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Cyclic phase in F=2 spinor condensate: Long-range order, kinks, and roughening transition
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We study the effect of thermal fluctuations on homogeneous infinite Bose-Einstein condensate with spin
F=2 in the cyclic state, when atoms occupy three hyperfine states with mF=0, ±2. We use both the approach
of small-amplitude oscillations and mapping of our model on the sine-Gordon model. We show that thermal
fluctuations lead to the existence of the rough phase in one- and two-dimensional systems, when the presence
of kinks is favorable. The structure and energy of a single kink are found. We also discuss the effect of thermal
fluctuations on spin degrees of freedom in F=1 condensate.
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I. INTRODUCTION

Recent progress in the experimental physics of cold atoms
allows for the creating of quasi-two-dimensional atomic gas
either using one-dimensional optical lattices or applying tight
axial trapping �1–4�. Many properties of low-dimensional
systems differ from that for the three-dimensional ones. For
instance, it is well known that Bose-Einstein condensation is
impossible in the two-dimensional �2D� situation at any non-
zero temperature, since long-wavelength thermal fluctuations
destroy phase coherence. However, at low temperatures there
is still a quasi-long-range order, which disappears at the tem-
perature of Berezinskii-Kosterlitz-Thouless �BKT� transition.
The low-temperature phase is often called quasicondensate,
and this concept was introduced in the context of physics of
alkali-metal atom gases in Refs. �5,6�; see also Ref. �7�. It
was shown in those works that, in finite low-dimensional
systems, there is still a long-range order at low temperatures,
and one has a true condensate, but at higher temperatures
coherence is again lost, and we have a quasicondensate.

The aim of the present paper is to study thermal fluctua-
tions in homogeneous spinor condensates. We are mainly
interested in the cyclic phase of the F=2 condensate, since it
has unusual properties such as phase locking and kinks,
which are absent in other phases of the F=2 condensate. In
the recent experiments �8–12�, F=2 spinor Bose-Einstein
condensates were created and studied. The order parameter
in the F=2 system has five components, and, in the cyclic
phase, all the particles populate three hyperfine states with
mF=0, ±2. The characteristic feature of the cyclic phase is
the fact that the ground-state energy depends on the relative
angle � among the phases Sj of different components of the
order parameter, �=2S0−S2−S−2, through the spin-mixing
term. This leads to the peculiar phase-locking phenomena,
since the energy has a term proportional to cos �. In this
paper, we concentrate on thermal fluctuations of phases Sj of
different components of the order parameter as well as of �.
First, we solve the Bogoliubov–de Gennes equations and cal-
culate the mean-square fluctuations of Sj. Each individual
phase Sj in this case behaves similarly to the case of the
scalar system. Namely, there is no long-range order for Sj in
one and two dimensions, whereas this order is kept for the
3D situation. At the same time, the long-range order is still
preserved for �. After this, we note that the Bogoliubov–de

Gennes equations can be insufficient for the analysis of ther-
mal fluctuations in the cyclic state, since this approach uses
an expansion of the energy in the vicinity of one of the
infinite number of equivalent minima at �=2�l, l being an
integer number, and does not take into account a global pe-
riodic structure of the energy in functional space. In other
words, the cos � contribution to the energy is changed by the
quadratic potential well with infinite height. One of the pos-
sible solutions of the Gross-Pitaevskii equations for the cy-
clic phase is a kink, which separates two spatial domains
with � different by 2� from each other. At zero temperature,
kink is energetically unfavorable. However, at finite tempera-
ture the formation of kinks can become favorable due to
entropic reasons. We determine analytically the structure and
energy of a single kink. Also we note that our model can be
mapped on the well-known sine-Gordon model. For this
model, it was established before that, in low dimensions, a so
called roughening transition can occur, when the system be-
comes unlocked from one of the minima of �. In the 1D
situation, a long-range order for � is absent for any nonzero
temperature due to thermally excited kinks, and the system is
rough. If the system has a finite length, a nonzero tempera-
ture appears, below which there is still a long-range order for
�. We estimate this temperature from simple entropic argu-
ments. In two dimensions, a roughening transition occurs at
some finite nonzero temperature. From known results for the
sine-Gordon model and some simple qualitative consider-
ations, we show that the temperature of the roughening tran-
sition is close to the BKT critical temperature and possibly
coincides with it. We also discuss briefly the case of the
ferromagnetic F=1 condensate. Based on the solutions of the
Bogoliubov–de Gennes equations, we find that there is no
long-range order in the one- and two-dimensional systems
for the direction of spin. In finite systems, the order still
exists at low temperatures, similarly to the phase coherence
in scalar condensates.

