Some polynomial identities and commutativity of s-unital rings

Yasuyuki Hirano∗ Yuji Kobayashi†
Hisao Tominaga‡
SOME POLYNOMIAL IDENTITIES AND COMMUTATIVITY OF s-UNITAL RINGS

YASUYUKI HIRANO, YUJI KOBAYASHI and HISAO TOMINAGA

Throughout this paper, R will represent an (associative) ring (with or without identity 1). $C = C(R)$ the center of R, $D = D(R)$ the commutator ideal of R, and $N = N(R)$ the set of all nilpotent elements in R.

A ring R is called s-unital if $x \in Rx \cap xR$ for any $x \in R$. As stated in [13], if R is s-unital, then for any finite subset F of R there exists an element e in R such that $ex = xe = x$ for all $x \in F$. Such an element e will be called a pseudo-identity of F (in R).

Let n be a positive integer. We consider the following ring-properties:

$P_1(n)$: $(xy)^n = x^n y^n$ and $(xy)^{n+1} = x^{n+1} y^n$ for all $x, y \in R$.

$P_2(n)$: $(xy)^n = x^n y^n = y^n x^n$ for all $x, y \in R$.

$P_3(n)$: $(xy)^n = (yx)^n$ for all $x, y \in R$.

$P_4(n)$: $[x, (xy)^n] = 0$ for all $x, y \in R$.

$P_5(n)$: $[x, (yx)^n] = 0$ for all $x, y \in R$.

$P_6(n)$: $[x, y^n] = 0$ for all $x, y \in R$.

$P_7(n)$: $[x, x^n] = [x^n, y]$ for all $x, y \in R$.

$P_8(n)$: There is a polynomial $\psi(\lambda)$ with integer coefficients such that $[x, y^n] = [\psi(x), y]$ for all $x, y \in R$.

$P_9(n)$: $[x, (x+y)^n - x^n] = 0$ for all $x, y \in R$.

$P_{10}(n)$: $[x^n, y^n] = 0$ for all $x, y \in R$.

$Q(n)$: For any $x, y \in R$. $n[x, y] = 0$ implies $[x, y] = 0$.

The properties $P_1(n), P_3(n), P_6(n), P_7(n)$ and $P_{10}(n)$ have been considered by many authors. The main objective of this paper is to prove the following

Theorem 1. Let m_1, \cdots, m_t and n_1, \cdots, n_t be (fixed) positive integers such that $1 \leq m_i \leq 9$ and $2 \leq n_i$ for $i = 1, \cdots, t$. Let $d = (n_1, \cdots, n_t)$. If an s-unital ring R has the (conjunctive) property $P_{m_1}(n_1) \wedge \cdots \wedge P_{m_t}(n_t) \wedge Q(d)$, then R is commutative.

In preparation for the proof of our theorem, we introduce here some definitions. Let P be a ring-property. If P is inherited by every subring and every homomorphic image, P is called an h-property. More weakly, if P is inherited by every finitely generated subring and every natural
homomorphic image modulo the annihilator of a central element, P is called an H-property. And, a ring-property P such that a ring has the property P if and only if all its finitely generated subrings have P, is called an F-property. Finally, P is called a $C(n)$-property if every ring with 1 having the property $P \land Q(n)$ is commutative.

Obviously, $P(n) - P_0(n)$ are h-properties and $Q(n)$ is an H-property. These properties are also F-properties and the property "being commutative" is an F-property.

To our end, we shall prove three propositions. The first one enables us to reduce some problems of s-unital rings into those of rings with 1.

Proposition 1. Let P be an H-property and P' an F-property. If every ring with 1 having the property P has the property P', then every s-unital ring having P has P'.

Proof. Let R be an s-unital ring having the property P. We show that if F is a finite subset of R, then the subring $\langle F \rangle$ generated by F has the property P'. To see this, choose a pseudo-identity e of F and a pseudo-identity e' of $F \cup \{e\}$. Obviously, e is a central element of $S = \langle F \cup \{e, e'\} \rangle$. Let A be the annihilator of e in S. Then the factor ring S/A has the identity $e' + A$. Since $\langle F \rangle \cap A = 0$, $\langle F \rangle$ may be regarded as a subring of S/A. Thus, by hypothesis, $\langle F \rangle$ has the property P'.

Some known results on rings with 1 can be extended to s-unital rings by Proposition 1. For example, by [11, Theorem 3] and [4, Theorem 1] we obtain

Corollary 1. Let R be an s-unital ring.

1. Let k be a positive integer. Suppose that for each pair of elements x, y in R there exist positive integers m, n such that $\langle x^m, y^n \rangle = 0$. Then D is a nil ideal.

2. Suppose that for each pair of elements x, y in R there exists an integer $n \geq 2$ such that $(xy)^n = x^n y^m$ and $(xy)^{n+1} = x^{n+1} y^{n+1}$. Then D is a nil ideal.

Next, we reprove a theorem of Kezlan [10].

Proposition 2. Let f be a polynomial in non-commuting indeterminates x_1, \ldots, x_k with integer coefficients. Then the following statements are equivalent:

1. $f(0, 0, \ldots, 0) = 0$.
2. For each i, there exists a polynomial $g_i(x)$ such that $f(x_1, \ldots, x_i, \ldots) = g_i(x_i)$.
3. The polynomial f can be written in the form $f(x_1, \ldots, x_k) = g(x_1) + \sum_{i=2}^{k} h_i(x_1, x_i)$, where $g(x_1)$ is a polynomial in x_1 and $h_i(x_1, x_i)$ is a polynomial in x_1 and x_i with integer coefficients.

