細胞膜透過性に及ぼす高圧の影響

第3編 塩流に就て

岡山大学医学部生理学教室（主任：林教授）
講師 岡田勝喜

[昭和29年9月17日受講]

I 緒 論

著者は先に筋肉負傷流1)、上皮流2)に及ぼす高圧の影響を観察し、其の所見は高圧下に於て細胞膜の透過性が亢進するに基くのであり、同様にして今回は塩流の高圧による変化を膜透過性の見地から考察して見た。故にEngermann3)、Höber4)等は蛙の上皮や筋肉を用いて、種々の塩類溶液により発生する塩流に就て研究して居る。著者はリングル氏液及び種々の塩類溶液を蛙皮の内面に浸透させて挙動が高圧の作用で如何に変化するかを考察した。

II 実験方法

蛙の背部正中附近の上皮約1cm四方を切取って実験材料とした。電導子は亜鉛一硫酸亜鉛不分解電導子で、蛙皮に接する白金は実験しようとするリングル氏液或は塩類溶液に貼ったものである。即ち一方の電導子はリングル氏液又は生理的食塩水等、他方の電導子は0.25モル各種塩類溶液とした。此の電導子の先端を蛙皮に接する部分は、直径約1μの円である。

筋肉に接する塩類溶液が等張でないと其の害作用が大きいが、其の反射の外面は種々の濃度の塩類溶液が適用出来る、著者は皮膚皮膚の面に等張でない塩類溶液を接触させて其の可成高い塩流電圧を得る事が出来た。加圧装置は教室の高圧ボンベ5)で、最高400気圧迄の加圧による塩流の変化を観察した。尚加圧と降圧は凡て瞬間的に行つた。又電圧の計測は前2編1) 2) 同様補償法によつた。

A. 食塩水溶液と種々の塩類溶液

0.65％食塩水と種々の0.25モル塩類溶液とを蛙皮の内面に接触させて発生する塩流に就て調べた。

1. 0.65％ NaCl 水溶液
2. 0.25モル KCl 水溶液

此の組合せで発生する塩流は食塩側が陽極である。加圧（100～300気圧）の瞬間。此の塩流電流は急激に減少し、降圧の瞬間、電流は急激に上昇する（第1図）。断電圧の変化は著者が先に報告した蛙上皮流の場合と殆ど同様である。各測により発生する塩流の大さは異るが、概して作用させる圧力が大きい程電圧の変動も大きい。
2. \{0.65\% NaCl 水溶液  
0.25 モル NH₄Cl 水溶液
\}

この場合発生する塩流電圧は非常に低く、勿論正常状態で時間の経過と共に電流の方向が逆になる事もある。第2図(a)は加圧前陽極であった食塩側が加圧により陰極になった例である。食塩側が初めから陰極であるのが、加圧により共の（－）性が強くなり、降圧で元状態に帰るのである(第2図(b))。何れにしても第2図のように図示すれば、発生する塩流電圧は加圧により著減し、降圧により急上昇する事になる。

3. \{0.65\% NaCl 水溶液  
2 過％ KCl 水溶液  
2 過％ CaCl₂ 水溶液 \} 等量混合液

発生する塩流は食塩側が陰極である。此の電圧が加圧で減少し、降圧で上昇する事は前諸例と同様である。第3図は200気圧作用させた例である。

B. 塩化加里溶液と他の塩類溶液
\{0.65\% KCl 水溶液  
2 過％ NaCl 水溶液  
2 過％ CaCl₂ 水溶液 \} 等量混合液

この場合発生する塩流は塩化加里側が陰極である、200 及び 300 気圧の加圧により電圧は急激に低下し、降圧により電圧は急激に上昇する(第4図(a),(b))。

C. リンゲル氏液と種々の塩類溶液
1. 0.65\% Ringer 氏液  
0.25 モル KCl 水溶液

この組合せで発生する塩流は Ringer 氏液
細胞膜透過性に及ぼす高圧の影響

側が陽極である。加圧（300 及び 300 気圧）によるこの電流変化（第 5 図 (a), (b)）は A.1 の場合と全く同様で、電圧は加圧で急激に減少し、降圧で急激に上昇する。