The paper is organized as follows. In Sec. II, we solve
the Bogoliubov–de Gennes equations for the F=2 cyclic
phase and find correlation functions. In Sec. III, we
determine the structure and energy of a single kink. In
Sec. IV, we discuss the order-disorder transition due to the
proliferation of kinks. In Sec. V, we study the case of the
ferromagnetic F=1 condensate. We conclude in Sec. VI.
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II. CYCLIC PHASE: SMALL-AMPLITUDE OSCILLATIONS

We consider the infinite homogeneous F=2 condensate
with a given density of particles n in zero magnetic field. The
energy of the system depends on three interaction parameters
�, �, and �, which can be defined as �13,14�

� =
1

7
�4g2 + 3g4� , �1�

� = −
1

7
�g2 − g4� , �2�

� =
1

5
�g0 − g4� −

2

7
�g2 − g4� , �3�

where �q=0,2 ,4�

gq =
4��2

m
aq �4�

and aq is the scattering lengths characterizing collisions be-
tween atoms with the total spin 0, 2, and 4. In real atomic
condensates, ���, �.

The order parameter in the F=2 case has five components
�i�i=−2,−1,0 ,1 ,2�. The energy of the system is given by
�15,16�

F =� dr�−
�2

2m
� j

*�� j +
�

2
� j

*�k
*� j�k�

+
�

2
� j

*�l
*�Fa� jk�Fa�lm�k�m�

+
�

2
� j

*�k
*�−j�−k�− 1� j�− 1�k� , �5�

where integration is performed over the system volume, re-
peated indices are summed, and Fa �a=x ,y ,z� is the angular
momentum operator, which can be expressed in a usual
matrix form.

In the absence of magnetic field and rotation, the conden-
sate can be in three different states �13�, as seen from Eq. �5�.
These states are called ferromagnetic, cyclic, and polar �13�.
In the cyclic phase, �±1=0 and �−2=

�n
2 ei	, �0=

�n
�2

, and
�2=−

�n
2 e−i	, where 	 is an arbitrary phase �the energy of the

system is degenerate with respect to 	�. The ground-state
value of � in these notations is zero. Depending on the val-
ues of scattering lengths aq, the ferromagnetic, cyclic, or
polar phase has the lowest energy �13�. Extended Gross-
Pitaevskii equations can be obtained as usual from the con-
dition of the minimum of the free energy of the system Eq.
�5�. In the cyclic state, the last term on the right-hand side of
Eq. �5� contains a spin-mixing contribution,

Fsm = �	�0	2	�2		�−2	cos � . �6�

Now we analyze small-amplitude oscillations of the order
parameter in the cyclic phase. The fluctuations of phase of
the given component of the order parameter can be expressed
through the fluctuations of the order parameter itself as

Sj =Im�
� j� / 	� j	. For 
�, we have 
�=2
S0−
S2−
S−2.

The deviations of the five components of the order param-
eter from their equilibrium values 
� j can be represented as


� j = 

k

�ck
�j�exp�ik · r + i�kt� + dk

�j�*exp�− ik · r − i�kt�� ,

�7�

where ck
�j� and dk

�j� are constants to be found. Fluctuations of
�±1 are decoupled from that for �0, �±2 as follows for the
Bogoliubov–de Gennes equations for the cyclic phase. The
spectrum for oscillations of �0, �±2 has three branches. It
was obtained for the first time in Ref. �17�, and our results
coincide with those results,

��k
�1� =

�2k2

2m
+ 2�n , �8�

��k
�2� =�
�2k2

2m
�2

+ 2�n
�2k2

2m
, �9�

��k
�3� =�
�2k2

2m
�2

+ 4�n
�2k2

2m
. �10�

The thermal distribution of quasiparticles is given by
�j=1,2 ,3�

Nk
�j� =

1

exp���k
�j�/kBT� − 1

. �11�

One can also find eigenvectors corresponding to the branches
�8�–�10�. Eigenvectors for Eqs. �9� and �10� give no contri-
bution to 
�, as can be seen from the solutions of the
Bogoliubov–de Gennes equations. This is the first branch �8�,
which is responsible for the fluctuations of �. Physically, this
is due to the fact that only branch �8� depends on the value of
�, which yields the potential well for � via the spin-mixing
term �6�. Finally, we obtain a simple expression for 
�,


� =
1

2i�V�n


k

�exp�ik · r + i�kt� − exp�− ik · r − i�kt�� .

