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Abstract  1 

Flagellins from Pseudomonas syringae pv. glycinea race 4 (Pgl4) and P. s. pv. tabaci 6605 2 

(Pta6605) have been found to be glycosylated. Glycosylation of flagellin is essential for 3 

bacterial virulence and is also involved in the determination of host specificity. Flagellin 4 

glycans from both pathovars were characterized and common sites of glycosylation were 5 

identified on six serine residues (positions 143, 164, 176, 183, 193 and 201). The structure of 6 

the glycan at serine 201 (S201) of flagellin from each pathovar was determined by sugar 7 

composition analysis, mass spectrometry and 
1
H and 

13
C NMR spectroscopy. These analyses 8 

showed that the S201 glycans from both pathovars were composed of a common unique 9 

trisaccharide consisting of two rhamnosyl (Rha) residues and one modified 10 

4-amino-4,6-dideoxyglucosyl (Qui4N) residue, 11 

!-D-Quip4N(3-hydroxy-1-oxobutyl)2Me-(1"3)-#-L-Rhap-(1"2)-#-L-Rhap. Furthermore, 12 

mass analysis suggests that the glycans on each of the six serine residues are composed of a 13 

similar trisaccharide unit. Determination of the enantiomeric ratio of Rha from the flagellin 14 

proteins showed that flagellin from Pta6605 consisted solely of L-Rha, whereas Pgl4 flagellin 15 

contained both L-Rha and D-Rha at a molar ratio of about 4:1. Together with our previous 16 

study, we conclude that these structures of the flagellin glycans may be important for virulence 17 

and host specificity of P. syringae. 18 

 19 

Introduction  20 

Glycosylation of pathogenic bacterial cell surface proteins, such as flagellin and pilin, has 21 

recently been recognized as an important factor in host-pathogen interactions (3, 19). Flagellin 22 

glycosylation is found in animal pathogens and the genes required for glycosylation and 23 

glycan structure have been characterized in several bacteria, such as Campylobacter jejuni (10, 24 

32), Pseudomonas aeruginosa (1, 25, 34) and Helicobacter pylori (24). Similarly, flagellins of 25 
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some plant pathogens were found to be glycosylated in P. syringae pv. tabaci 6605 (Pta6605), 1 

pv. glycinea race 4 (Pgl4) and pv. tomato DC3000 (28) as well as Acidovorax avenae (4). 2 

Although the possible biological significance of flagellin glycosylation is frequently discussed, 3 

experimental evidence has been restricted to our study on P. syringae (13, 30, 31) and the 4 

studies by other groups on P. aeruginosa (2, 33) and on Campylobacter jejuni and C. coli (11).    5 

The phytopathogenic bacterium P. syringae is classified as a pathovar by its virulence 6 

toward different host plant species. In our previous study, flagellin from P. syringae was found 7 

to be an elicitor that causes a hypersensitive reaction (HR) of non-host plants (28). Moreover, 8 

the HR-inducing activity is thought to be dependent on glycosylation (29). The significance of 9 

glycosylation is particularly notable in the two pathovars of P. syringae, Pgl4 and Pta6605, 10 

because although the respective flagellins display absolute amino acid sequence conservation, 11 

the HR-inducing activities are different. Recently, we found that a flagellin glycosylation 12 

island, which possesses putative glycosyltransferase genes, is required for flagellin 13 

glycosylation in Pgl4 and Pta6605, and that deletion of these genes reduced both virulence to 14 

their respective host plants and HR-inducing activity for non-host plants (13, 30, 31). These 15 

results demonstrate that flagellin glycosylation plays an important role in determining host 16 

specificity of each pathovar of P. syringae. We have identified six glycosylated serine residues 17 

in flagellin from Pta6605 (30). These serine residues are all localized on the predicted 18 

surface-exposed domain when the flagellin folds as a monomer in the assembled filament. 19 

Based on studies of Ser/Ala-substituted mutants and glycosylation island deletion mutants, we 20 

demonstrated that flagellin glycosylation is essential for bacterial adhesion, swarming motility 21 

and virulence on host tobacco leaves. Thus, flagellin glycosylation plays a key role not only as 22 

the determinant of HR-induction activity, but also in virulence-related bacterial characteristics.     23 

Although biological and mutational studies in P. syringae emphasized the importance 24 

of flagellin glycosylation for bacterial virulence and host specificity, there was no direct 25 
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structural information on the flagellin glycans. Here we report structural characterization of 1 

the flagellin glycans in P. syringae. 2 

 3 

Materials and methods 4 

Bacterial strains and culture conditions  5 

The bacteria used in this study are listed in Table 1. Pgl4 and Pta6605 and their 6 

derivative mutants were maintained in King’s B (KB) medium at 27°C. Escherichia coli strains 7 

were grown at 37°C in Luria-Bertani (LB) medium. 8 

Site-directed mutagenesis of glycosylated residues of flagellin in Pgl4  9 

Ser/Ala substituted mutants of Pgl4 were obtained by first generating a deletion mutant 10 

of the flagellin coding region (fliC) of Pgl4. The resultant mutant ($fliC) was then 11 

complemented with the fliC region possessing the desired point mutation(s). The $fliC mutant of 12 

Pgl4 was made using a previously reported method (26) with a slight modification. One of the 13 

primers for the downstream region of fliC, designated PC4, was modified to 14 

5’-GATCGCGTAAGTACCGTTGA-3’. Methods for site-directed mutagenesis and 15 

complementation by homologous recombination were described previously (30). The Ser/Ala 16 

substituted mutants were designated as follows: race 4-S143A, race 4-S164A, race 4-S176A, 17 

race 4-S183A, race 4-S193A and race 4-S201A. A mutant (race 4-6 S/A) with six serine 18 

substitutions (race 4-S143A, S164A, S176A, S183A, S193A and S201A) was also constructed 19 

by the same method.  20 

Purification of flagellin and preparation of glycosylated peptides 21 

P. syringae was incubated in LB medium containing 10 mM MgCl2 for 48 h at 25°C. 22 

The cells were harvested by centrifugation and resuspended in 1/3 volume of minimal medium 23 

