
Bundle Adjustment for 3-D Reconstruction:

Implementation and Evaluation

Kenichi KANATANI∗ Yasuyuki SUGAYA
Department of Computer Science Department of Information and Computer Sciences

Okayama University Toyohashi University of Technology
Okayama 700-8530 Japan Toyohashi, Aichi 441-8580 Japan

We describe in detail the algorithm of bundle adjustment for 3-D reconstruction from multiple
images based on our latest research results. The main focus of this paper is on the handling
of camera rotations and the efficiency of computation and memory usage when the number of
variables is very large; an appropriate consideration of this is the core of the implementation of
bundle adjustment. Computing the fundamental matrix from two views and reconstructing the 3-D
structure from multiple views, we evaluate the performance of our algorithm and discuses technical
issues of bundle adjustment implementation.

1. INTRODUCTION

Bundle adjustment is a fundamental technique for
computing the 3-D structure of the scene from point
correspondences over multiple images. The basic
principle is to search the space of all the parame-
ters, i.e., the coordinates of all 3-D points and the in-
trinsic and extrinsic camera parameters of all frames
[11, 12, 15] in such a way that the images of the recon-
structed 3-D points reprojected using the computed
camera parameters agree with the input images as
much as possible. This computation requires a com-
plicated iterative procedure, and the details have not
been well documented, partly because the implemen-
tation, the treatment of rotations in particular, differs
from researcher to researcher. The purpose of this
paper is to describe the bundle adjustment procedure
in a way considered to be the most appropriate from
the viewpoint of our latest research. In particular, we
highlight the treatment of rotations and the efficiency
of computation and memory usage when the number
of variables is very large; an appropriate considera-
tion of this is the core of the implementation of bun-
dle adjustment. Computing the fundamental matrix
from two views and reconstructing the 3-D structure
from multiple views, we evaluate the performance of
our algorithm and discuss technical issues of bundle
adjustment implementation.

∗E-mail kanatani@suri.cs.okayama-u.ac.jp

2. PERSPECTIVE PROJECTION

We model the camera imaging geometry by per-
spective projection, which projects a 3-D point
(X,Y, Z) onto (x, y) on the image plane by the re-
lationship  x

y
f0

 ' P


X
Y
Z
1

 , (1)

where ' denotes equality upto a nonzero constant
multiplier, and f0 is an appropriate scaling constant1.
The 3 × 4 matrix P is called the projection matrix .
If the camera with focal length f pixels and the prin-
cipal point at (u0, v0) is placed at t with orientation
R (rotation matrix) relative to the world coordinate
system, the projection matrix P has the following
expression [3] (I is the unit matrix):

P = KR> (
I −t

)
,

K =

 f/f0 0 u0/f0

0 f/f0 v0/f0

0 0 1

 . (2)

Here, we are assuming that the aspect ratio is 1 with
no image skew. Matrix K is known as the matrix

1The numerical error due to finite length computation is
reduced if it is taken to be of the order of the image coordinates
x and y [2]. In our system, we let f0 = 600 (pixels).

This work is subjected to copyright.
All rights are reserved by this author/authors.

Memoirs of the Faculty of Engineering, Okayama University, Vol. 45, pp. 27-35, January 2011

(Received December 22, 2010)

27

of intrinsic parameters. In components, Eq. (1) is
written as

x = f0
P 11X + P 12Y + P 13Z + P 14

P 31X + P 32Y + P 33Z + P 34
,

y = f0
P 21X + P 22Y + P 23Z + P 24

P 31X + P 32Y + P 33Z + P 34
, (3)

where P ij denotes the (ij) element of P .
Suppose we take M images of N points

(Xα, Yα, Zα), α = 1, ..., N , in the scene. Let
(xακ, yακ) be the projection of the αth point onto
the κth image. Let P κ be the projection matrix of
the κth image. We measure the discrepancy between
the observed points (xακ, yακ) and the image posi-
tions predicted by the projection matrices P κ by the
sum E of square distances between them over all the
images. From Eq. (3), we see that E, which is called
the reprojection error , is given by

E =
N∑

α=1

M∑
κ=1

Iακ

[(pακ

rακ
− xακ

f0

)2

+
(qακ

rακ
− yακ

f0

)2]
, (4)

where Iακ is the visibility index , taking 1 if the αth
point is visible in the κth image and 0 otherwise. In
Eq. (4), we measure the distance on the image plane
with f0 as the unit of length and define pακ, qακ, and
rακ as follows:

pακ = P 11
κ Xα + P 12

κ Yα + P 13
κ Zα + P 14

κ ,

qακ = P 21
κ Xα + P 22

κ Yα + P 23
κ Zα + P 24

κ ,

rακ = P 31
κ Xα + P 32

κ Yα + P 33
κ Zα + P 34

κ . (5)

The task of bundle adjustment is to compute the 3-D
coodinates (Xα, Yα, Zα) and the projection matrices
P κ that minimize Eq. (4) by observing (xακ, yακ), α
= 1, ..., N , κ = 1, ..., M [11, 12, 15].