�12�

Next we can determine the behavior of the mean-square
fluctuations of � at large distances. We found that this quan-
tity in all dimensions tends to a constant, when the distance
tends to infinity. This means that there is a long-range order
for �. The reason is the presence of the gap in the excitation
energy �8�. As an example, we present below the derivation
and results for the 2D situation. From Eq. �12�, we have

�
��r� − 
��0��2 = −
1

4Vn



k1,k2

Ak1
Ak2

, �13�

where

Ak = exp�i�k
�1�t�

��exp�ik · r� − 1� − exp�− i�k
�1�t��exp�− ik · r� − 1� .

After averaging over the time, only terms with k1=k2 survive
in the expansion �13� and for the correlator we have
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��
��r� − 
��0��2�T = −
1

8�Vn



k,
1,
2

Nk
�j�

��eikr cos 
1 − 1��eikr cos 
2 − 1� ,

�14�

where 
1 and 
2 are angles between r and k1 and k2, respec-
tively. Now we can switch from the integration to the
summation, and after the integration over 
1 and 
2 we get

��
��r� − 
��0��2�T =
1

2�n
� kdkNk

�1��1 − J0�kr��2,

�15�

where J0�r� is the Bessel function. This integral can be
evaluated analytically at large r and in the limits of low and
high temperatures. At low temperatures, kBT��n,
Nk

�1�=exp�−��k
�j� /kBT�. At high temperatures, kBT��n,

Nk
�1�=kBT / ��k

�j�. Finally, we have

��
��r� − 
��0��2�T = �T/Tdexp�− 2�n/kBT� , kBT � �n ,

T/Tdln�kBT/2�n� , kBT � �n ,

�16�

where Td=2��2n /kBm is the temperature of quantum degen-
eracy.

The second and third branches of the spectrum, given by
Eqs. �9� and �10�, are responsible for the fluctuations of
phases of individual components of the order parameter, S0,
S±2. Our calculations of the mean-square fluctuations of these
phases revealed the behavior that is similar to the scalar con-
densate. The long-range order is absent in one- and two-
dimensional situations. It is interesting to note that, at the
same time, the long-range order exists for the linear combi-
nation of these phases, �. Fluctuations of populations of
different hyperfine states are small at T �Td.

III. KINK: STRUCTURE AND ENERGY

In the previous section we studied small-amplitude oscil-
lations in the vicinity of a homogeneous solution to the ex-
tended Gross-Pitaevskii equations. However, these equations
also have a nonhomogeneous solution corresponding to the
kink or domain wall between two spatial regions with values
of � different by 2�l from each other, since the energy of the
system is degenerate with respect to l. Kinks are known to
play an important role in the physics of low-dimensional
systems, see, e.g., the textbook �18�. Now we find the struc-
ture and energy of the one-dimensional kink in the cyclic
phase for the most important case, when l=1. We assume
that all the quantities depend only on one coordinate x. For �
we have a boundary conditions ����=2�, ��−� �=0.
The phase-dependent part of the energy consists of two con-
tributions: one is the kinetic energy, and another one is the
spin-mixing term �6�,

Fph = �
−�

+�

dx� �2

2m


j=−1

1

	�2j	2��S2j�2 + �	�0	2	�2	

�	�−2	 cos �� . �17�

We can rewrite this expression in the diagonal form as

Fph = �
−�

+�

dx��2n

8m

1

4
����2 +

�n2

4
cos �

+
�2n

8m

1

2
��S2 − �S−2�2 +

1

4
��S2 + �S−2 + 2 � S0�2�� .

�18�

One can easily see from Eq. �18� that the minimum en-
ergy solution for the kink corresponds to the conditions
�S2−�S−2=0 and �S2+�S−2+2�S0=0. In this case, the en-
ergy �18� can be mapped on the sine-Gordon energy func-
tional. The function ��x� is found from the condition of mini-
mum of Fph: 
Fph/
�=0 and boundary conditions. Finally,
we have

��x� = 2� − 4 tan−1exp�− x/��� , �19�

S2�x� = S−2�x� = − S0�x� = −
1

4
��x� , �20�

where

�� =� �2

2m

1

4�n
�21�

is the healing length for �. It also gives a characteristic
length of the kink. The spatial structure of a single kink is
presented in Fig. 1, where we have plotted x dependences of
�, S±2, and S0. A single kink moving in the space is a soliton.