2. 0.65% Ringer 氏液
0.85% NH₄Cl 水溶液

この場合は Ringer 氏液側が陰極である。この場合、電流の変化は前記と全く同様である。第 6 図 (a), (b) は夫々 300 気圧及び 400 気圧の加圧例である。

第 6 図

8. 0.65% Ringer 氏液
0.85% NaCl 水溶液

この組合せでは Ringer 氏液側が陽極である。発生する電流の大きさは各例によりかなり相違するが、電圧が加圧の瞬間著減し、降圧の瞬間著増する事は前例と全く同じである（第 7 図）。

D. 電導子に就て。

二つの電導子の蛙皮に接する溶液間の濃度差等に基づき電流が高圧により如何に変化するか調べた。熱湯で処理して共の生命機能を破壊した蛙上皮の内面に 0.65% NaCl 水溶液と 0.25% KCl 水溶液を接する検査台に、若干の電流が発生する。第 8 図は 100～400 気圧の圧力によるこの電流の変化である。何れの場合も電圧は、圧力を作用させると僅かに上昇し、圧力を除くと僅かに低下して略元の値に戻る。此の電圧変化は実験 A～C に於けるように、圧力変化の瞬間と力程急激ではない。尚発生電圧の時間的変化も実験 A～C の場合に比し著しく小さく、周義の条件が同一なら、電圧は略一定の値を保つ。

IV 総括並に考察

著者は先に上皮流に及ぼす高圧の作用に就て報告した。この上皮流は接する Ringer 氏液の一方を種々の塩類溶液に更えると、既存の電動力が変化し、それも単に電圧の大小に止らず方向が逆になる事さきある。Orberi（）
橘田等は蛙を、Höber、杉、Overton等は筋肉を用いて塩流を観察して居る。著者が本実験を行ったのは、先の研究で推論したように、高圧で形質膜の透過性の亢進が招致されるのであれば塩流の場合も加圧によりイオンの移動が起り、それに基づく電動力に変化が生ずるであろうと考えたからである。

元より塩類効果はその濃度効果の機序に就ては前記各氏の説明がある。就中 Bernsteinの膜説によれば、塩類浸透部が電気的陰性の場合はその部で透過性が増して既存の電気二重層の一部が消失するようになり、浸透部が電気的陽性の場合は膜の透過性が一層減じて、その部の電気二重層の生成が更に高圧になると仮定する。そして Höberは此の透過性の変化が形質膜の膜質性変化に基づくと考えて居る。

細胞透過膜の性質が細胞組織の種類で異なる事は勿論であり、筋肉と上皮とはそれを透過するイオンの種類により当然異なるかあろう。本実験では上皮の内面に二つの電導子を接触させて電動力を測ったので形の上から筋肉に対する塩類効果の実験に似るが、用いた組織が蛙上皮である限り、上皮形質膜の特異な透過性によって生じた電気二重層が、発生する電動力の基であり、結局本実験は断る形質膜の特異な透過性が高圧の影響で如何に変化するかを観察した事になる。

前記実験成績を一覧すると一般的に塩流の高圧による影響は第9図のような模型に表わせる。図のbは加圧点。eは降圧点で、a→bに維持された電圧が加圧の瞬間著減し(b→c)、加圧状態を維持するとc→d→eの過程を示し、降圧の瞬間急上昇してe→f→gの経過をたどる。此の電圧変動の形は著者の先の研究の場合と全く同様である。