(MM; 50 mM potassium phosphate buffer, 7.6 mM (NH4)2SO4, 1.7 mM MgCl2 and 1.7 mM 24 

NaCl, pH 5.7) supplemented with 10 mM each of mannitol and fructose, and then incubated for 25 
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24 h at 23°C. Flagellin was purified by the method of Taguchi et al. (28). For the identification 1 

of glycan components of flagellin proteins, purified proteins were subjected to SDS-PAGE and a 2 

band at 32 kDa was excised, crushed and mixed with distilled water. The extracted flagellin was 3 

then concentrated using spin columns (Vivaspin VS0403 10,000 MWCO, Vivascience, 4 

Hannover, Germany). For purification of glycosylated peptides, purified flagellin from each 5 

pathovar was digested with aspartic N-peptidase (Boehringer Mannheim, Mannheim, Germany) 6 

at 35°C for 20 h in Tris-HCl buffer (pH 8.0). The resultant peptides with 0.1% (v/v) 7 

trifluoroacetic acid (TFA) were subjected to reverse-phase high performance liquid 8 

chromatography (HPLC) using a 2.0 ! 250 mm TSKgel ODS-80TS column (Tosoh, Tokyo, 9 

Japan) as reported by Taguchi et al., 2006. For large-scale preparation of the peptides, 10 

approximately 4 mg of digested flagellin was applied to a TSKgel ODS-120TS (4.6 ! 150 mm, 11 

Tosoh) and eluted at a flow rate of 1.0 ml/min with a linear gradient of 9-90% aqueous 12 

acetonitrile (0.1% TFA) for 87 min. UV detection was carried out at 210 nm and fractions were 13 

collected every minute. The target peptide (D200-A211) was identified by N-terminal amino 14 

acid sequencing using a protein sequencer (Procise 494 HT protein sequencing system, Applied 15 

Biosystems, Tokyo, Japan).  16 

Mass Spectrometry: Comparison of mass spectra in intact flagellins and the peptides 17 

N136-K255 from Pta6605 and Pgl4  18 

Flagellins from wild-type and mutant strains of Pta6605 and Pgl4 were digested with 19 

lysyl endopeptidase (Wako, Osaka, Japan) at 37°C overnight in 10 mM Tris-HCl buffer (pH 9.0). 20 

Each intact or digested protein was dissolved in water with 0.1% TFA and mixed with an equal 21 

volume of matrix solution [a saturated solution of sinapinic acid in 33% acetonitrile/water with 22 

0.1% TFA (v/v)], and deposited on a target plate. Samples were analyzed using a Biflex III 23 

spectrometer (Bruker Daltonik GmbH, Bremen, Germany) and matrix-assisted laser 24 

desorption/ionization time of flight (MALDI-TOF) mass spectra were recorded in a linear, 25 
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positive-ion mode with mass accuracy of 0.1%.  1 

MALDI-QIT-TOF MS analysis of the glycopeptide D200-A211  2 

The HPLC eluate of the glycopeptide D200-A211 from each pathovar (0.5 %l) was 3 

mixed with an equal volume of matrix solution [10 mg/ml of 2,5-dihydroxybenzoic acid in 4 

0.06% (v/v) TFA and 40% (v/v) acetonitrile] and deposited on a sample target plate. The mass 5 

and MS/MS spectra of the glycopeptide D200-A211 were recorded on an AXIMA quadrupole 6 

ion trap (QIT) MALDI-TOF mass spectrometer (Shimadzu, Kyoto, Japan). Both MALDI-TOF 7 

mass spectrometers were calibrated using a standard mixture of peptides (Bruker Daltonics, 8 

MA). 9 

ESI-Q-TOF MS analysis of the glycopeptide D200-A211 10 

Electrospray ionization (ESI)-TOF MS experiments were conducted using a 11 

quadrupole (Q)-TOF mass spectrometer (QSTAR XL, Applied Biosystems) equipped with a 12 

nanospray ESI source. The ion-spray voltage was set to 1000 V. For accurate mass 13 

measurements, the instrument was calibrated using y-series fragment ions (22) of 14 

Glu-fibrinopeptide B and mass accuracy was within 5 ppm. Prior to analyses, samples were 15 

prepared by dissolving them in 30% acetonitrile and 0.1% formic acid. All mass spectra were 16 

obtained in positive-ion mode. 17 

Sugar composition analysis of flagellin glycan  18 

The monosaccharide composition of glycans from purified flagellin proteins was 19 

analyzed using an ABEE (p-aminobenzoic acid ethyl ester) labeling kit (J-oil mills, Tokyo, 20 

Japan). Sialic acid, being a non-reducing sugar, is not converted by ABEE. To assess the 21 

presence/absence of sialic acid in the flagellin preparation, purified flagellin was treated with 22 

N-acetylneuraminic acid aldolase in order to release sialic acid residues prior to acid hydrolysis, 23 

thereby enabling detection as N-acetyl-mannosamine. The subsequent processes of acid 24 

hydrolysis, N-acetylation and conversion with ABEE were carried out according to the method 25 



Takeuchi et al., J. Bacteriol 

 

 

7 

of Yasuno et al. (36). The resultant ABEE-converted monosaccharide(s) in the aqueous layer 1 

were analyzed by reverse-phase HPLC using a Honenpak C18 column (75 mm ! 4.6 mm i.d., 2 