FIG. 1. The structure of a single kink in the cyclic state. Solid
curve denotes �, dashed one corresponds to S0, and dotted curve
shows S2=S−2.
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As seen from Eq. �18�, the energy of the kink Fkink scales as
������. More accurate calculation based on Eq. �19� yields

Fkink = n3/2��2�

m
. �22�

Note that in real atomic condensates, � has to be much
smaller than � and, therefore, �� should far exceed the
coherence length, which has a meaning of a length scale for
the density modulations.

The same structure of the kink can be obtained from the
extended Gross-Pitaevskii equations supplemented by the
boundary conditions for �. These equations are rather cum-
bersome and we do not present them here �see, e.g., our
previous work �19��. It is easy to see by the direct substitu-
tion that Eqs. �19�–�21� with the constant populations of
each magnetic sublevel yield the exact solution to these
equations.

IV. ROUGHENING

At zero temperature, the sine-Gordon system in any di-
mension is locked in one of equivalent minima correspond-
ing to �=2�l. At nonzero temperature, the presence of kinks
can be favorable due to their entropic contribution to the free
energy �18�. Kinks destroy the long-range order and lead to
the rough phase, in which the height of the fluctuations di-
verges while tending the system size to infinity. In a one-
dimensional system of length L �L����, the entropy corre-
sponding to the single kink can be estimated as ln L /��,
where L /�� is just a number of places to put a kink. There-
fore, a roughening temperature is

TR
1D �

Fkink

kBln L/��

. �23�

In the case of an infinite 1D system �L→ � �, TR
1D=0, and

this result is very different from the result of the small-
amplitude oscillations approach, which shows the presence
of long-range order for �. Relation �23� is well known for the
sine-Gordon model and can be derived using more rigorous
analysis, see, e.g., Ref. �20� and references therein. Note that
in a 1D finite system, TR

1D→0, as �→0.
In two dimensions, a roughening temperature TR

2D can also
be estimated in a simple manner. In this case, Fkink given by
Eq. �22� is the energy of a unit length of a kink. The “critical
nucleus” for the formation of the rough phase is represented
by the step for � of height 2� in a functional space with a
perimeter �2���. The total energy of such a nucleus is of
the order of 2�Fkink��=��2ns /2m, where we have changed
density of atoms n by superfluid density ns just below the
roughening transition. It is interesting to note that this energy
is independent of �. A roughening temperature TR

2D can be
estimated by equating the nucleus energy to the thermal one,
TR

2D���2ns /2kBm. A more rigorous calculation for the 2D
sine-Gordon model, based on renormalization-group analysis
�18�, yields the same result,

TR
2D =

��2ns

2kBm
, �24�

which is independent of �. The expression �24� for the
roughening temperature coincides with the well-known re-
sult for the temperature of the BKT transition, see, e.g., �7�.
To describe properly the behavior of the system in this
strongly fluctuative region at high temperatures, one needs
more careful and detailed analysis. However, from the con-
siderations presented here, we can conclude that a long-range
order for � in 2D systems survives up to quite high tempera-
tures �of the order of the BKT critical temperature�. Possibly,
the roughening transition occurs simultaneously with the
BKT transition, and both types of topological defects,
namely kinks and vortices, proliferate together.

If the size of a 1D or 2D finite system is less than ��

�which can be much larger than the coherence length�, the
formation of a kink is impossible, and, therefore, we expect
that � is nearly constant inside the cloud. At the same time, a
value of � can be different from 2�l due to thermal fluctua-
tions. We have studied a similar situation before in Ref. �21�,
where the case of a harmonically trapped quasi-two-
dimensional F=1 condensate was treated. An infinite homo-
geneous F=1 condensate in zero magnetic field can be either
in polar or ferromagnetic states, where atoms populate only
one or two hyperfine states and the spin-mixing terms in the
energy are zero in the equilibrium. However, in the case of a
trapped rotated condensate containing vortices, there are
some regions on the phase diagram where all three hyperfine
states are populated, and the energy depends on the relative
phase among them �22–27�. This vortex phase can be both
locally and globally stable, and some of them, like the
Mermin-Ho vortex, have an axial symmetry, which makes
them rather simple. Another method to create such states was
recently used experimentally in Ref. �28�, where a micro-
wave energy was injected into the system leading to the re-
distribution of particles from the spin −1 state to spin 0 and
1 states. We see that the cyclic phase in the F=2 condensate
is one more example of the systems, where spin mixing is
important. It is remarkable that, in this case, spin mixing is
happening in the ground state and even in the absence of
rotation, applied magnetic fields, and other external pertur-
bations, as in the F=1 case. For the spin-mixing dynamics in
the F=1 condensate, see Ref. �29�. Note that recently, a new
experimental method for nondestructive study of internal de-
grees of freedom of spinor condensates was proposed in Ref.
�30�.

