to the normalized value by prepro-

network has three layers.

cessing. The preprocessing is calculated by the linear
transformation function as follows
by = Hasa

: 7
where [;  is the evaluation value at number of rolling
of n, and I; and [;
the minimum value respectively, which are set in ad-

pi = (n] ,L =1~4 (23)

tmax min

are the maximum value and

max min

vance.
The other is the context layer at number of rolling
of n, which is expressed by

k(3
Cx = Z dngm'gk[m] )k =1~3 (24)

m=1
91 Ky, 920 T5 g3t Ty
where d is a positive constant and less than 1, which
means forgetting effect and m is the rolling number in-
dicating m** preceding instant. As shown in Fig.9, the
context layer is the layer that the past output data of
RNN is stored.

Then the output of input layer is
Di 1<i<4
xﬁ-”={p‘ % (25)
Ciog H<ILT
Looper Behavior Evaluation Value
n-th time)
( Il[n)
[2[»]
— Evaluation
Converter / 3n)
-
14[~]

gk[n]

Gain Tuning of Looper Control by RNN Model

The second layer is the hidden layer, which can be
expressed as

7
o = 3 wlal? (=1~ (26)

i=0
zi) = ~1, wy) =6V ;5 =1~5 (27)

2 2 I :
:c§ ) = f(sé- M = —y i =1~5 (28)
L+4e

where wj(i) is the weight for the connection between i**

neuron in the input layer and j** neuron in the hidden
layer.

The third layer is the output layer, which is descrived
as follows.

s =D el ik =1~3 (29)
=0
e =1, 0 =0 k=1~3 (30)
3 1 o
Gkln+1) = f(8, ) = ———q 1k =1~3(31)
1 4%

where w,(fj) is the weight for the connection between
j** neuron in the hidden layer and k** neuron in the

output layer.

Finally, it is postprocessed and the gains are output
from RNN are converted to its original data ranges.

Weight PID Gains
( [o+1]-th time)
@ (2)
J1_ Wy

Fig.9: Structure of RNN Model

“
O

5
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4.2,2 Input Data of NN

As for the input of Neural Network, the n** time
looper behavior is converted into evaluation value by
following performance index.

As the performanece index of stability, the difference
between max aupq, and desired value o is written by

L o=

(32)

l amar

-1
¢

As the performance index of accuracy, the integral
of absolute value of error is described as

1T
Y

where a(t) is the looper angle at time t, and T is the
measurement time of performance index.

(33)

a(? - lldt
63

As the performance index of accuracy, the integral
of time multiplied by absolute value is given by

1 T
= t
)|
As the performance index of rapid response, the peak

time, which is time when the looper angle has max
value, is described by

a(t)

= 34
Iy - (34)

1l

t
L= &

T (35)

These performance index approach its minimum
value as the looper behavior becomes desired, that
is, human tune the gain. The measurement time in
Eqs.(33) ~ Eq.(35) is fixed to T = 30sec.

4.2.3 Training of RNN Model

The RNN model is trained by the back propagation
algorithm (BP). BP algorithm is described as follows.

stepl ; initialization
The end condition of learning is determined, and
initial value of weight parameters are determined
by generating random number(0 < w < 1).

step2 ; input and preprocessing
The evaluation value I;j,) at number of rolling
n are input to the plan layer, PID gains before
number of rolling n are input to the context layer.
Where the context layer is input 0 when n = 1.
Iijn) as preprocessing when input to plan layer
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are normalized 0~1. And PID gains as postpro-
cessing are normalized 0~1 too. The normal-
ization is used linear transformation by Eq.(23).
And their maximum value and minimum value

are shown in Table.4 and Table.5.

Table.4: preprocessing

L [ L [ Lo
I

Table.5: postprocessing

[ [ ke | 9 |

0 2
L e
2 -~ T 0 3
L| 0 | 005 = 5 o
I, | 0 0.5 L ~d :

step3 ; forward propagation
By Egs. (25) ~ (31) , the output z§-2) of hid-
den layer and the output g,(f[,)l +1] of output layer
is calculated.

step4 ; back propagation of output error

to hidden layer
wy; is upadated by
(@ _ (3) (@ (3)
O = (tknt1) — gk[n+l])gk[r)z+1](1 - gk[n+1])
Awg.) = 661(3):135?)

