Novel fatty acyl and phospholipid derivatives of pyrrole polyamide were synthesized. Their cytotoxicity against a cancer cell line of MT-4 cells and those infected by human immunodeficiency virus (HIV) was examined. Although no anti-HIV activity was found, their cytotoxicity against the cancer cells was significantly enhanced by introducing a lipophilic group into the pyrrole polyamide.

Key words: pyrrole polyamide; lipid; phospholipid; cancer cell; human immunodeficiency virus (HIV)-II

Since the naturally occurring pyrrole polyamide, netropsin, as an antibiotic was reported by Kopka et al.,1,2) a number of pyrrole polyamide analogues has been synthesized so far. Subsequently, their highly sequence-specific binding to DNA3) has intensively triggered the design of novel functional pyrrole polyamides,4) and the search for new biological functions including anti-cancer5) and anti-HIV6) activities.

As the major components of polyunsaturated fatty acids (PUFA) in marine fish oil, docosahexaenoic acid (DHA) and icosapentaenoic acid (EPA) have a non-conjugated all-cis-polyunsaturated olefinic structure. They are known to exhibit a variety of biochemical and physiological functions including enhanced cell membrane permeability,7) growth regulation and apoptosis-inducing capability to cancer cells,8–10) cytotoxicity enhancement for some anti-cancer drugs against cancer cells11,12) and potential anti-malarial activity.13) Regarding the effect of the lipid modification of bioactive compounds, Zerouga et al. have reported that methotrexate, a cytotoxic drug, conjugated to phosphatidylcholine (PC) having a docosahexaenoyl group showed higher anti-proliferative activity against murine leukemia cells than one having a stearoyl group.14) In our previous study, conjugates of quinine with fatty acid were found to show higher cytotoxicity against tumor cell line FM3A15) than quinine itself. Parang et al. have extensively reviewed the relationship between the lipid modifications of 3'-azido-2',3'-dideoxythymidine (AZT) and anti-HIV activity.16) In the present study, novel fatty acyl derivatives of pyrrole polyamide were synthesized by using stearic acid (3, a typical saturated fatty acid rich in mammal fats), linoleic acid (4, a typical n-6 type of dienoic acid rich in plant lipids) and icosapentaenoic acid (5, a typical n-3 type of pentaenoic acid rich in fish oil), and the cytotoxicity of the conjugates was examined by using MT-4 cells.

Pyrrole polyamide has so far been synthesized by a reaction sequence involving the nitration of pyrrole, reduction of the nitro group to an amino group and condensation of the amine with nitro-pyrrole carboxylic acid.17) This route, however, involves some intermediates having a nitro group that is known to cause allergic symptoms. To minimize the number of these intermediates, a different approach was investigated to obtain a key intermediate (2). Briefly, the route involves trichloroacetetylation at the 2-position of N-methylpyrrole, nitration at the 4-position of the pyrrole nucleus, conversion of the trichloroacetyl group to a methoxy-carbonyl group, reduction of the nitro group to an amino group, condensation of the amine with N-methylpyrrole.
2-carboxylic acid, hydrolysis of the methyl ester to a carboxylic acid, condensation of this acid with N-methyl-4-aminopyrrole 2-carboxylic acid methyl ester that had been prepared as already described to afford an intermediate 1, and finally hydrolysis of the methyl ester to afford 2.

Acylated pyrrole polyamide (9–11) were synthesized by condensation of fatty acid half amides (6–8) with the carboxylic acid (2) respectively (Scheme 1) as described in the experimental section.

A phospholipid derivative (14) was synthesized by using the same intermediate 2 (Scheme 2). In this case, methyl γ-aminobutylate was introduced into 2 as a spacer giving ester 12, which was hydrolyzed to 13. Due to its instability, a product 13 was submitted as such to condensation with a lyso PC having a stearoyl group at sn-1 position. Silica gel chromatography afforded the desired compound 14 whose structural integrity was confirmed by 1H-NMR and ESI MS data. For further structural confirmation, hog pancreatic phospholipase A2 was applied in an acetate buffer (pH 8.4) to substrate 14 at room temperature for 12 h. A TLC analysis showed that the lyso PC and pyrrole polyamide 13 having the spacer had been liberated by the enzymatic reaction. This finding might give an opportunity to use this enzyme as a molecular switch to liberate the pyrrole polypeptide at the right time when it should play some roles in biological systems.