3. CORRECTION OF VARIABLES

The basic principle of bundle adjustment com-
putation is to iteratively correct the assumed val-
ues of (Xα, Yα, Zα) and P κ so that the reprojec-
tion error E in Eq. (4) decreases. Let (∆Xα, ∆Yα,
∆Zα) be the correction of (Xα, Yα, Zα). The pro-
jection matrix P κ is determined by the focal length
fκ, the principal point (u0κ, v0κ), the translation tκ

= (tκ1, tκ2, tκ3)>, and the rotation Rκ. Let ∆fκ,
(∆u0κ, ∆v0κ), and (∆tκ1,∆tκ2, ∆tκ3)> be the correc-
tions of fκ, (u0κ, v0κ), and tκ, respectively.

Expressing the correction of Rκ needs care. The
orthogonality relationship RκR>

κ = I imposes three
constraints on the nine elements of Rκ, so Rκ has
three degrees of freedom. However, we do not need
any 3-parameter expression of Rκ, because what we
actually need is the expression of its “correction”,
i.e., the rate of change, which mathematically means
differentiation. From RκR>

κ = I, we see that the

change ∆Rκ of Rκ satisfies to a first approxima-
tion ∆RκR>

κ + Rκ∆R>
κ = O, hence (∆RκR>

κ)> =
−∆RκR>

κ , which means that ∆RκR>
κ is an antisym-

metric matrix. Thus, ∆RκR>
κ can be expressed in

terms of some ωκ1, ωκ2, ωκ3 in the form

∆RκR>
κ =

 0 −ωκ3 ωκ2

ωκ3 0 −ωκ1

−ωκ2 ωκ1 0

 . (6)

It follows that the set of these first order changes
of rotation, which are called infinitesimal rotations
in mathematics, form a 3-D linear space spanned by
ωκ1, ωκ2, ωκ3, which is known as the Lie algebra2

so(3) of the group of rotations SO(3) [4].
Let us define the product a× T of a vector a and

a matrix T to be the matrix consisting of the vector
product of a and each column of T . Then, the right-
hand side of Eq. (6) is the product ωκ × I of the
vector ωκ = (ωκ1, ωκ2, ωκ3)> and the unit matrix I.
Note that the identities (a×I)b = a×b and (a×I)T
= a×T hold. Multiplying Eq. (6) by Rκ from right,
we have

∆Rκ = ωκ × Rκ. (7)

If we divide this by small time interval ∆t and take
the limit of ∆t → 0, we obtain the instantaneous rate
of change dRκ/dt of Rκ, and the vector ωκ is iden-
tified with the angular velocity , as is well known in
physics. Equation (7), which some researchers call
the method of Lie algebra, is the basic expression for
optimization involving rotations. This is the stan-
dard approach in physics but does not seem to be
well known in the computer vision community, where
the use of the Euler angles, axis-wise rotations, and
the quaternion representation may be more popular.
However, if we parameterize Rκ itself by using these,
differentiation with respect to the parameters results
in rather complicated expressions. The use of Eq. (7)
is the simplest and the most straightforward.

4. BUNDLE ADJUSTMENT PROCEDURE

4.1 Basic Principle

As mentioned above, there are 3N + 9M variables
to adjust for reducing the reprojection error E: ∆Xα,
∆Yα, ∆Zα, α = 1, ..., N , ∆fκ, ∆tκ1, ∆tκ2, ∆tκ3,
∆u0κ, ∆v0κ, ωκ1, ωκ2, ωκ3, κ = 1, ..., M . Introducing
serial numbers, let us denote them by ∆ξ1, ∆ξ2, ...,
∆ξ3N+9M . The first order change of E caused by
∆ξk is obtained by ignoring second and higher order
terms in the expansion of E in ∆ξk and is called the
“derivative” of E and denote by ∂E/∂ξk. It has the

2Strictly, this is called a Lie algebra if the commutator op-
eration is added [4]. Here, however, the commutator does not
play any role.

Kenichi KANATANI and Yasuyuki SUGAYA MEM.FAC.ENG.OKA.UNI. Vol. 45

28

following form:

∂E

∂ξk
= 2

N∑
α=1

M∑
κ=1

Iακ

r2
ακ

[(pακ

rακ
− xακ

f0

)
(
rακ

∂pακ

∂ξk
− pακ

∂rακ

∂ξk

)
+

(qακ

rακ
− yακ

f0

)(
rακ

∂qακ

∂ξk
− qακ

∂rακ

∂ξk

)]
. (8)

If we introduce the Gauss-Netwon approximation, the
second derivative of E is given by

∂2E

∂ξk∂ξl
= 2

N∑
α=1

M∑
κ=1

Iακ

r4
ακ

[(
rακ

∂pακ

∂ξk
− pακ

∂rακ

∂ξk

)
(
rακ

∂pακ

∂ξl
− pακ

∂rακ

∂ξl

)
+

(
rακ

∂qακ

∂ξk
− qακ

∂rακ

∂ξk

)(
rακ

∂qακ

∂ξl
− qακ

∂rακ

∂ξl

)]
.

(9)

Equations (8) and (9) imply that evaluation
of the first and the second derivatives ∂E/∂ξk

and ∂2E/∂ξk∂ξl requires only the first derivatives
∂pακ/∂ξk, ∂qακ/∂ξk, and ∂rακ/∂ξk. In the follow-
ing, we derive them in turn.