J-oil mills), according to the manufacturer’s instructions. For quantification of monosaccharides, 3 

a set of monosaccharides including glucose, galactose, mannose, arabinose, ribose, fucose, 4 

xylose, rhamnose (Rha), N-acetylglucosamine, N-acetylgalactosamine and 5 

N-acetylmannosamine, was used as standards.  6 

Determination of D-Rha/L-Rha ratios in flagellins  7 

Enantiomeric ratios of the Rha residues in glycopeptides and intact flagellins were 8 

determined using gas chromatography (GC) according to the method of Gerwig et al. (8) with a 9 

slight modification. The glycopeptide D200-A211 and intact flagellin protein from each 10 

pathovar were subjected to acidic solvolysis with 1N HCl in (S)-2-butanol for 16 h at 80°C. The 11 

(S)-2-butyl glycosides formed were then converted into their trimethylsilyl (TMS) derivatives 12 

and analyzed by GC (GC-17A, Shimadzu) using a DB-1 column (30 m ! 0.25 mm, J&W 13 

Scientific, Folsum, CA) (37). Because D-glycosides of (S)-2-butanol and L-glycosides of 14 

(R)-2-butanol have the same retention time by GC analysis (non-chiral stationary phase 15 

separation), L-rhamnoside of (R) and (S)-2-butanol were prepared as standards for determination 16 

of (S)-2-butyl-D-rhamnoside and (S)-2-butyl-L-rhamnoside, respectively. To confirm two peaks 17 

assigned as D- and L-rhamnosides of (S)-2-butanol from Pgl4 flagellin, GC-MS was performed 18 

according to the method of McNeil and Albersheim (20) with a slight modification. A JMS 19 

DX-303 mass spectrometer (JEOL, Tokyo, Japan) was interfaced with a Hewlett-Packard 5890 20 

gas chromatograph (Hewlett-Packard, Palo Alto, CA) using an SPB-1 column (30 m ! 0.32 mm, 21 

Supelco Inc., Bellefonte, PA). GC-MS was performed by Toray Research Center Inc., Kamakura, 22 

Japan. 23 

NMR spectroscopy  24 

Lyophilized glycopeptide D200-A211 prepared from Pta6605 flagellin was dissolved 25 
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in 300 %l of D2O to give a final concentration of 150 nmol/L (pH 4.2). Glycopeptide D200-A211 1 

from Pgl4 was dissolved in 300 %l of D2O to give a final concentration of 50 nmol/L (pH 2.9).
 

2 

1
H NMR spectra of the glycopeptides, including 

1
H-

1
H correlation spectra (DQF-COSY, 3 

TOCSY and NOESY) and 
1
H-

13
C correlation spectra (HSQC and HMBC), were obtained at 4 

800.33 MHz on a Bruker Avance 800 spectrometer with a TCI (
1
H/

13
C{

15
N}) CryoProbe

TM
 5 

(Bruker Biospin, Karlsruhe, Germany) at 298K. 
13

C NMR spectra were obtained at 125.76 MHz 6 

on a Bruker Avance 500 spectrometer with a Dual (
1
H{

13
C}) CryoProbe

TM
 (Bruker Biospin) at 7 

298K. Methyl signals of 2-methyl-2-propanol, "H at 1.23 ppm and "C at 31.3 ppm were used as 8 

references for 
1
H and 

13
C chemical shifts. 9 

 10 

Results 11 

Identification of the glycosylated amino acid residues in Pgl4 flagellin 12 

Monomeric flagellin of Pgl4 and the corresponding lysyl endopeptidase-digested 13 

peptides were subjected to MALDI-TOF MS in order to characterize the modification pattern 14 

(Table 2). Intact Pgl4 flagellin purified from the wild-type strain exhibited [M+H]
+
 around m/z 15 

32,380 as a broad peak reflecting quantitative heterogeneity in glycosylation (Table 2 and Fig. 16 

1C). The m/z values of the three main species (32,380, 32,515 and 32,668) within the broad peak 17 

were larger than the predicted values for [M+H]
+
 (i.e., m/z 29,148), based on amino acid 18 

sequences, by 3,232 Da 3,367 Da and 3,520 Da, respectively. The molecular mass of flagellin 19 

from the $orf1 mutant, which lacks the ability to glycosylate (31), was 29,154 Da. This value 20 

corresponds within the margins of error of the system to the molecular mass predicted from the 21 

deduced amino acid sequence, confirming that flagellin from the $orf1 mutant is not 22 

glycosylated.  23 

In a lysyl endopeptidase-digested peptide mixture from the wild-type strain, three 24 

sharp peaks were observed at m/z 15,296, 15,444 and 15,591 (Table 2 and Fig. 1D). These 25 
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corresponded to N136-K255 peptides, which without modification should give [M+H]
+
 of m/z 1 

12,074. Thus, our results indicate that the N136-K255 peptide is modified with glycan of total 2 

molecular mass 3,222 Da, 3,370 Da or 3,517 Da. Because the differences between the delta 3 

values ([observed m/z value] – [m/z value calculated from the peptide sequence]) of intact 4 

flagellin and the N136-K255 peptides are almost the same (Table 2), the sites of modification 5 

appear to be located between N136-K255 in the primary amino acid sequence of flagellin. 6 

Previous studies on flagellin from Pta6605 identified 6 serine residues (S143, S164, 7 

S176, S183, S193 and S201) as sites of glycosylation (30). To evaluate the effect of point 8 

mutations at each of the 6 serine residues on the glycosylation status of flagellin in Pgl4, one or 9 

all of the 6 serine residues were substituted with alanine. The molecular mass of flagellin from 10 

each substituted mutant was then determined. Substitution of each serine by alanine decreased 11 

the molecular mass of the modified peptide (indicated as the $ value in Table 2) by an average 12 

of 534 Da. The mutated form of flagellin in which all six serine residues had been substituted by 13 

alanine (i.e., 6 S/A) gave a molecular mass corresponding to unmodified peptide (Table 2). 14 