As a preliminary test of biological activity in the present study, lipid derivatives 9–11 and 14 were examined for their in vitro cytotoxicity against cultured MT-4 cells. The result showed that the order of their concentration for complete growth inhibition of cultured MT-4 cells was stearoyl derivative 9 (45 mM) < icosa-pentaenoyl derivative 11 (176 mM) < linoleoyl derivative 10 (181 mM) < pyrrole amide methyl ester 2 (1304 mM) as a control. This experiment demonstrated for the first time that lipid modification of a pyrrole polyamide remarkably enhanced its cytotoxicity, and derivative 9 with a saturated acyl group appeared to be more active than the unsaturated type. The same tendency was also observed for the concentration range of partially inhibitive and non-inhibitive cases. Although phospholipid derivative (14) enhanced the cytotoxicity (≥260 μM) to some extent, the activity was lower than those by acyl derivatives 9–11. Combining all the results, lipid modification of the pyrrole polyamide was found to significantly enhance the cytotoxicity against cancer cell line MT-4 cells, and the effect appeared to be higher with the saturated acyl derivative than with the

Scheme 1. Synthesis of Fatty Acyl Derivatives (9–11).

Ref. 21. DIC, Diisopropylcarbodimide; HOBt, Hydroxybenzotriazole
unsaturated types. No anti-HIV effect was, however, apparent by the microplate method and Magic 5 method for any of the pyrrole polyamide derivatives synthesized in the present study. The preliminary biological results described here constitute an additional example of the effect of lipid modification for biologically active compounds.

Experimental

\[R_f = \frac{R_{t - 1} - R_{t + 1}}{2} \]

For determination of lipid modification for bio-

Synthesis of N-linoleoylpropane-1,3-diamine (7). To a solution of linoleic acid (1.89 g, 6.75 mmol) in ethanol-

Hydrochloric acid (25 ml) was added HOBr (0.95 g, 7.0

and the solution was stirred at r.t. overnight. A solution of 1,3-propanedi-

amine (1.0 g, 13.5 mmol) in ethanol-free chloroform (25 ml) were added HOBt (0.95 g, 7.0

mmol) and DIC (0.84 g, 7.0 mmol), and the solution was

stirred at r.t. overnight. After evaporating the evaporation, the residu

was chromatographed on silica gel, eluting with a mixture of chloroform/methanol/aq.NH\textsubscript{3} (80:20:5) to afford half

amide 7. \(R_f = 0.65 \) (CHCl\textsubscript{3}:CH\textsubscript{3}OH:NH\textsubscript{3}aq, 80:20:5).

\[^{1}H\text{-and} \; ^{13}C\text{-NMR} \text{ spectra were recorded by a Varian Mercury 300 or VXR 500 using CDCl\textsubscript{3}, and ESI MS data were recorded by API III (Perkin Elmer) by direct infusion, using a mixture of THF/CH\textsubscript{3}OH/H\textsubscript{2}O (15:4:1) with 0.1% HCOOH or 0.1% HCOO-NH\textsubscript{4}+ as a solvent in the positive mode.} \]

Synthesis of N-linoleoylpropane-1,3-diamine (7). To a solution of linoleic acid (1.89 g, 6.75 mmol) in ethanol-

free chloroform (25 ml) were added HOBr (0.95 g, 7.0

mmol) and DIC (0.84 g, 7.0 mmol), and the solution was

stirred at r.t. overnight. After evaporating the evaporation, the residu

was chromatographed on silica gel, eluting with a mixture of chloroform/methanol/aq.NH\textsubscript{3} (80:20:5) to afford half

amide 7. \(R_f = 0.65 \) (CHCl\textsubscript{3}:CH\textsubscript{3}OH:NH\textsubscript{3}aq, 80:20:5).

\[^{1}H\text{-and} \; ^{13}C\text{-NMR} \text{ spectra were recorded by a Varian Mercury 300 or VXR 500 using CDCl\textsubscript{3}, and ESI MS data were recorded by API III (Perkin Elmer) by direct infusion, using a mixture of THF/CH\textsubscript{3}OH/H\textsubscript{2}O (15:4:1) with 0.1% HCOOH or 0.1% HCOO-NH\textsubscript{4}+ as a solvent in the positive mode.} \]

Synthesis of N-linoleoylpropane-1,3-diamine (7). To a solution of linoleic acid (1.89 g, 6.75 mmol) in ethanol-

free chloroform (25 ml) were added HOBr (0.95 g, 7.0

mmol) and DIC (0.84 g, 7.0 mmol), and the solution was

stirred at r.t. overnight. After evaporating the evaporation, the residu

was chromatographed on silica gel, eluting with a mixture of chloroform/methanol/aq.NH\textsubscript{3} (80:20:5) to afford half

amide 7. \(R_f = 0.65 \) (CHCl\textsubscript{3}:CH\textsubscript{3}OH:NH\textsubscript{3}aq, 80:20:5).