4.2 Derivatives for 3-D Positions

Differentiating Eqs. (5), we obtain the derivatives
of pακ, qακ, and rακ with respect to (Xβ , Yβ , Zβ) as
follows, where δαβ denotes the Kronecker delta:

∂pακ

∂Xβ
= δαβP 11

κ ,
∂pακ

∂Yβ
= δαβP 12

κ ,
∂pακ

∂Zβ
= δαβP 13

κ ,

∂qακ

∂Xβ
= δαβP 21

κ ,
∂qακ

∂Yβ
= δαβP 22

κ ,
∂qακ

∂Zβ
= δαβP 23

κ ,

∂rακ

∂Xβ
= δαβP 31

κ ,
∂rακ

∂Yβ
= δαβP 32

κ ,
∂rακ

∂Zβ
= δαβP 33

κ .

(10)

4.3 Derivatives for Focal Lengths

Differentiating P in Eqs. (2) with respect to f , we
obtain

∂P

∂f
=

 1 0 0
0 1 0
0 0 0

 R> (
I −t

)

=

 1 0 0
0 1 0
0 0 0

 K−1KR> (
I −t

)

=

 1 0 0
0 1 0
0 0 0

 1
f

 1 0 −u0/f0

0 1 −v0/f0

0 0 f/f0

 P

=
1
f

 1 0 −u0/f0

0 1 −v0/f0

0 0 0

 P

=
1
f

P 11 − u0P
31/f0 P 12 − u0P

32/f0

P 21 − v0P
31/f0 P 22 − v0P

32/f0

0 0

P 13 − u0P
33/f0 P 14 − u0P

34/f0

P 23 − v0P
33/f0 P 24 − v0P

34/f0

0 0

. (11)

Hence, the derivatives of pακ, qακ, and rακ with re-
spect to fλ are given as follows:

∂pακ

∂fλ
=

δκλ

fκ

(
pακ − u0

f0
rακ

)
,

∂qακ

∂fλ
=

δκλ

fκ

(
qακ − v0

f0
rακ

)
,

∂rακ

∂fλ
= 0. (12)

4.4 Derivatives for Principal Points

Differentiating P in Eqs. (2) with respect to u0,
we obtain

∂P

∂u0
=

 0 0 1
0 0 0
0 0 0

 R> (
I −t

)

=

 0 0 1
0 0 0
0 0 0

 K−1KR> (
I −t

)

=

 0 0 1
0 0 0
0 0 0

 1
f

 1 0 −u0/f0

0 1 −v0/f0

0 0 f/f0

P

=
1
f0

 P 31 P 32 P 33 P 34

0 0 0 0
0 0 0 0

 . (13)

Similarly, we obtain

∂P

∂v0
=

 0 0 0
0 0 1
0 0 0

R> (
I −t

)

=
1
f0

 0 0 0 0
P 31 P 32 P 33 P 34

0 0 0 0

 . (14)

Hence, the derivatives of pακ, qακ, and rακ with re-
spect to (u0λ, v0λ) are given as follows:

∂pακ

∂u0λ
=

δκλrακ

f0
,

∂qακ

∂u0λ
= 0,

∂rακ

∂u0λ
= 0,

∂pακ

∂v0λ
= 0,

∂qακ

∂v0λ
=

δκλrακ

f0
,

∂rακ

∂u0λ
= 0. (15)

4.5 Derivatives for Translations

From Eqs. (2), we see that only the fourth column
of P contains t in the form P 14

P 24

P 34

 = −KR>t

January 2011 Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

29

= −


(fR11 + u0R

13)t1 + (fR21 + u0R
23)t2

+(fR31 + u0R
33)t3

(fR12 + v0R
13)t1 + (fR22 + v0R

23)t2
+(fR32 + v0R

33)t3
f0(R13t1 + R23t2 + R33t3)

 .

(16)

Hence, we obtain

∂

∂t1

P 14

P 24

P 34

 = −

 fR11 + u0R
13

fR12 + v0R
13

f0R
13

 ,

∂

∂t2

P 14

P 24

P 34

 = −

 fR21 + u0R
23

fR22 + v0R
23

f0R
23

 ,

∂

∂t3

P 14

P 24

P 34

 = −

 fR31 + u0R
33

fR32 + v0R
33

f0R
33

 . (17)

Introducing the vector operator ∇tλ
for differenti-

ation with respect to (tλ1, tλ2, tλ3), we obtain from
Eqs. (5)

∇tλ
pακ = −δκλ(fκr1

κ + u0r
3
κ),

∇tλ
pακ = −δκλ(fκr2

κ + v0r
3
κ),

∇tλ
pακ = −δκλf0r

3
κ, (18)

where we define r1
κ, r2

κ, and r3
κ as follows:

r1
κ =

 R11
κ

R21
κ

R31
κ

 , r2
κ =

 R12
κ

R22
κ

R32
κ

 , r3
κ =

R13
κ

R23
κ

R33
κ

 .