These results suggest that the sites of glycosylatiaon in Pgl4 and Pta6605 flagellin are identical. 15 

Mass spectra of the peptide N136-K255 from each of the six Ser/Ala-substituted mutants 16 

showed the same heterogeneity at three major peaks, as observed for the wild-type strain (Table 17 

2). The mass average of the intervals between the three peaks in these seven strains was 147 Da. 18 

This mass difference suggests that heterogeneity is derived from the number of deoxyhexose 19 

units, which is predicted to give rise to a molecular mass difference of 146 Da per unit. 20 

The mass spectra of intact flagellin or peptide N136-K255 from Pgl4 and Pta6605 21 

were compared (Fig. 1). In our previous study (30), mass spectra of intact flagellin and peptide 22 

from wild-type strain Pta6605 showed heterogeneity at 2-3 major peaks (Fig. 1A and 1B). 23 

However, in the case of the wild-type strain Pgl4, although the positions of the peaks indicating 24 

glycosylation heterogeneity are similar to those of Pta6605, their relative intensities at higher 25 
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mass values are significantly greater (Fig. 1C and 1D). The molecular mass of flagellin from the 1 

$orf2 mutant of Pta6605 was reported to be quite variable, with a value intermediate between 2 

that of the wild-type and the $orf1 mutant (30). The molecular mass of flagellin from the $orf2 3 

mutant of Pgl4 also showed heterogeneity in the m/z range of 13,292 to 14,858 with more than 4 

15 peaks. 5 

Peptide mapping of the Pgl4 flagellin 6 

An HPLC profile of the proteolytic fragments of flagellin was generated by digestion 7 

with endoproteinase Asp-N. When flagellin from Pta6605 was digested with this endoproteinase, 8 

peptides containing glycosylation sites were mapped to 3 fractions (Fr. 41 for D200-A211, Fr. 9 

50 for D168-T187, and Fr. 66 for D139-F167 and E189-I199) (30). Here, we performed the 10 

same analysis on flagellin from Pgl4. N-terminal amino acid sequencing confirmed the presence 11 

of the former two peptides in Fr. 43 (D200-A211) and Fr. 51 (D168-T187). In Fr. 67 of Pgl4, we 12 

detected two peptide sequences DGSAxTMTFQVGS and ETNFxAAIAA (where ‘x’ denotes an 13 

unidentified residue), corresponding to the N-terminal amino acids of D139-F167 (i.e. 14 

D139-S151) and almost the entire sequence of E189-I199, respectively. It was not possible to 15 

determine the residual C terminal sequence of D139-F167 (i.e. N152-F167) because the 16 

concentration of peptide was too low. During sequence analysis, S143 (Fr. 67), S176 (Fr. 51), 17 

S183 (Fr. 51), S193 (Fr. 67) and S201 (Fr. 43) were found to have an anomalous retention time, 18 

suggesting that the serine residues had undergone modification. These results are consistent with 19 

the MS analysis of Ser/Ala-substituted mutants. We were unable to verify whether S164 also 20 

runs anomalously because this residue is located too far from the N-terminus (D139) of the 21 

peptide for analysis.  22 

Among these peptides, D200-A211 bears a single glycosylation site at S201 and a 23 

sufficient amount of material for structural analysis could be obtained by preparative 24 

chromatography. Therefore, peptide D200-A211 derived from either Pta6605 or Pgl4 was 25 
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analyzed further by MS/MS and NMR spectroscopy in order to determine the structure of the 1 

modification site. 2 

Sugar composition analysis  3 

Sugar composition analysis was carried out on intact flagellin from Pta6605 and Pgl4. 4 

In both pathovars, Rha was identified by correspondence of the retention time of its derivative 5 

with that of the Rha standard as described in “Materials and Methods” (data not shown).  6 

Determination of D-Rha/L-Rha ratios in glycopeptide D200-A211 and intact flagellin 7 

proteins  8 

For determination of the enantiomeric ratio of Rha residues on S201, glycopeptide 9 

D200-A211 was treated with HCl in (S)-2-butanol to form diastereomeric glycosides. In both 10 

pathovars, GC analysis of trimethylsilyl derivatives of the (S)-2-butyl rhamnoside yielded a peak 11 

corresponding to the L-rhamnoside diastereomer, showing that Rha residues on this peptide were 12 

exclusively of the L form (data not shown). 13 

To elucidate the enantiomeric ratio of the Rha residues of the whole flagellin protein in 14 

each pathovar, the intact flagellin proteins were also subjected to solvolysis and converted into 15 

trimethylsilyl derivatives of the (S)-2-butyl rhamnoside. In the case of Pta6605, the configuration 16 

of Rha was shown to be solely of the L form with a retention time of 22.0 min. (Fig. 2A). By 17 

contrast, the flagellin glycan from Pgl4 yielded two peaks corresponding to D- and L-Rha at a 18 

molar ratio of about 1:4 with retention times of 21.5 min. and 22.0 min., respectively (Fig. 2B). 19 

The assignment of these two peaks was confirmed by GC-MS analysis. MS fragmentation 20 

patterns of these derivatives were identical to those of the L-Rha standard. Fig. 2C shows the 21 

fragmentation patterns from a GC peak with a retention time of 21.5 min. 22 

Structural characterization of glycopeptide D200-A211 by MS analysis  23 

To characterize the structure of flagellin glycan, glycopeptides D200-A211 from 24 

Pta6605 and Pgl4 were subjected to MALDI-QIT-TOF MS and MS/MS analyses. The mass 25 
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spectra of both pathovars’ glycans were essentially identical. Fig. 3 shows the mass spectrum of 1 

D200-A211 from Pta6605. The [M+H]
+
 of the peptide was observed at m/z 1814 (inset of Fig.3) 2 

while the corresponding calculated value of the sequence DSALQTINSTRA is 1276. Thus, 3 

modification of this peptide increased the molecular mass by 538 Da. This result is consistent 4 

with the mass difference in the modified part of WT and the S201A-substituted mutant (Table 2 5 

for Pgl4; Taguchi et al. (30) for Pta6605). Fig. 3 shows the MS/MS spectrum of the peak at m/z 6 