V. FERROMAGNETIC STATE IN THE F=1 SPINOR
CONDENSATE

In this section, we discuss thermal fluctuations in a spinor
F=1 condensate. We concentrate on the ferromagnetic
state. The energy of the system is independent of the direc-
tion of the spin but it depends on the gradients of spin.
A similar situation exists for the phase of the order parameter
in a scalar condensate �the energy is independent of its value,
but depends on the gradient�, and therefore we can expect
similar behavior, namely, the absence of long-range order
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in low dimensions. This result was obtained before for a
large class of discrete and continuous spin models �18�. We
assume that in the ground state all the atoms occupy only one
hyperfine state, �−1=�0=0, �1=�n, and study small-
amplitude oscillations induced by the temperature. In the
ground state, spin is oriented along the z direction, Sz=1,
Sx=Sy =0. Perturbations of �0 lead to that of Sx and Sy,


Sx =
1

�2n
�
�0 + 
�0

*� , �25�


Sy =
i

�2n
�
�0 − 
�0

*� . �26�

The spectrum for the F=1 condensate was obtained in
Refs. �15,16�. The frequency of the mode, responsible for
fluctuations of �0, is given by

�� =
�2k2

2m
. �27�

Using Eqs. �25�–�27�, we have calculated mean-square fluc-
tuations for Sx and Sy at large distances and found an absence
of long-range order in 1D and 2D cases. As an example, we
show here the correlator in the 2D situation,

��Sx�r� − Sx�0��2�T =
T

Td
ln

r

�T
, �28�

where

�T =
�

�2mkBT
. �29�

The derivation is similar to the case of the cyclic phase in the
F=2 condensate, presented in Sec. IV. The result for Sy is the
same. For the 1D case, the correlators behave as �r. This
implies that in low-dimensional systems there is no long-
range order in the direction of spin. However, the 2D system
can be divided into blocks of a characteristic size L,
�s�L��Texp�Td /T�, with nearly the same direction of spin

in each block ��s�� �2

2m
1

�n is the spin healing length�. Differ-
ent blocks are uncorrelated with each other. At temperatures
of the order of 2Td / ln�kBTd /�n�, �s becomes comparable to
�Texp�Td /T�. In this case, the size of each block becomes of
the order of �s.

In the quasi-1D and -2D trapped condensates, which have
finite sizes exceeding �s, at low temperatures, one can expect
the same orientation of spins throughout the system, and at
higher temperatures, the cloud should consist of uncorrelated
blocks. This is similar to the problem of a fluctuating phase
in quasi-1D and -2D scalar condensates �5–7�. Note that the
case of the ferromagnetic F=2 condensate is similar to that
of the spin-1 system.

VI. CONCLUSIONS

We have studied the effect of thermal fluctuations on a
homogeneous infinite Bose-Einstein condensate with spin
F=2. We were interested in the cyclic state of this system, in
which all the particles occupy three hyperfine states with
mF=0, ±2, and the energy depends on the relative phase
�=2S0−S2−S−2 through the spin-mixing term. Using
Bogoliubov–de Gennes equations, we have calculated mean-
square fluctuations of S0 ,S±2 and found an absence of long-
range order in one- and two-dimensional situations, but the
presence of this order for �. Then, we went beyond the
small-amplitude oscillations approach and mapped our prob-
lem on the sine-Gordon model. A structure and energy of a
single kink separating two topological sectors with different
values of � were found. In 1D and 2D situations, thermal
proliferation of kinks can lead to the roughening transition
destroying a long-range order for �. The one-dimensional
infinite system is always in a rough phase, and the finite 1D
system, as well as the infinite 2D system, experience a
roughening transition at finite temperatures, whose values we
have estimated. At the end, we have also discussed thermal
fluctuations in the ferromagnetic F=1 system and found an
absence of long-range order in the direction of spin in low-
dimensional situations, as can be expected from the Mermin-
Wagner-Berezinskii theorem. We defined the typical size of
each block, within which still there is an order in spin de-
grees of freedom. We expect that finite systems should be in
the ordered phase at low temperatures.