(2) (2) 2)
Wi & Wy +Aw,(cj

where ti[n41) is teaching data. That is, it is
the gain that human tuned at number of rolling
n + 1 when human watches the looper behavior
at number of rolling n.

step5 ; back propagation of output error

to input layer
By using w(®) updated by above equations, w
is updated as follows

o))

Ji

1 2) (2)y (2 2
8 = (L 0wz (1 - o)
Awl) = 5Dz (37)

al’ o af N,

Wyt Wy +iji

in steps 4 and 5, € is the learning rate, which
determines updating amount of w.

step6 ; condition of terminate
If n = 25(number of teaching data set) and the
end condition of learning is satisfied, obtained
weight parameter are adopted and stop. If n is
smaller than 25, n = n+ 1 and go to step. If end
condition of learning is not satisfied and n = 25,
n =1 and go to step2.

(36)
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In order to speed up learning, momentum term is 4.3 Performance of The Identified
introduced. Updating weight Aw,_1 at one step ago RNN Model

are added as follows
Performance of the identified RNN model are shown

in Fig.10 and Fig.11, where d = 0.6. It can be seen that

Wn ¢ Wn + Aty + CAWn (38) in the same rolling condition which generated training
data by human the RNN model behaves approximately
where ( is positive constant. in the same way.

04 . 0.1 . .
— RNN
03 4 |77 Human
sa02k
o1}
ol : s 0 L s L&
0 10 20 0 10 20 o 10 20
number of rolling number of rolling number of rolling
(a) Ky (b) i (¢) Tu
Fig.10: PID gains (RNN Model)
60 - . __60

@l 107 oy ] & sol 10" ]
5 =} th

%40 L / - 5 40 pd 3 -

%0 30 = %0 304 "

t st
520 th 1° g 5 20 th 1 1
§ 10 20 / - § 10 20 / B
0() 1‘() 2‘() 30 00 ll()_ 2‘() 30
time [sec] time [sec]
(a) RNN Model (b) Human
Fig.11: Looper Angle (RNN Model)
4.4 Extrapolation of Identified RNIN It is shown that the tuning value by RNN model is

) ) not changed, even if the initial value of gain is changed,
To check the generalization property of NN, simula-

tion is carried out in the different conditions of gener-

ated teaching data. Table.6: Initial Gain
| Ko [T [ Tu |
full line 001 2 0
4.4.1 Change of Initial Gain Jashed line 015 105 o1
In the case that initial gains are different from su- dotted line 0.35 | 1.5 ] 0.1
pervised learning condition as shown in Table.6. The chain line 025 | 1 | 0.08
results about 1%* looper are shown in Fig.12. chain double-dashed line | 0.5 | 0.1 | 0.2
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0 ) S

0 10 20
number of rolling

10 20 10 20
number of rolling number of rolling

(a) Ky (b) T;

Fig.12: PID gains (Change of Initial Gain)

(c) Ty

4.4.2 Change of Rolling Condition about 1%t looper by RNN are shown in Fig.13~Fig.16.

The tuned value are different according to rolling con-
ditions. However, looper does not behave ideally as
shown in Fig.16.

Under rolling conditions AVg; is £ 0.1m/s, Asy is
+ 1lmm, and 7, are 0.25sec, 0.5sec, the tuning results

0.4

—— AVg;=0.1m/s 0.13 T
- AVRl='0~ 1m/s
0.3+ - o1l [¥ ___________ 4
IE ‘/'
0.05F [/ ]
./'
O i —,
0 10 . 10 ) 0 10 .
number of rolling number of rolling number of rolling
(a) Kp (b) Ti (¢) T
Fig.13: PID gains (AVg; = + 0.1m/s)
04 — s;=1lmm
03r — — /s;=-1mm

0 S
0 10 20 . 0 10 20
number of rolling °  number of rolling 20 number of rolling
(a) Kop (b) T () Tu
Fig.14: PID gains (As; = + 1mm)
0.4 . 2 r 0.15 —_—
— T,=0.25sec |
03} — — T,=0.5sec
= .
0 L L 0 -1
0 10 20 30 a 10 20 30 ) 10 20 30
number of rolling number of rolling number of rolling

(a) Kp

(b) T

Fig.15: PID gains (T,=0.25sec, 0.5sec)