1814 ([M+H]
+
). An ion observed at m/z 1277 corresponds to the calculated value for the ion 7 

DSALQTINSTRA. Those found at m/z 1699 ([M–115+H]
+
) and 1162 8 

([DSALQTINSTRA–115+H]
+
) are presumably generated by cleavage of the N-terminal Asp. 9 

Ions observed at m/z 1423 and 1569 correspond to peptides with one and two glycosyl residues 10 

of molecular mass 146 Da, respectively. These results suggest that the 538 Da glycan is 11 

composed of three residues with masses of 246, 146, and 146 Da. The molecular mass difference 12 

of 146 Da suggests the presence of a deoxyhexose, consistent with the result from 13 

monosaccharide analysis in which only Rha was detected. Thus, the glycan is linked to the 14 

serine via two Rha residues. The product with a molecular mass of 246 Da does not correspond 15 

to a known saccharide. 16 

To obtain structural information on this unidentified residue, accurate mass 17 

measurements by ESI-Q-TOF MS analysis were performed. The mass spectra of the peptides 18 

derived from the two pathovars were identical (Fig. 4 shows data from Pta6605). The initial 19 

mass spectrum of the glycopeptide D200-A211 showed that the glycan of 538 Da is composed 20 

of two deoxyhexose residues and one unknown residue with a mass of 246 Da (Fig. 4A). 21 

Furthermore, the unit of two deoxyhexose residues is directly attached to the peptide (at S201). 22 

This result is in accordance with the MALDI-QIT-TOF MS/MS analysis (Fig. 3). The 23 

fragmentation pattern suggests that these residues are located linearly from the distal end in the 24 

order unknown residue followed by two deoxyhexose residues. The MS/MS spectrum of the 25 
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[M+2H]
 2+

 observed at m/z 907.5 for the peptide D200-A211 (Fig. 4) yielded an intense product 1 

ion peak at m/z 246.1 (Fig. 4A). The MS/MS analysis of [M+3H]
 3+

 observed at m/z 605.3 for the 2 

peptide D200-A211 (Fig. 4) also yielded an intense product ion at m/z 246.1 (data not shown). 3 

These data are consistent with the proposal that the glycopeptide (1813 Da) includes a residue of 4 

246 Da. By contrast, MS/MS spectra of fragment ions at m/z 784.9, 711.9 and 638.8 did not 5 

include the product ion at m/z 246.1 (Fig. 4B-4D). These observations confirm that the unit of 6 

246.1 Da is located at the distal end of the glycan. Accurate mass analysis within 5 ppm of the 7 

calculated value of this unknown unit exhibited m/z 246.134 (C11H20NO5, calculated 246.1335) 8 

for the ion.  9 

Structure determination of glycan on D200-A211 by NMR analysis  10 

The structure of glycan on D200-A211 from Pta6605 flagellin was elucidated by NMR 11 

spectroscopy. Signals of two Rha and the unidentified substructure were observed in addition to 12 

those derived from the peptide backbone. Assignment of these signals was performed based on 13 

1
H-

1
H correlations on DQF-COSY and TOCSY, and 

1
H-

13
C correlations on HSQC and HMBC 14 

spectra (Table 3, Fig 5, Fig. 6B). Binding of an L-Rhap to S201 was confirmed by HMBC 15 

correlation between #-carbon of S201 and H1 of the L-Rhap (Fig. 5, Fig. 6B). The second 16 

L-Rhap is attached at C2 of the L-Rhap linked to S201, as deduced by HMBC correlation of 17 

C2-H1 (Fig. 5, Fig. 6B) and low field shift of the C2 (79.9 ppm) (Table 3). The structure of the 18 

terminal saccharide was identified as 4-amino-4,6-dideoxyglucose (Qui4N, trivial name 19 

viosamine) from the presence of a C6 methyl group, large H-H coupling constants, and high 20 

field shift of C4 (58.3 ppm) (Table 3). The attachment position of the Quip4N to L-Rhap was 21 

shown to be C3 by HMBC correlations of L-Rhap C3 to Quip4N H1 and Quip4N C1 to L-Rhap 22 

H3 (Fig. 5, Fig. 6B). Further modification of the Quip4N residue by O-methylation of C2 was 23 

indicated by HMBC correlations (Fig. 5, Fig. 6B). The presence of these links was supported by 24 

data from the NOESY experiments (Fig. 5, Fig. 6A). The presence of the 3-hydroxybutyryl 25 
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group and its attachment to Quip4N through an amide link was revealed by COSY and HMBC 1 

analyses (Table 3, Fig. 5, Fig. 6B). Moreover, the elemental formula of the modified Quip4N 2 

residue (C11H20NO5) coincides with the result of accurate mass analysis.      3 

Quip4N was estimated to be in the D-configuration based on the 
13

C NMR chemical 4 

shift of the C1 signal (18, 35). The value of 105.20 ppm indicated an opposing absolute 5 

configuration of !-Quip4N and #-L-Rhap in (1"3) linkage. Alternative configuration of Quip4N 6 

would lead to a smaller chemical shift by ca. 3 ppm. Therefore, the structure of the glycan was 7 

determined to be !-D-Quip4N(3-hydroxy-1-oxobutyl)2Me-(1"3)-#-L-Rhap-(1"2)-#-L-Rhap 8 

(Fig. 5). Structural identity of the glycan on D200-A211 from Pgl4 with that from Pta6605 was 9 

confirmed by NMR analyses. 10 

 11 

Discussion 12 

Bacterial flagellin is one of the best studied molecules containing pathogen- or 13 

microbe-associated molecular patterns that can activate basal defense in the form of non-host 14 

resistance in plants (14). The synthetic oligopeptide flg22, which was designed from an 15 