本実験の場合塩流の発生を観察するに到れば、第10図aに示す如く、上皮内面に接する二つの電導子E1、E2の部分に出来る電気二重層は程度の差があつて、AがBに比し強く二重層を作ることは當然E1はE2に対して陽になる答である。実験A.1.では NaClがE1、KClがE2に当る。又実験A.2.ではE1、E2両電極に於ける電気二重層が殆ど同程度である為、少し状態が変化すると電流の方向が逆になる（第2図）。同様にして実験成績を見れば、電極の陽になった方がE1に当り、陰になった方がE2に当る。元よりE1、E2両部の電気二重層は環境変化によって夫々異なる程度で変える。而して此の標本が加圧されると何れの場合も、E1、E2間の電位差が減少するのは、E1、E2両部に起って居る電気二重層が夫々変化して、両部の二重層の強さの差が少なくなる為であろう。此の電気二重層の変化は多分同質のものであるが、程度は塩類種別毎に相違する。第10図のaがbになれば電圧が下るし、cに進むと電流方向
細胞膜透過性に及ぼす高圧の影響

は逆になるよう。実験 A, 2 の場合はその例である。

以上は電気二重層の変化を二重層の減少と仮定して解析したが、加圧の場合、電気二重層の一部消失は压力作用による細胞膜透過性の亢進に起因すると考えられる。

即も大気圧下の圧イオンのみを通して得られる細胞膜は、加圧により加えるイオン透過性が増して他の陽イオンとなり陰イオンも透過可能になると考えれば、電気二重層の一部が消失する結果になりよう。勿論 E₁, E₂ 両極部は大気圧下でも既にイオン透過性が異なり、両部の電気二重層の差異に富く塩流が成立すると同様、高圧下イオン透過性の亢進も両部で差があり、上記のように加圧下両極の電気二重層に相違が出来る筈である。共の内、膜のイオンに対する摂疎性が強いもの程圧力の影響を強く受け、換言すれば摂疎性の高い E₁は弱い E₂より圧力による影響が大きく、E₁, E₂ 間の電圧が減少するのである。

次に関する状態で降圧すると透過性は復元して加圧前の状態に戻る為、共の間、透過性の亢進により許されて居るイオンの透過は阻断され、たちまち膜の内外に再び原のような電気二重層が出来、之が降圧による電圧の急上昇になって現われるのである。

尚実験 D を併せ考えると、圧による塩流電圧の真の減少は増大は、実験成績の値よりも大きいと考えられる。高圧による膜透過性の変化に基づく電圧の変動と、僅少ではあるが電導子から発生する電圧の変化との相数和が実験成績に於ける電圧の減少は増大として観測されるからである。

以上のように卵上皮塩流の高圧による変化は、高圧の作用による細胞膜塩透性の増大と云う考え方でよく説明出来る。著者の先の研究[123]を併せ考え、此処でも高圧は細胞膜の塩透性を亢進させると結論したい。

V 結 論

1. 蛋卵上皮の内面に種々の塩類溶液を接触させると、共の種類に応じて電動力を生ずる。
2. 此の電流は高圧の作用で変化するが、電流は加圧時に低下し、降圧時に上昇する。
3. 此の電圧変化は上皮組織の細胞膜塩透性が高圧の作用で亢進する為に起ると考えられる。
4. そして膜のイオンに対する摂疎性が強い程、即ち電気二重層を強く作る状態にある膜の力が高圧により、大きい影響を受ける。

摂疎するに当り常時御指導なる御指導と御教訓を賜った長崎塩教授並に御助言を賜った西田教授に対し深く感謝の意を表す。

文

1) 著者：第一編，本誌。
2) 著者：第二編，本誌。
3) Engermann，pflüger Arch. 6, (1872) 97，555。
4) Höber R。pflüger Arch. 106, (1904) 599, 220, (1928) 558。
6) 橋田：J. Biochem. I，(1922) 21，II，(1922) 43。
8) 小川。岡農誌，5 号，(1952) 859。
9) 橋田：生物の電気発生，岩波生物学講座。
10) Overton E. : pflüger Arch. 105 (1904) 176。
Department of Physiology, Okayama University Medical School.
(Director: Prof. Dr. K. Hayasi)

Effects of Hydrostatic High Pressure on the Permeability of Plasma Membrane

III. On Salt Current

By
Katuki Okada

In case any high pressure (that amounts to 400 atm.) has been directed toward isolated frog's skin, electric pressure of salt current reduces considerably.

These facts may probably ascribed to the augmented permeability of plasma membrane of the epithelium, due to high pressure.