(19)

4.6 Derivatives for Rotations

The first order variation of the matrix P in Eqs. (2)
is given by

∆P = K(ω × R)>
(
I −t

)
= KR>

 0 ω3 −ω2 ω2t3 − ω3t2
−ω3 0 ω1 ω3t1 − ω1t3
ω2 −ω1 0 ω1t2 − ω2t1

 ,

(20)

where we have used the identities (ω × R)> =
−R>(ω × I) and (ω × I)t = ω × t. The derivatives
∂P /∂ω1, ∂P /∂ω2, and ∂P /∂ω3 are given as follows:

∂P

∂ω1
=

 0 −fR31 − u0R
33 fR21 + u0R

23

0 −fR32 − v0R
33 fR22 + v0R

23

0 −f0R
33 f0R

23

f(t2R31 − t3R
21) + u0(t2R33 − t3R

23)
f(t2R32 − t3R

22) + v0(t2R33 − t3R
23)

f0(t2R33 − t3R
23)

 ,

∂P

∂ω2
=

 fR31 + u0R
33 0 −fR11 − u0R

13

fR32 + v0R
33 0 −fR12 − v0R

13

f0R
33 0 −f0R

13

f(t3R11 − t1R
31) + u0(t3R13 − t1R

33)
f(t3R12 − t1R

32) + v0(t3R13 − t1R
33)

f0(t3R13 − t1R
33)

 ,

∂P

∂ω3
=

−fR21 − u0R
23 fR11 + u0R

13 0
−fR22 − v0R

23 fR12 + v0R
13 0

−f0R
23 f0R

13 0

f(t1R21 − t2R
11) + u0(t1R23 − t2R

13)
f(t1R22 − t2R

12) + v0(t1R23 − t2R
13)

f0(t1R23 − t2R
13)

 ,

(21)

Introducing the vector operator ∇ωλ
for differentia-

tion with respect to (ωλ1, ωλ2, ωλ3), we obtain from
Eqs. (5)

∇ωλ
pακ = δκλ(fκr1

κ + u0κr3
κ) × (Xα − tκ),

∇ωλ
qακ = δκλ(fκr2

κ + v0κr3
κ) × (Xα − tκ),

∇ωλ
rακ = δκλf0r

3
κ × (Xα − tκ), (22)

where we define Xα = (Xα, Yα, Zα)>.

5. LEVENBERG-MARQUARDT METHOD

The Levenberg-Marquardt (LM) procedure that
minimizes the reprojection error E go as follows [13]:

1. Provide initial values for Xα, fκ, (u0κ, v0κ), tκ,
and Rκ, and compute the corresponding repro-
jection error E. Let c = 0.0001.

2. Compute the first and second derivatives ∂E/∂ξk

and ∂2E/∂ξk∂ξl, k, l = 1, ..., 3N + 9M .

3. Solve the linear equation
(1 + c)∂2E/∂ξ2

1 ∂2E/∂ξ1∂ξ2

∂2E/∂ξ2∂ξ1 (1 + c)∂2E/∂ξ2
2

...
...

∂2E/∂ξ3N+9M∂ξ1 ∂2E/∂ξ3N+9M∂ξ2

· · · ∂2E/∂ξ1∂ξ3N+9M

· · · ∂2E/∂ξ2∂ξ3N+9M

. . .
...

· · · (1 + c)∂2E/∂ξ2
3N+9M




∆ξ1

∆ξ2

...
∆ξ3N+9M



= −


∂E/∂ξ1

∂E/∂ξ2

...
∂E/∂ξ3N+9M

 , (23)

for ∆ξk, k = 1, ..., 3N + 9M .

4. Update Xα, fκ, (u0κ, v0κ), and tκ, Rκ by

X̃α ← Xα + ∆Xα,

f̃κ ← fκ + ∆fκ, (ũ0κ, ṽ0κ) ← (u0κ, v0κ),

t̃κ ← tκ + ∆tκ, R̃κ ← R(ωκ)Rκ, (24)

Kenichi KANATANI and Yasuyuki SUGAYA MEM.FAC.ENG.OKA.UNI. Vol. 45

30

where R(ωκ) denotes the rotation by angle ‖ωκ‖
around axis N [ωκ] screwwise (the Rodriguez for-
mula3)

5. Compute the reprojection error Ẽ corresponding
to X̃α, f̃κ, (ũ0κ, ṽ0κ), t̃κ, and R̃κ. If Ẽ > E, let
c ← 10c and go back to Step 3.

6. Let

Xα ← X̃α, fκ ← f̃ , (u0κ, v0κ) ← (ũ0κ, ṽ0κ),

tκ ← t̃κ, Rκ ← R̃κ. (25)

If |Ẽ −E| ≤ δ, stop. Else, let E ← Ẽ, c ← c/10,
and go back to Step 2.

6. IMPLEMENTATION TECHNIQUES

6.1 Removing Indeterminacy

Equation (23) does not have a unique solution, be-
cause for c = 0 the Hessian H = (∂2E/∂ξk∂ξl) has
determinant 0 at the solution. This is due to the well
known fact that the absolute scale and 3-D position
of the scene cannot be determined from images alone.
In order to remove this ambiguity, we introduce the
following normalization:

R1 = I, t1 = 0, t22 = 1. (26)

This means that we compute the 3-D position relative
to the first camera and regard the Y component of
the relative displacement of the second camera from
the first camera as the unit of length. Imposing ‖t2‖
= 1 would be theoretically more general but difficult
to treat in computation. Here, we assume that the
second camera is displaced mostly in the Y direction
from the first camera; we may impose t21 = 1 or t23 =
1 if we know that the camera displacement is mostly
in the X or Y direction. Accordingly, we remove from
the Hessian the rows and columns corresponding to
ω11, ω12, ω13, ∆t11, ∆t12, ∆t13, and ∆t22 and solve
Eq. (23) for the remaining 3N + 9M − 7 unknowns.