N-terminal conserved sequence in the D0 interior domain of flagellin from P. aeruginosa, elicits 16 

plant basal defense responses (7). Thus, flg22 has been defined as a general elicitor. In 17 

Arabidopsis thaliana, recognition of flg22 is mediated by its binding to a leucine-rich repeat 18 

transmembrane receptor kinase FLS2 (5, 9). We have demonstrated the importance of flagellin 19 

glycosylation, located on the surface of the flagellar filament, as a determinant of host specificity 20 

(29, 30 31). Plant hypersensitive reactions caused by flagellin are attenuated when the flagellin is 21 

modified by glycosylation in the manner of a compatible bacterium (29). Thus, there is a 22 

plausible hypothesis that flagellin glycosylation plays an important role in masking this pattern 23 

in order to avoid recognition by the host plant. 24 

Our analysis of Pgl4 flagellin shows that 6 serine residues at positions 143, 164, 176, 25 
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183, 193 and 201 are glycosylated. The mass value of the major glycan on each serine was about 1 

534, while heterogeneity due to the addition of one or two units with a mass value of about 147 2 

was also observed. These results are concordant with our previous work on Pta6605 flagellin 3 

(30). Analysis of intact flagellin showed that D-Rha is present in the glycan of Pgl4, whereas 4 

Rha from Pta6605 flagellin glycan is exclusively of the L-form. Studies on the glycopeptide 5 

D200-A211 derived from either Pta6605 or Pgl4 flagellin revealed structural identity of the 6 

major glycan on S201, where only L-Rha was found. It is conceivable that minor glycan species 7 

comprising one or two more Rha residues might attach via S201. We believe that heterogeneity 8 

of glycosylation is not confined to one particular modification site because it was present in each 9 

of the six Ser/Ala-substituted mutants. Differences between Pta6605 and Pgl4 may exist in the 10 

structure of the glycan with the extra Rha residue(s). Further investigation of glycan moieties 11 

attached to serine residues other than S201 is also required in order to explain host specificity of 12 

these pathovars in terms of the structure of flagellin. 13 

It is intriguing to explore the relationship between the content of D-Rha and 14 

glycosylation heterogeneity. For example, the relative intensities of the peaks observed in 15 

MALDI-TOF MS analyses might reflect the content of D-Rha. In accordance with heterogeneity 16 

of flagellin glycosylation, D-Rha may be dispersed amongst all or some of the six glycans. 17 

Alternatively, D-Rha may be attached to specific serine residue(s) in Pgl4 flagellin. If so, such 18 

residue(s) may be significant in determining host specificity. More precise analysis of each 19 

glycan and utilization of Ser/Ala-substituted mutants will be helpful in determining the 20 

localization of D-Rha in Pgl4 flagellin.  21 

Rha is also reported to be a common major component of lipopolysaccharides (LPS) in 22 

these two pseudomonad pathogens (17). Although naturally-occurring Rha is mainly present in 23 

the L-form, both the D- and L-forms have been found in O-antigens of P. syringae. Furthermore, 24 

emerging patterns in the chain of rhamnan are thought to correlate with serogroups (17). This 25 
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may explain the significance of the chirality of Rha in LPS. LPS is recognized by mammals 1 

differently according to its constituent parts. Internal/conserved domains, such as lipid A, are 2 

important for the innate immune response, whereas the surface exposed/highly variable domains, 3 

such as O-antigen, determine antigenic specificity (21). This prototype of domain distinction of 4 

activities is also applicable to flagellin. Thus, it is reasonable to propose that flagellin glycans on 5 

the putative surface exposed domain are responsible for determining host specificity (38). A 6 

complete structural characterization of flagellin should help to elucidate how plants recognize 7 

flagellin glycan and how bacteria evade such recognition. 8 

In animals, flagellin recognition is mediated by Toll-like receptor 5 (TLR5; 12). The 9 

conserved N-terminal region of flagellin is reported to be important for binding to TLR5 (27). 10 

Notably, the role of flagellin glycosylation of animal pathogenic bacteria in innate immunity is 11 

just beginning to be elucidated. In the case of P. aeruginosa strains PAK and PAO1, the 12 

virulence of flagellar glycosylation mutants in mice was significantly attenuated (2). In both of 13 

these strains, flagellin glycosylation plays an important role in the ability of flagellin to stimulate 14 

interleukin-8 release from human lung carcinoma cells (33). These results suggest that flagellin 15 

glycans might be responsible for stimulation of inflammation. In P. aeruginosa strain PAK, a 16 

glycan consisting of 11 monosaccharides is linked to the flagellin protein through a Rha residue 17 

at the two glycosylation sites (25). Thus, Rha is a common component of flagellin glycan in P. 18 

syringae and P. aeruginosa.  19 

The distal residue of the glycan on S201 is the modified unique amino sugar, Qui4N. 20 

MALDI-TOF MS analyses of the six Ser/Ala-substituted mutants suggest that the major glycan 21 

on each serine residue is a trisaccharide composed of modified Qui4N and two Rha residues. 22 

Only Rha was detected in sugar composition and enantiomeric ratio analyses by GC despite the 23 

presence of the modified Qui4N. In Vibrio LPS, 4-amino-4,6-dideoxymannose was produced in 24 

abundance by mild acid hydrolysis (15). Thus, 4-amino-4,6-dideoxyhexoses may be destroyed 25 
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by more vigorous chemical procedures. On the other hand, in Bacillus anthracis exosporium, 1 

Qui4N(3-hydroxy-3-methyl-1-oxobutyl)2Me was detected after methanolysis and acetylation (6). 2 