ACKNOWLEDGMENTS

We acknowledge very useful discussions with H. Adachi
and T. K. Ghosh. W.V.P. is supported by the Japan Society
for the Promotion of Science.

�1� A. Gorlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L.
Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S.
Inouye, T. Rosenband, and W. Ketterle, Phys. Rev. Lett. 87,
130402 �2001�.

�2� V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff,
and E. A. Cornell, Phys. Rev. Lett. 92, 040404 �2004�.

�3� D. Rychtarik, B. Engeser, H.-C. Nagerl, and R. Grimm, Phys.
Rev. Lett. 92, 173003 �2004�.

�4� N. L. Smith, W. H. Heathcote, G. Hechenblaikner, E. Nugent,
and C. J. Foot, J. Phys. B 38, 223 �2005�.

�5� D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys. Rev.
Lett. 84, 2551 �2000�.

�6� D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Phys.
Rev. Lett. 87, 050404 �2001�.

�7� D. S. Petrov, D. M. Gangardt, and G. V. Shlyapnikov, J. Phys.
IV 116, 5�2005�.

�8� H. Schmaljohann, M. Erhard, J. Kronjäger, M. Kottke, S. van
Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock,
Phys. Rev. Lett. 92, 040402 �2004�.

�9� M.-S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer, K. M.

CYCLIC PHASE IN AN F=2 SPINOR CONDENSATE:¼ PHYSICAL REVIEW A 74, 023611 �2006�

023611-5



Fortier, W. Zhang, L. You, and M. S. Chapman, Phys. Rev.
Lett. 92, 140403 �2004�.

�10� A. Görlitz, T. L. Gustavson, A. E. Leanhardt, R. Löw, A. P.
Chikkatur, S. Gupta, S. Inouye, D. E. Pritchard, and W. Ket-
terle, Phys. Rev. Lett. 90, 090401 �2003�.

�11� T. Kuwamoto, K. Araki, T. Eno, and T. Hirano, Phys. Rev. A
69, 063604 �2004�.

�12� A. Widera, F. Gerbier, S. Folling, T. Gericke, O. Mandel, and I.
Bloch, e-print cond-mat/0604038.

�13� C. V. Ciobanu, S.-K. Yip, and Tin-Lun Ho, Phys. Rev. A 61,
033607 �2000�.

�14� M. Koashi and M. Ueda, Phys. Rev. Lett. 84, 1066 �2000�.
�15� T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67, 1822 �1998�.
�16� T.- L. Ho, Phys. Rev. Lett. 81, 742 �1998�.
�17� J. P. Martikainen and K. A. Suominen, J. Phys. B 34, 4091

�2001�.
�18� P. M. Chaikin and T. C. Lubensky, Principles of Condensed

Matter Physics �Cambridge Univ. Press, Cambridge, 1995�.
�19� W. V. Pogosov, R. Kawate, T. Mizushima, and K. Machida,

Phys. Rev. A 72, 063605 �2005�.
�20� S. Ares, J. A. Cuesta, A. Sanchez, and R. Toral, Phys. Rev. E

67, 046108 �2003�.
�21� W. V. Pogosov and K. Machida, e-print cond-mat/0602119.
�22� T. Mizushima, K. Machida, and T. Kita, Phys. Rev. Lett. 89,

030401 �2002�.
�23� T. Isoshima and K. Machida, Phys. Rev. A 66, 023602 �2002�.
�24� T. Mizushima, K. Machida, and T. Kita, Phys. Rev. A 66,

053610 �2002�.
�25� T. Mizushima, N. Kobayashi, and K. Machida, Phys. Rev. A

70, 043613 �2004�.
�26� T. Kita, T. Mizushima, and K. Machida, Phys. Rev. A 66,

061601�R� �2002�.
�27� T. Isoshima, K. Machida, and T. Ohmi, J. Phys. Soc. Jpn. 70,

1604 �2001�.
�28� M. S. Chang, Q. Qin, W. Zhang, L. You, and M. S. Chapman,

Nat. Phys. 1, 111 �2005�.
�29� H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Big-

elow, Phys. Rev. A 60, 1463 �1999�.
�30� J. M. Higbie, L. E. Sadler, S. Inouye, A. P. Chikkatur, S. R.

Leslie, K. L. Moore, V. Savalli, and D. M. Stamper-Kurn,
Phys. Rev. Lett. 95, 050401 �2005�.

W. V. POGOSOV AND K. MACHIDA PHYSICAL REVIEW A 74, 023611 �2006�

023611-6