The initial values of Xα, fκ, (u0κ, v0κ), tκ, and
Rκ to start the LM iterations must be computed by
some other means, e.g., the least squares, but if they
are not computed with the constraint in Eqs. (26), we
need to normalize the given Xα, tκ, Rκ to X ′

α, t′κ,
R′

κ as follows:

X ′
α =

1
s
R>

1

(
Xα − t1

)
,

R′
κ = R>

1 Rκ, t′κ =
1
s
R>

1 (tκ − t1). (27)

Here, we put s = (j,R>
1 (t2 − t1)) and j = (0, 1, 0)>.

3This can be formally written as exp(ωκ×I) and called the
exponential map from the Lie algebra so(3) to the Lie group
SO(3).

6.2 Efficient Computation and Memory Use

From the summation
∑N

α=1

∑M
κ=1 in Eqs. (8) and

(9), it appears that one needs to sum at most MN
terms. However, the amount of computation signif-
icantly reduces if one notes the following. Consider
∂E/∂ξk. From Eq. (8), it is seen that if ∆ξk is a
component of the correction ∆Xβ of the βth point,
only the term for α = β needs to be computed in
the summation

∑N
α=1 due to the Kronecker delta δαβ

in Eqs. (10). If ∆ξk corresponds to the correction
of fλ, (u0λ, v0λ), tλ, or Rλ for the λth image, only
the term for κ = λ needs to be computed in the
summation

∑M
κ=1 due to the Kronecker delta δκλ in

Eqs. (12), (15), (18), and (22). Thus, the summation∑N
α=1

∑M
κ=1 in Eq. (8) needs to be computed for ei-

ther α or κ. Note that for the αth point, only those
images that can view that point needs to be consid-
ered in the sum, and for the κth image, only those
points appear in that image needs to be considered
in the sum.

The same holds for ∂2E/∂ξk∂ξl. Equation (9) is 0
if ∆ξk and ∆ξl are corrections of different points. If
they correspond to the same point, only the term for
that point needs to be computed in

∑N
α=1. Similarly,

Eq. (9) is 0 if ∆ξk and ∆ξl are corrections of camera
parameters for different images. If they correspond
to the same image, only the terms for that image
needs to be computed in

∑M
κ=1. If one of ∆ξk and

∆ξl correspond to a point and the other to an image,
then only those terms for that point and that image
need to be summed in

∑N
α=1

∑M
κ=1 provided that that

point appears in that image.
By these considerations, the computation time

for evaluating ∂E/∂ξk and ∂2E/∂ξk∂ξl can be lim-
ited to a minimum. However, the Hessian H =
(∂2E/∂ξk∂ξl) has (3N + 9M)2 elements in total,
and allocating memory space to them is difficult
for large N and M . In order to store them in a
minimum amount of space avoiding duplication and
zero elements as much as possible, we define ar-
rays E, F , and G of size 3N × 3, 3N × 9M , and
9M × 9, respectively, and store ∂2E/∂Xα∂Yα, etc. in
E, ∂2E/∂Xα∂fκ, etc. in F , and ∂2E/∂fκ∂u0κ, etc. in
G. The total number of necessary array elements is
2NM + 9N + 81M .

6.3 Decomposing the Linear Equations

After the normalization of Eqs. (26), the matrix in
Eq. (23) is of size (3N + 9M − 7) × (3N + 9M − 7)
corresponding to 3N + 9M − 7 unknowns. For large
N and M , we cannot allocate memory space to store
intermediate values for numerical computation such
as the LU or Cholesky decomposition. We resolve this
difficulty by decomposing Eq. (23) into parameters for
points and parameters for images. Equation (23) has

January 2011 Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

31

the form
E

(c)
1 F 1

. . .
...

E
(c)
N F N

F>
1 · · · F>

N G(c)


(

∆ξP

∆ξF

)
= −

(
dP

dF

)
,

(28)
where ∆ξP is the 3N -D vector corresponding to the
3-D coordinates and ∆ξF is the (9M − 7)-D vector
corresponding to the camera parameters. Likewise,
dP and dF are the 3N -D and (9M − 7)-D parts of the
vector on the right hand of Eq. (23). The submatrices
E(c)

α , α = 1, ..., N , are of size 3 × 3 and contain the
second derivatives of E with respect to (Xα, Yα, Zα);
the superscript (c) indicates that the diagonal ele-
ments are multiplied by (1+ c). The submatrices F α

are of size 3×(9M−7) and contain the second deriva-
tives of E with respect to (Xα, Yα, Zα) and the cam-
era parameters of the frames where it appears. The
submatrices G(c) are of size (9M −7)× (9M −7) and
contain the second derivatives of E with respect to
camera parameters, with the diagonal elements mul-
tiplied by (1 + c). Equation (28) is decomposed into
the following two parts:

E
(c)
1

. . .
E

(c)
N

 ∆ξP +

 F 1

...
F N

 ∆ξF = −dP ,

(
F>

1 · · · F>
N

)
∆ξP + G(c)∆ξF = −dF . (29)

Solving the first equation for ∆ξP and substituting
it into the second, we obtain the following 9M − 7-D
linear equation for ∆ξF alone:

(
G(c) −

N∑
α=1

F>
α E(c)−1

α F α

)
∆ξF

=
N∑

α=1

F>
α E(c)−1

α ∇αE − dF , ∇αE ≡

 ∂E/∂Xα

∂E/∂Yα

∂E/∂Zα

 .