It might be possible to detect modified Qui4N in our study by adopting such methods. LPS of P. 3 

aeruginosa is known to be rich in unusual amino sugars, some of them with hydroxybutyryl 4 

groups instead of acetylation (16). This suggests the existence of a common synthetic pathway 5 

for flagellin glycans and LPS. Qui4N was also detected as one of the components of P. 6 

aeruginosa PAK flagellin glycan (25). Thus, there is a clear structural similarity of the glycans 7 

of P. syringae and P. aeruginosa a-type flagellins, in addition to the attachment of Rha to the 8 

peptide backbone. The Orf1 and Orf2 products of the flagellin glycosylation island of P. 9 

syringae are similar to OrfN (fgtA, for flagellar glycosyltransferase) of P. aeruginosa a-type 10 

strain PAK (i.e. 32 and 38% identity, respectively) (30, 31). Orf1 and Orf2 also show similarity 11 

to PA1091 (fgtA) in P. aeruginosa b-type strain PAO (43 and 34% identity, respectively). OrfN 12 

and PA1091 are considered to transfer deoxyhexose to the protein backbone (25, 34), indicating 13 

similarity to the function of Orf1 in P. syringae. Thus, these putative glycosyltranferases may 14 

possess a common enzymatic activity in pseudomonad pathogens. We propose that the genes 15 

orf1 and orf2 in the P syringae glycosylation island be renamed fgt-1 and fgt-2, respectively. 16 

Notably, the homologue of orfA, which belongs to the PAK glycosylation island but is not found 17 

in PAO1 of P. aeruginosa, is located upstream of the flagella gene cluster of two pathovars of 18 

whole genome sequenced P. syringae, P. s. pv. tomato DC3000 and pv. phaseolicola 1448A. 19 

The homologues from both of these two pathovars display 68% identity to orfA of PAK at the 20 

amino acid level. OrfA possesses homology to the vioA gene which is responsible for the 21 

synthesis of viosamine, i.e., Qui4N (1). Qui4N is one of the PAK strain-specific glycan 22 

components in P. aeruginosa flagellin, but was not detected in the PAO1 strain (25, 34). Thus, it 23 

will be interesting to investigate the role of the orfA homologue in flagellin glycan synthesis in P. 24 

syringae. 25 
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Although the structures of Pta6605 and Pgl4 flagellin glycans are similar, differences 1 

were observed in the content of D-Rha. Chirality of the Rha residues may be one of the 2 

significant determinants of flagellin’s elicitor activity. Interaction of P. syringae with its host or 3 

non-host plant is the most advanced system for elucidating the biological significance of 4 

flagellin glycosylation in the interaction of bacteria with eukaryotes. Therefore, our findings are 5 

important in defining biological activity, such as bacterial virulence and host specificity, in terms 6 

of molecular structure. 7 

 8 
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 10 

Figure Legends 11 

FIG. 1. MALDI-TOF MS analysis of intact flagellin and the peptide N136-K255 from Pta6605 12 

and Pgl4. (A) Intact flagellin from the wild-type strain of Pta6605. (B) The peptide N136-K255 13 

from the wild-type strain of Pta6605. (C) Intact flagellin from the wild-type strain of Pgl4. (D) 14 

The peptide N136-K255 from the wild-type strain of Pgl4.  15 

 16 

FIG. 2. Determination of D-Rha/L-Rha ratios in intact flagellin proteins. (A) GC pattern of the 17 

trimethylsilylated (S)-2-butyl rhamnosides obtained from Pta6605 flagellin. (B) GC pattern of 18 

the trimethylsilylated (S)-2-butyl rhamnosides obtained from Pgl4 flagellin. (C) GC-MS 19 

fragmentation patterns from a GC peak with a retention time corresponding to that of authentic 20 

trimethylsilylated (R)-2-butyl L-rhamnose in Pgl4 flagellin. The inset in (C) shows the structure 21 

of rhamnose derivative and the expected primary fragment ions. 22 

 23 

FIG. 3. MALDI-QIT-TOF MS/MS spectrum of the glycopeptide D200-A211 from Pta6605 24 

flagellin with the respective fragmentation scheme. The glycopeptide D200-A211 showing 25 
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[M+H]
+
 at m/z 1814 (inset) corresponds to a glycopeptide with the sequence 1 

200
DSALQTINSTRA

211
 in which S201 is modified with a 538 Da moiety. The MS/MS 2 

experiment gave product ions at m/z 1796 ([M+H–H2O]
+
), 1699 ([M–Asp+H]

+
), 1569 3 

([M–246+H]
+
), 1423 ([M–246–Rha+H]

+
), 1308 ([M–246–Rha–Asp+H]

+
), 1277 4 

([M–246–2Rha+H]
+
) and 1162 ([M–246–2Rha–Asp+H]

+
). X in the fragmentation scheme stands 5 

for a substructure of 246 Da. This substructure was assigned to 6 

Qui4N(3-hydroxy-1-oxobutyl)2Me by subsequent NMR experiments. 7 

 8 

FIG. 4. ESI-Q-TOF mass spectra of the glycopeptide D200-A211 from Pta6605 flagellin. (A-D) 9 

MS/MS spectra of ions observed at m/z 907.5 ([M+2H]
2+

), 784.9 ([M–246+2H]
2+

), 711.9 10 

([M–246–Rha+2H]
2+

) and 638.8 ([M–246–2Rha+2H]
2+

), respectively. The observed peak at m/z 11 

605.3 corresponds to [M+3H]
3+

. The b- and y-series ions, shown both in the sequence of this 12 

peptide and in the MS/MS spectra, originated from the N- and C-terminus (Roepstorff and 13 