(c) Tu
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>
(=4

100 AVii=0.1m/s — = — T,=0.25sec
é.‘ﬁsu f — — AVr1=-0.1m/s _%D 80 i sol  30M | . _ T:=0.556C
?;OU- /\ th 2 80 %)1)40h /7 - : ]
_g) 7oA 20 %D40 871 \\/ J/ _

640 I \ ] :g fgzo—/ ‘ =
§_20 lst { \.\ /./ 4 8 20 8 10 lsl ]
2 L. _. T U ¥ - - - ) .
00 IIO 2‘0 30 0 K 0() 10 20 30
time [sec] time [sec] time [sec]
(a) AV = £0.1m/s (b) As; = £1mm {(c¢) T, = 0.25sec,0.5sec
Fig.16: Looper Angle (Change of Rolling Condition)
5 Learning of RNN Model
4
It is important for RNN model to be tuned at op- Agr = aningi (k =1~3) (39)
timal gain as rapidly as possible in case that rolling =1
condition is different from condition which the train- where n; is positive constant, which is weight of per-
ing data is generated. formance index.
In the following, we discuss two learning methods in Then PID gains output from RNN model are tuned
order to improve the RNN model continuously. as follows
9k < gk — Agk (40)

5.1 Gain Tuning by Learning

If the difference between previous and this gain is less

This method is to tune the gain by RNN model as than &4, the method is not used in order to converge

shown in Fig.17. gain tuning by RNN model. In numerical experiment
the value of d, is set to 0.005.

Firstly, the differential gﬁ where evaluation value I;
is input to RNN model and gain g, can be calculated Table.7: Value of Ip /1,
by past two rolling data. It can be approximated by | | K, [ T, | T. |
Fi—Liji—a .
aﬁ_—g‘f{’i—ﬂ]—. The value is changed to I, by t.he rTlodel T, | 50/10 5/1 100/20
which has dead band and saturation as shown in Fig.18. I, | 10/5 1/0.2 30/10
The value of I'ns and I,,, are shown in Table.7. ’ I, | 1/0.1 | 0.2/0.05 10/1
The gain tuning value Agg is calculated as follows I, | 20/5 1/0.2 20/5

Learning Algorithm by Gain Tuning

of.
Calculation — * to I
d o A
Ag 9.~ "8 Igy,
k Conversion 1

. L

Looper [ S / .

behavior L I{M Im | | 811’

g, / 8 In Iy 0 gk
> 1l

Looper
System

Fig.18: g—gl";- to Ig,, Conversion

Looper behavior

Fig.17: Gain Tuning
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5.1.1 Effectiveness of Learning

To check the performance of the proposed learning
method, numerical experiment is carried out.

Under the generated teaching data condition, the re-
sults about 15¢ looper are shown in Fig.19 and Fig.20.
Where case @ is Nz, = g2 = 0.05, Mi3 = Mrq = 0.01,
and case @ is ng; = 0.01. That is, case @ is biased ac-
cording to the performance index, and case @ is equal
weight free from the performance index.

MEM.FAC.ENG.OKA.UNI. Vol.37, No.2

In both cases, the results can be obtained faster con-
vergence in tuning than only RNN. It is shown that
case O can be obtained the fastest convergence.

Next, the results about 1°* looper under the differ-
ent conditions are shown in Fig.21 and Fig.22. In both
cases, the results can be obtained faster convergence.

These results shows that this learning method make
convergence tune faster by RNN, but the tuned value
is not varied.

0.4 —— RNN+_lg(caseD) 0.1
~-— RNN+_/lg(case®) 0.08
0.3 N
0.06
202 =
C 0.04
0.1 0.02
0 )
Q0 10 : 20 [ 10 . 20
number of rolling number of rolling
(a) Kp (b) i (c) Ta
Fig.19: PID gains (Gain Tuning by Learning; AVz; = —0.05m/s))
60 — 60 : . . .
§)5° - ';%f sof
o 40t o 40t
g’so L cé‘)so L
520 5 20}
§- 10 § 10+
T o
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Fig.22: PID gains (Gain Tuning by Learning ; As; = —1mm)
5.2 Update of RNN Weight by BP times data for rolling results by the following

. L . . equations.
The gain tuning is expected to tune the optimal gain.