(30)

Solving this for ∆ξF and substituting it to the second
of Eqs. (29), we can determine ∆ξP . The correction
of αth point is given in the form ∆Xα

∆Yα

∆Zα

 = −E(c)−1
α (F α∆ξF + ∇αE). (31)

6.4 Convergence Decision

Even with the above techniques, the LM iterations
require considerable computation time. In numeri-
cally solving equations, it may be a common prac-
tice to continue iterations until all significant digits of

(a)

Kanatani and Sugaya [9] bundle adjustment
0 0.0000000000000 0.2740543086661
1 0.1071688468318 0.1083766529404
2 0.1071686014356 0.1076009069457
3 0.1071686015030 0.1076005713017
4 0.1071686013682 0.1071718714030
5 0.1071686015030 0.1071686014673
6 0.1071686013682 0.1071686014580
7 0.1071686016378 0.1071686014580

(b)

Figure 1: (a) Simulated images of a grid surface in the
scene. (b) Typical example of the decrease of the repro-
jection error for σ = 0.1 pixels.

the unknowns are unaltered, but the number of un-
knowns for bundle adjustment may become hundreds
and thousands, requiring a very long time for com-
plete convergence. However, the purpose of bundle
adjustment is to find a solution with a small repro-
jection error, so it makes sense to stop if the repro-
jection error decreases less than a specified amount.
The LM algorithm in Sec. 10 is described that way.
For stopping the iterations when the decrease of the
reprojection error is less than ε pixels per point, we
can set the constant δ in Sec. 10 to δ = nε2/f2

0 , where
n =

∑N
α=1

∑M
κ=1 Iακ is the total number of observed

points in all images. We set ε = 0.01 pixels in our
experiments.

7. EXPERIMENTS

7.1 Two-View Reconstruction

Figure 1(a) shows two simulated images of a grid
surface taken from different angles. The image size is
assumed to be 600 × 600 pixels with focal lengths f
= f ′ = 600 pixels. We added independent Gaussian
noise of mean 0 and standard deviation σ = 0.1 pix-
els to the x and y coordinates of the grid points in
the two images and computed from them the funda-
mental matrix by least squares (or Hartley’s’ 8-point
algorithm [2]). From the obtained fundamental ma-
trix, we estimated the focal lengths and the relative
translation and rotation of the two cameras and re-
constructed the 3-D coordinates of the grid points by
the procedure described in [10]. Since theoretically
the principal point (u0, v0) cannot be estimated from
two views [10], we assumed it to be at the center of
the frame. The number of parameters is 280: two for
the focal lengths, two for the relative translation, two
for the relative rotation, and 273 for the 3-D coor-
dinates of the 91 grid point. We evaluated the the

Kenichi KANATANI and Yasuyuki SUGAYA MEM.FAC.ENG.OKA.UNI. Vol. 45

32

reprojection error e per point in pixel in the form

e = f0

√
E

N − 7
, (32)

where the number 7 in N − 7 is the degree of the
freedom of the focal lengths, the translation, and the
relative rotation (N = 91). As is well known in statis-
tics [5], e2/f2

0 σ2 is subject to a χ2 distribution with
N − 7 degrees of freedom for independent Gaussian
noise of mean 0 and standard deviation σ and hence
has expectation N − 7. Thus, Eq. (32) gives an esti-
mate of σ of the added noise.

As a comparison, we tested the method of
Kanatani and Sugaya [9] by starting from the same
initial values. The result is listed in Fig. 1(b), where
we continued computation indefinitely without con-
vergence judgment. The method of Kanatani and
Sugaya [9] orthogonally projects the observed point
correspondences onto the 3-D manifold (hyperbolic
surface with one sheet) in the 4-D joint xyx′y′ space
and iteratively optimizes the fundamental matrix us-
ing the EFNS of Kanatani and Sugaya [8]. As can be
seen from Fig. 1(b), it reaches the same solution as
bundle adjustment, confirming its optimality. More-
over, it converges after two iterations, while bundle
adjustment requires around five iterations. Thus, the
combination of fundamental matrix computation us-
ing the method of [9] and 3-D reconstruction using
the method of [10] is better than bundle adjustment,
as far as two-view reconstruction is concerned. How-
ever, the focal lengths computed by the method of
[10] can be imaginary (the values in square roots can
become negative) in the presence of large noise. In
such a case, we need to start bundle adjustment from
an appropriate guess of the focal lengths.

7.2 Multi-View Reconstruction

We tested our method using the real video se-
quence provided by the University of Oxford4. It
consists of 36 frames tacking feature points (4983 in
total) over 2 to 21 consecutive frames, and the pro-
jection matrix P κ is estimated for each frame. Figure
2(a) shows one frame with tracked feature points.