Fohlman, 1984), respectively. A substructure of 246 Da was assigned to 14 

Qui4N(3-hydroxy-1-oxobutyl)2Me by subsequent NMR experiments. 15 

 16 

FIG. 5. Chemical structure and selected NMR correlations (HMBC and NOESY) of glycan 17 

attached to S201 of the peptide D200-A211 from Pta6605 and Pgl4. 18 

 19 

FIG. 6. Two dimensional NMR spectra of 20 

#-D-Quip4N(3-hydroxyburyryl)2Me-(1$3)-%-L-Rhap-(1$2)-%-L-Rhap-(1$O
S201

)-peptide 21 

D200-A211. A, NOESY. B, HMBC. 22 

 23 
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TABLE 1. Bacterial strains used in this study 

Bacterial strain Relevant characteristics
a
 Reference or source 

E. coli ! !

     DH5! 
F!!!ø80dlacZ!M15"! (lacZYA-argF)U169 recA1 

endA1 hsdR17(rK
-
 mK

+
) supE44 thi-1 gyrA relA1 

Takara, Kyoto, Japan 

     S17-1 
thi pro hsdR

-
hsdM

+
recA 

[chr::RP4-2-Tc::Mu-Km::Tn7] 
23 

P. syringae pv. glycinea 
"

 

     race 4 Wild type Collmer, A. 

     race 4-d1 Isolate race 4 "orf1 31 

     race 4-d2 Isolate race 4 "orf2 31 

     race 4-d3 Isolate race 4 "orf3 31 

     race 4-dfliC Isolate race 4 "fliC This study 

     race 4-S143A Isolate race 4 S143A This study 

     race 4-S164A Isolate race 4 S164A This study 

     race 4-S176A Isolate race 4 S176A This study 

     race 4-S183A Isolate race 4 S183A This study 

     race 4-S193A Isolate race 4 S193A This study 

     race 4-S201A Isolate race 4 S201A This study 

     race 4-6 S/A 
Isolate race 4 S143A, S164A, S176A, S183A, 

S193A, S201A 
This study 

P. syringae pv. tabaci  ! !

     Isolate 6605 Wild type 30 

Plasmids   

     pMC 
1.8 kb chimeric PCR product deleting fliC cloned 

into pK18mobSacB at EcoRI site, Km
r
 

This study,  

26  

pK18mobsacB 
Small mobilizable vector, Km

r
, sucrose sensitive 

(sacB) 
23 

a
 Km

r
 = kanamycin resistance ! !
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TABLE 2. Mass values of intact flagellin and peptide fragment (N
136

-K
255

) 

  [M+H]
+
   

P. s. pv. glycinea  observed
*2

 calculated
*3

 !
 (*2-*3)

 

intact flagellin (A
2
-Q

282
)

*1
     

WT  32380, 32515, 32668 29148 3232, 3367, 3520 

!orf1  29154 29148 6 

peptide fragment (N
136

-K
255

)     

WT  15296, 15444, 15591 12074 3222, 3370, 3517 

S143A  14742, 14890, 15036 12058 2684, 2832, 2978 

S164A  14746, 14894, 15040 12058 2688, 2836, 2982 

S176A  14748, 14893, 15038 12058 2690, 2835, 2980 

S183A  14747, 14894, 15044 12058 2689, 2836, 2986 

S193A  14751, 14899, 15045 12058 2693, 2841, 2987 

S201A  14747, 14894, 15038 12058 2689, 2836, 2980 

6 S/A  11976 11978 -2 

!orf1  12072 12074 -2 

!orf2
*4

  13292-14858 12074 1218-2784 

!orf3 !  15298, 15446, 15591 12074 3224, 3372, 3517 

*1
: N-terminal methionine of flagellin is subject to posttranslational cleavage (data not shown). 

*2
: Major peaks in MALDI-TOF mass spectra. 

*3
: Calculated value by deduced amino acid 

sequence. 
*4

: Peaks were observed as broad peaks by heterogeneity. 
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13C
position δ (ppm) multiplicityb J  (Hz) δ (ppm)

Ser201
amide carbonyl 172.5c

α 4.599 dd 4.3, 3.7 55.53
β 4.055 dd 10.0, 4.3 67.67

3.732 dd 10.0, 3.7
α-L-Rhap  1

1 4.888 br s (W 1/2 = 4.5Hz) 99.81
2 3.977 br s (W 1/2 = 7.2Hz) 79.90
3 3.780 dd 9.7, 3.1 71.66
4 3.440 dd 9.7, 9.6 73.71
5 3.541 dq 9.6, 6.0 70.84
6 1.273 d 6.0 18.51

α-L-Rhap  2
1 4.979 br s (W 1/2 =4.5Hz) 103.55
2 4.264 br dd 3.1, 1.6 71.38
3 3.900 dd 9.8, 3.1 81.13
4 3.591 dd 9.8, 9.8 72.83
5 3.756 dq 9.8, 6.1 71.04
6 1.271 d 6.1 18.39

β-D-Quip 4N (4-amino-4,6-dideoxy-β-D-glucopyranosyl)
1 4.726 d 8.0 105.20
2 3.126 dd 9.2, 8.0 84.94
3 3.517 dd 10.2, 9.2 74.50
4 3.619 dd 10.2, 10.0 58.26
5 3.535 dq 10.0, 6.0 72.56
6 1.199 d 6.0 18.64
2-O -Me 3.620 s 61.77
N -(3-hydroxy-1-oxobutyl)
1' 176.2c

2' 2.402 dd 14.1, 7.9 46.87
2.422 dd 14.1, 5.5

3' 4.188 ddq 7.9, 5.5, 6.3 66.73
4' 1.218 d 6.3 23.77

a 800.33 MHz for 1H and 125.76 MHz for 13C, in D2O at 298K
b s, singlet; d, doublet; t, triplet; q, quartet; br, broad; W 1/2 ,  width at half height
c read from a position of an HMBC cross-peak

Table 3. Assignment of NMR signalsa of glycan on S201 of the peptide D200-
A211. Numbers of rhamnosyl residues are based on the order from the reducing
end.

residue
1H
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