But the tuning value is not changed by the aforemen-
tioned learning method. Then the RNN model has to wl(c";) - wl(c";) + Aw’(c?) (43)
be updated. However, it is difficult to know optimal !

gains in unknown environment. It is means that there where
is no teaching signal for gain. Aw’(fj) = f[l]5£2)5’3§~2[1)]
Hence the error function is defined as follows Lo I
5 4 = —eq {Z(Ii[l] - If)M} x
EBy=> 5(-@[1] ~-Ip)? (41) i Ikl ~ Grli-1)
=1 gy (L~ gk[z])mﬁz)]
where I? is the evaluation value for ideal looper behav- (44)
ior. The error function is contained the performance
index L) input RNN model. where mﬁl)] is output of j** neuron in the hidden
Furthermore, in order to settle down the vibrations layer, and ey is learning rate at number of learn-
of looper, the performance index is added in error func- ing [.
tion as follows The learning rate is given by
1 (T |de B !
Is = T/O it dt (42) €] = €jo) (1 - T—L) (45)

where T, is learning times, which is set in ad-
varnce.

The objective of learning is to minimize E as shown
in Fig.23. In other words, ——g% is added weight pa-
rameter. And the algorithm is led from BP algorithm. step5 : Next, the weight parameter w;zl-) between in-

The weight parameters of RNN model is updated in put layer and hidden layer are updated by the
the following BP steps: following equations.

stepl : The initial value of gain gy is set, and then

simulation is carried out by the gain. The per- wj(_z) - wJ(}) + Awﬁ) (46)
formance index I;j) are calculated.
where
step2 :The performance index ;) are input the RNN " ()
model, and the model output next gain ggp). It Awj” = epd; Zi

is | = 2.
_ @, @)\ @ @y,
= € (Z o “’kj) zio (1 = 25zl

step3 : The simulation is carried out the gain gy, k
and the performance index I;j; are calculated. (47)
step4 : The weight parameter w,(cr‘;.) between hidden where mm is output of i** neuron in the input

layer and output layer are updated by past two layer at number of learning I.
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step6 : The next gain gip41) is determined the previ- step7 : If the end condition is satisfied, it is finished.

ous performance index [;;;) by the RNN model.

Learning Algorithm by BP

Ideal Looper behavior
I
3+

Looper
behavior

Calculation
Aw

error

Looper
System

RNN model

_

Looper behavior

Fig.23: Update of RNN Weight by BP

5.2.1 Numerical Test of BP Algorithm

To check the performance of the learning algorithm,
numerical experiment is carried out. The rolling con-
ditions are changed at every twenty rollings as shown
in Table.8.

The results by RNN only are shown in Fig.25 and
Fig.27, and the results by RNN and gain tuning
method and learning using BP are shown in Fig.26
and Fig.28. Where ¢ is 0.1, T; is 10 from number
of tuning 5, the gain tuning method is same param-
eters in case @, and the context layer is initialized 0
when the rolling conditions change. If the gain varia-
tion is less than 0.001, the weight parameters are not

But if it is not satisfied, | « [ + 1 is carried out
and go back to step3.

N
=

— I

¥ so}

.-
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%”30 :
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- 0 L — e
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Fig.24: Ideal Looper Behavior

(Kp=0.4, T;=0.6, Ty=0 under
base condition)

updated. The objective of learning is to minimize the
error against ideal looper behavior as shown in Fig.24.
The results show that converged value of gain tuning
by RNN can be changed. However, both improvement
and corruption results can be obtained by learning.

Table.8: Rolliing Conditions
l rNumber of Rollingtr Asy|mm| I AVga[m/s] l

|1 1~20 -1 0 |
)i 21~40 1 0.1 \
I 41~60 1 -0.1
% 61~80 -1 0.1
\Y% 81~100 -1 -0.1
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0.3 —-—2"™00per 1
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0 1 1 1 1 0 A
(1] 20 40 60 . 80 100 0 20
number of rolling
(a) Kp
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6 Conclusion

In this paper, RNN model is introduced to express
gain tuning action of human for looper height con-
trol system in hot strip mills. The possibility of re-
alizing tuning action of human by the model has been
shown by numerical experiments. Also, the extrapola-
tion property of the NN have has been checked numer-
ically. Furthermore in order to improve the model, we
proposed two learning methods. One has showed im-
provement of convergence by learning, and the other
has showed improvement of converged value of gain
tuning by the weight learning of NN model. The ef-
fectiveness of these two methods have been shown nu-
merically.

In this paper, the gain tuning of looper height con-
trol system was dealt with. In the future, the proposed
method is expected to be applied to other objects with
more general manner.
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