\[^{1}H\text{-and} \; ^{13}C\text{-NMR} \text{ spectra were recorded by a Varian Mercury 300 or VXR 500 using CDCl\textsubscript{3}, and ESI MS data were recorded by API III (Perkin Elmer) by direct infusion, using a mixture of THF/CH\textsubscript{3}OH/H\textsubscript{2}O (15:4:1) with 0.1% HCOOH or 0.1% HCOO-NH\textsubscript{4}+ as a solvent in the positive mode.} \]

Synthesis of N-linoleoylpropane-1,3-diamine (7). To a solution of linoleic acid (1.89 g, 6.75 mmol) in ethanol-

free chloroform (25 ml) were added HOBr (0.95 g, 7.0

mmol) and DIC (0.84 g, 7.0 mmol), and the solution was

stirred at r.t. overnight. After evaporating the evaporation, the residu

was chromatographed on silica gel, eluting with a mixture of chloroform/methanol/aq.NH\textsubscript{3} (80:20:5) to afford half

amide 7. \(R_f = 0.65 \) (CHCl\textsubscript{3}:CH\textsubscript{3}OH:NH\textsubscript{3}aq, 80:20:5).

\[^{1}H\text{-and} \; ^{13}C\text{-NMR} \text{ spectra were recorded by a Varian Mercury 300 or VXR 500 using CDCl\textsubscript{3}, and ESI MS data were recorded by API III (Perkin Elmer) by direct infusion, using a mixture of THF/CH\textsubscript{3}OH/H\textsubscript{2}O (15:4:1) with 0.1% HCOOH or 0.1% HCOO-NH\textsubscript{4}+ as a solvent in the positive mode.} \]
for the synthesis of 9. TLC (Silica gel) Rf = 0.38 ([CHCl3:CH3OH, 95:5]), 1H-NMR (CDCl3) δ (ppm): 0.85 (3H, t, J = 7.5, –CH3–CH3), 1.30 (14H, m, –(CH2)1–CH2–(CH2)1–CH3), 1.60 (4H, m, –(C=O)–CH2–CH2–(CH2)2–NH–), 2.10 (4H, m, –CH2–CH2–(CH2)2–(CH2=CH–CH2–CH2–), 3.20 (2H, t, J = 8.0, –CO–NH–), 3.40 (4H, m, –CH2–CH2–(CH2=CH–CH2–), 3.90–4.00 (9H, s, 3 × N–CH3), 5.35 (4H, m, –(CH=CH–CH2–), 6.30–6.90 (6H, m, protons on the pyrrole rings). ESI MS m/z: found, (M + H)+ 688.5; C30H37N4O4 requires 687.5.

Synthesis of the isocapentaenoyl derivative (11). This product was prepared under the same conditions as those used for the synthesis of 9. Rf = 0.32 ([CHCl3:CH3OH, 95:5]), 1H-NMR (CDCl3) δ (ppm): 0.95 (3H, t, J = 7.5, –CH3–CH3), 1.75 (4H, m, –(C=O)–CH2–CH2–, –NH–CH2–CH2–CH=CH–, –CH2–CH3), 2.30 (2H, t, J = 8.0, –CO–CH2–), 2.80 (8H, m, –CH–CH2–CH2–CH=CH2–), 3.40 (4H, m, –NH–CH2–CH2–CH2–NH–), 3.90–4.00 (9H, s, 3 × N–CH3), 5.35 (10H, m, –(CH=CH–CH2–), 6.13 (1H, m, –CH=CH–CH=), 6.60–6.90 (6H, m, protons on the pyrrole rings). ESI MS m/z: found, (M + H)+ 710.4; C34H43N4O4 requires 709.4.

Synthesis of methyl γ-amino butyrate derivative of pyrrole polyamide (12). A mixture of intermediate acid 2, (312 mg, 0.8 mmol), HOBt (137 mg, 1.03 mmol) and DIC (130 mg, 1.03 mmol) in DMF (0.68 ml) was stirred at r.t. for 24 h. This solution was added methyl 4-aminobutyrate hydrochloride (130 mg, 0.85 mmol) and DIEA (260 μl, 1.49 mmol), and stirred at r.t. for further 24 h. After an addition of deionized water (10 ml), the product was extracted with chloroform. The product was purified by silica gel chromatography (hexane/ethyl acetate, 3:7) affording an unstable oil. TLC(Silica gel) Rf = 0.3 (Hexane:EtOAc: 2:8); 1H-NMR (CDCl3) δ (ppm): 1.91 (2H, m, –NH–CH2–CH2–), 2.40 (2H, m, –NH–CH2–CH2–CO), 3.39 (2H, m, –NH–CH2–), 3.80 (3H, s, O–CH3), 3.78–4.00 (9H, s, 3 × N–CH3), 6.60–6.90 (6H, m, protons on the pyrrole rings). ESI MS m/z: Found, (M + NH4)+ 486.3; C32H28N6O5 requires 486.0.