Since the number of unknowns is 15266, the Hes-
sian has around 200 millions elements. We cannot
allocate memory space to store them directly, but
with the scheme described in Sec. 10, they can be
stored in around 4000 array cells (about a five thou-
sandth). Since each point is visible only in a limited
number of images, most of the Hessian elements are
0. Figure 2(b) shows the sparsity pattern of the Hes-
sian for 1000 decimated points; nonzero elements are
indicated in black (about 13%).

We first estimated the focal lengths fκ, the prin-
cipal points (u0κ, v0κ), the translations tκ, and the

4http://www.robots.ox.ac.uk/~vgg/data.html

(a) (b)

(c)

reprojection error reprojection error

0 3.277965703463469
..
.

..

.
1 2.037807322757024 140 1.626138870635717
2 1.767180606187605 141 1.626109073343624
3 1.721032319350261 142 1.626079434501709
4 1.698429496315309 143 1.626049951753774
5 1.684614811452468 144 1.626020622805242
6 1.675366012050569 145 1.625991445421568
7 1.668829491793228 146 1.625962417425169
8 1.664028486785132 147 1.625933536694230
9 1.660393246948761 148 1.625904801160639

10 1.657569357560945 149 1.625876208807785

(d)

(e)

Figure 2: (a) One of the 36 frames of the test image
sequence. (b) The sparsity pattern of the Hessian for
decimated 100 points; nonzero elements are indicated in
black. (c) The reprojection error e vs. the number of
iteration. (d) The numerical value of e at each iteration.
(b) 3-D reconstruction. Red: initial positions. Green:
final positions.

January 2011 Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

33

rotations Rκ from the projection matrices P κ pro-
vided in the database (Appendix A) and computed
the 3-D coordinates by least squares (Appendix B).
Then, we started bundle adjustment. The total num-
ber n =

∑N
α=1

∑M
κ=1 Iακ of points visible in the im-

ages is 16432. The reprojection error per point in
pixel corresponding to Eq. (32) for two views is

e = f0

√
E

2n − (3N + 9M − 7)
. (33)

The initial reprojection error of the least squares re-
construction is was e = 3.27797 pixels, which reduced
to e = 1.625876 pixels after 149 iterations. Figure 2(c)
plots the decrease of e for the number of iterations,
and Fig. 2(d) lists their numerical values. The num-
ber of iterations was 149. The execution time was
21 minutes and 51 seconds. The program was imple-
mented in the C++ language, using Intel Core2Duo
E6750, 2.66GHz for CPU with main memory 4GB
and Windows Vista for the OS. Figure 2(e) shows
the reconstructed 3-D points viewed from some an-
gle: the red points are initial reconstruction, and the
green points are the final reconstruction.

8. CONCLUSIONS

We have described in detail the algorithm of bun-
dle adjustment for 3-D reconstruction from multiple
images based on our latest research results. The main
focus of this paper is on the treatment of camera ro-
tations in a mathematically sound manner and the ef-
ficiency of computation and memory usage when the
number of points and image frames is very large. As
an example, we computed the fundamental matrix
from two-view point correspondences and observed
that the same solution is obtained as the method
of Kanatani and Sugaya [9], confirming that their
method is indeed optimal. However, bundle adjust-
ment is less efficient than their method. As another
example, we reconstructed 3-D using a real video
database provided by the University of Oxford. It has
a very large number of points, so that it is difficult
to implement bundle adjustment directly. However,
we have shown that we can reconstruct 3-D using
our techniques for efficient computation and efficient
memory usage.

Theoretically, bundle adjustment is a universal
tool for 3-D reconstruction that can be used in any
situations. However, it requires a good initial guess
to ensure convergence within a practically reasonable
time. A typical method for approximate 3-D recon-
struction is the Tomasi-Kanade factorization [7, 14]
using the affine model to approximate the camera
imaging geometry, and more accurate reconstruction
can be done by the technique of self-calibration [1, 6]
using the perspective camera model. In any case,
bundle adjustment should be regarded as a means of

not reconstructing 3-D from scratch but refining the
3-D structure already reconstructed by other means.

Acknowledgments. The authors thank Takayuki
Okatani of Tohoku University for helpful suggestions on
this research. This work was supported in part by the
Ministry of Education, Culture, Sports, Science, and
Technology, Japan, under a Grant in Aid for Scientific
Research (C 21500172).

[1] H. Ackermann and K. Kanatani, Fast projec-
tive reconstruction: Toward ultimate efficiency
IPSJ Trans. Comp. Vis. Image Media, 49-SIG 6
(2008-3), 68–78.

[2] R. I. Hartley, In defense of the eight-point al-
gorithm, IEEE Trans. Patt. Anal. Mach. Intell.,
19-6 (1997-6), 580–593.

[3] R. Hartley and A. Zisserman, Multiple View Ge-
ometry in Computer Vision, 2nd ed., Cambridge
University Press, Cambridge, U.K., 2004.

[4] K. Kanatani, Group-Theoretical Methods in Im-
age Understanding , Springer, Berlin, Germany,
1990.

[5] K. Kanatani, Statistical Optimization for Ge-
ometric Computation: Theory and Practice
Elsevier, Amsterdam, the Netherlands, 1996;
reprinted, Dover, York, NY, U.S.A., 2005.