Synthesis of 8-aminobutyrate derivative of the pyrrole polyamide (13). A solution of the ester 11 (200 mg), 0.43 mmol) and HOBr (34.4 mg, 0.26 mmol) in a mixed solvent of CHCl3 (1 ml) and DMF (1 ml) was added DIC (32.8 mg, 0.26 mmol). The reaction mixture was stirred at r.t. for 24 h under N2.

Lyso-PC (136.2 mg, 0.26 mmol) and DIEA (100 μl) were added to this reaction mixture which was stirred at room temperature for 24 h under N2. The solvent was evaporated under reduced pressure. The resulting residue was separated by silica gel column chromatography (CHCl3/MeOH, 6:4) monitored by preparative TLC (CHCl3/MeOH/NH3aq. 65:35:5) to yield final compound 13 as an yellow oil. TLC (silica gel) Rf = 0.6 ([CHCl3:CH3OH:NH3aq. 60:30:5]), 1H-NMR (CDCl3:CD3OD, 8:2) δ (ppm): 0.80 (3H, t, J = 7.5, –CH2–CH3), 1.05 (2H, m, –CH2–CH2–), 1.20 (26H, m, –(CH=CH–CH2–), 1.50 (2H, –CO–CH2–), 1.90 (2H, m, –NH–CH2–CH2–), 2.20 (2H, m, –NH–CH2–CH2–CH2–), 2.40 (2H, m, –CH2–O–C(O)–CH2–), 2.90 (2H, m, –NH–CH2–CH2–), 3.30 (1H, m, –CH2–N–(CH3)3), 3.50 (9H, s, –N–(CH3)3), 3.70–3.90 (9H, s, 3 × N–CH3) on the pyrrole rings), 4.00 (2H, m, –CH2–O–P–), 4.10 (2H, m, –CH2–O–P–), 4.20 (2H, m, –CH2–O–C(O)–), 5.10 (1H, m, –CH2–CH–), 6.00 (1H, m, –NH–CH=CH–), 6.60–6.90 (6H, m, protons on the pyrrole rings). ESI MS m/z: found, (M + H)+ 959.6; C34H38N4O8P requires 959.6.

In vitro cytotoxicity and anti-HIV assays were respectively conducted by the microplate method and magic-5 method reported by Otake et al.19) and Kimpton et al.30)

Microplate method. Sample solutions (100 μl) were sequentially diluted at 1:2 or 1:5 with an RPMI1640 medium containing 10% FCS in a 96-well plate. For the cytotoxicity experiment, 100 μl of cell suspension of MT-4 cells (2 × 105/ml) in a stage of exponential growth was added to each well. For the anti-HIV experiment, MT-4 cells (2 × 105) were infected by the addition of a stock solution of HTLV-BIII to a concentration suitable as an infectious dose (100TCID50) to the tissue culture, which was incubated at 37°C for 1 h. The cells were resuspended in 10 ml of the medium, and the suspension (100 μl) was added to all the wells in the 96-well plate. After incubating for 5 days, the cytotoxicity and cytopathic effect (CPE) were evaluated by counting the cells by optical microscopic observation.

Magic-5 method. Magic-5 cells (104 cells) per one well of a 96-well plate were cultured at 37°C to the stage at which the cells were allowed to adhere to the plastic surface of the plate. After removing the culture medium, a sample solution of the pyrrole polyamide diluted 2 times with the medium was added, this being followed by the addition of HIV-1 Ba-L strain prepared to a concentration of 100–200 BFU/50 μl by using the medium containing DEAE-dextran. The cells were incubated at 37°C for 48 h in a CO2 incubator. After removing the medium, 1% formaldehyde and 0.2% glutaraldehyde in PBS were added, and the mixture incubated at r.t. for 5 min. After washing the cells, 4 mM-potassium ferrocyanide, 4 mM-potassium ferricyanide, 2 mM MgCl2 and 400 mg/ml of X-gal were added, and the mixture incubated at 37°C for 1 h. The staining solution was removed and the cells were washed. The
cells stained blue were counted by using optical microscopic observation. In this experiment, TAK-779 and AZT were used as controls for the anti-HIV activity.

Acknowledgments

We are obliged to the laboratory of SC-NMR and Mass Spectrometry (API III) of Okayama University and to Ikeda Industries Co., Hiroshima, Japan for presenting of DHA and EPA.

References