[6] K. Kanatani, Latest progress of 3-D reconstruc-
tion from multiple camera images, in Xing P.
Guo (ed.), Robotics Research Trends, Nova Sci-
ence, Hauppauge, NY, U.S.A., pp. 33–75.

[7] K. Kanatani, Y. Sugaya and H. Ackermann, Un-
calibrated factorization using a variable sym-
metric affine camera, IEICE Tran. Inf. & Syst.,
E90-D-5 (2007-5), 851–858.

[8] K. Kanatani and Y. Sugaya, Extended FNS for
constrained parameter estimation, Proc. Meet-
ing on Image Recognition and Understanding,
2007 , Hiroshima, Japan, July/August 1, 2007,
pp. 219–226.

[9] K. Kanatani and Y. Sugaya, Compact funda-
mental matrix computation, IPSJ Trans. Com-
put. Vis. Appl. 2 (2010-3), pp. 59–70.

[10] K. Kanatani, Y. Sugaya and Y. Kanazawa, Lat-
est algorithms for 3-D reconstruction form two
views, in C. H. Chen (ed.) Handbook of Pat-
tern Recognition and Computer Vision, 4th ed.,
World Scientific Publishing, Singapore, 2009, pp.
201–234.

[11] M. I. A. Lourakis and A. A. Argyros, Is
Levenberg-Marquardt the most efficient opti-
mization algorithm for implementing bundle ad-
justment?, Proc. 10th Int. Conf. Comput. Vis.,
Vol. 2, October 2005, Beijing, China, pp. 1526–
1531.

Kenichi KANATANI and Yasuyuki SUGAYA MEM.FAC.ENG.OKA.UNI. Vol. 45

34

REFERENCES

[12] M. I. A. Lourakis and A. A. Argyros, SBA: A
software package for generic sparse bundle ad-
justment, ACM Trans. Math. Software, 36-1
(2009-3), 2:1–30.

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling,
and B. P. Flannery, Numerical Recipes in C: The
Art of Scientific Computing , 2nd ed., Cambridge
University Press, Cambridge, U.K., 1992.

[14] C. Tomasi and T. Kanade, Shape and motion
from image streams under orthography: A fac-
torization method, Int. J. Comput. Vis., 9-2
(1992-10), 137–154. (1992).

[15] B. Triggs, P. F. McLauchlan, R. I. Hartley, and
A. Fitzgibbon, Bundle adjustment—A modern
synthesis, in B. Triggs, A. Zisserman, and R.
Szeliski, (eds.), Vision Algorithms: Theory and
Practice, Springer, Berlin, 2000, pp. 298–375.

APPENDIX

A. Decomposing the Projection Matrix

Write the projection matrix as P =
(
Q q

)
by

letting Q be the first 3 × 3 submatrix of P and q its
fourth column. From Eq. (1), we see that the sign of
P is indeterminate, so choose the sign so that det Q
> 0; if detQ < 0, we change the signs of both Q and
q. Since P still has scale indeterminacy, we have

Q = cKR>, q = −cKR>t, (34)

where c is an unknown positive constant. From these,
we see that the translation t is given by

t = −Q−1q. (35)

Since R is a rotation matrix, satisfying R>R = I,
we obtain from the first of Eqs.(34)

QQ> = c2KR>RK> = c2KK>. (36)

Its inverse is

(QQ>)−1 =
1
c2

(K−1)>(K−1). (37)

By the Choleski decomposition, we can express this
in terms of an upper triangular matrix C in the form

(QQ>)−1 = C>C. (38)

Since the inverse of an upper triangular matrix is also
upper triangular, we obtain from Eqs. (37) and (38)

C =
1
c
K−1 i.e., C−1 = cK. (39)

From the first of Eqs. (34) and Eq. (39), we obtain

Q = C−1R>, (40)

from which R is given by

R = (CQ)>. (41)

The matrix K of intrinsic parameters is obtained by
multiplying C−1 in Eq. (39) by a constant that makes
its (3,3) element 1.

B. 3-D Reconstruction by Least Squares

Clearing the fractions in Eqs. (3), we obtain

xP 31X + xP 32Y + xP 33Z + xP 34

= f0P
11X + f0P

12Y + f0P
13Z + f0P

14,

yP 31X + yP 32Y + yP 33Z + yP 34

= f0P
21X + f0P

22Y + f0P
23Z + f0P

24. (42)

Collect, for each point pα, equations of this form for
all the nα (=

∑M
κ=1 Iακ) frames where the αth point

appears. Then, we obtain the following 2nα linear
equation of the 3-D coordinates (Xα, Yα, Zα) of pα:

...
...

...
xακP 31

κ −f0P
11
κ xακP 32

κ −f0P
12
κ xακP 33

κ −f0P
13
κ

yακP 31
κ −f0P

21
κ yακP 32

κ −f0P
22
κ yακP 33

κ −f0P
23
κ

...
...

...

...
xακP 33

κ −f0P
13
κ

yακP 33
κ −f0P

23
κ

...


 Xα

Yα

Zα

=−


...

xακP 34
κ −f0P

14
κ

yακP 34
κ −f0P

24
κ

...

 .

(43)
Solving this by least squares, we can obtain an initial
solution.

January 2011 Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

35