The proofs of these propositions are similar to those in [11].
1) For any ring R satisfying $f = 0$, D is a nil ideal.
2) Every semiprime ring satisfying $f = 0$ is commutative.
3) For every prime p, $(\text{GF}(p))^2$ fails to satisfy $f = 0$.

Proof. Since 2) \Rightarrow 1) \Rightarrow 3) are immediate, it remains only to prove that 3) implies 2). Obviously, the coefficients of f are relatively prime. Since every semiprime ring is a subdirect sum of prime rings, it suffices to show that every prime ring R satisfying $f = 0$ is commutative. Now, by a theorem of Amitsur [1, Theorem 7 (6)], the (classical) quotient ring R^* of R is an Artinian simple ring satisfying $f = 0$. Hence, by 3) (and Posner's theorem), R^* is a central division algebra of finite rank m^2 over $C^* = C(R^*)$. Suppose that R^* is not commutative, namely $m \geq 2$, and choose a maximal subfield K of R^*. Then again by the theorem of Amitsur, $R^* \otimes_{C^*} K \cong (K)_m$ satisfies $f = 0$. But this contradicts 3). Thus, R^*, and therefore R is commutative.

Corollary 2 (cf. [5, Theorems 1, 2, 3] and [9, Theorem]). Let R be a semiprime ring, and ν a (fixed) positive integer.

1) If for each pair of elements x, y in R there exists an integer n such that $2 \leq n \leq \nu$ and $[x, (xy)^n - x^n y^n] = 0$ (resp. $[x, (xy)^n - (yx)^n] = 0$), then R is commutative.

2) Suppose that for each pair of elements x, y in R there exists an integer n such that $2 \leq n \leq \nu$ and $[x, [x^n y] - [x, y^n]] = 0$. Then R is commutative.

Proof. (1) In fact, R satisfies the identity

$f(x, y, z) = [x, (xy)^2 - x^2 y^2]z[x, (xy)^3 - x^3 y^3]z \cdots [x, (xy)^\nu - x^\nu y^\nu] = 0$

(resp. $f(x, y, z) = [x, (xy)^2 - (yx)^2]z[x, (xy)^3 - (yx)^3]z \cdots [x, (xy)^\nu - (yx)^\nu] = 0$),

but $f(E_{12}, E_{21}, E_{21}) \neq 0$ in $(\text{GF}(p))^2$.

(2) R satisfies the identity

$f(x, y, z) = [x, [x^2, y] - [x, y^2]]z[x, [x^3, y] - [x, y^3]]z \cdots [x, [x^\nu, y] - [x, y^\nu]] = 0$,

but $f(E_{11}, E_{12}, E_{21}) \neq 0$ in $(\text{GF}(p))^2$.

According to Proposition 2, as Corollary 2 shows, various kinds of semiprime PI-rings (especially, semiprime rings having any one of the properties $P_1(n) - P_{10}(n)$ ($n \geq 2$)) are commutative. However, if we remove the hypothesis "semiprime", even under some extra hypothesis, say that R has 1 or that R is n-torsion free, we have not yet obtained definite results concerning the precise commutativity of R.

In the subsequent study, we shall use freely the following well-known
results: Let $a, b \in R$, and n a positive integer.

(I) If $[a, [a, b]] = 0$ then $[a^n, b] = na^{n-1}[a, b]$.

(II) If R contains 1 and $a^n b = (a+1)^n b = 0$, then $b = 0$.

Now, in advance of exposing the relationship among the properties $P_1(n) - P_6(n)$, we state the following lemma.

Lemma 1. Let $n \geq 2$. If $[x, y] \in C$ for all $x, y \in R$, then $P_7(n)$ implies $P_6(n^4)$.

Proof. We claim that $[x, y^{n^2}]x^{(n-1)^2} = [x, y^{n^2}]$ for all $x, y \in R$. Indeed, by (I) we have $[x, y^{n^2}]x^{(n-1)^2}x^{n-1} = nx^{n^1}x^{(n-1)^2} = nx^{n^1}x^{(n-1)^2} = [x, y^{n^2}]$. Now, by making use of the argument employed in the proof of [7, Lemma 5], we can prove that the subring $\langle x^{n^2} | x \in R \rangle$ is commutative. This implies that $[x^{n^2}, y^{n^2}] = 0$ for all $x, y \in R$.

Proposition 3. (i) If R is s-unital, then $P_1(n) \Leftrightarrow P_2(n) \Rightarrow P_4(n) \Leftrightarrow P_5(n) \Rightarrow P_6(n) \Rightarrow P_7(n)$ and $P_6(n) \Rightarrow P_7(n)$.

(ii) If $n \geq 2$, then $P_7(n) \Leftrightarrow P_6(n) \Leftrightarrow P_5(n) \Rightarrow P_6(n^a)$ for some positive integer a.

Proof. (i) In view of Proposition 1, we may assume that R has 1. Obviously, $P_3(n) \Rightarrow P_4(n) \cap P_5(n), P_2(n) \Rightarrow P_1(n) \cap P_3(n)$, and $P_6(n) \Rightarrow P_4(n) \cap P_5(n) \cap P_7(n) \cap P_6(n)$. Furthermore, $P_1(n)$ together with $P_5(n)$ implies $P_2(n)$, and so we prove that $P_1(n) \Rightarrow P_4(n)$ (resp. $P_5(n) \Rightarrow P_6(n)$).

$P_1(n) \Rightarrow P_7(n)$. Since $x^{n^2}y^{n^2} = (xy)^{n^2} = x^{n^2}y^{n^2}$, we get $x[x^{n^2}, y^{n^2}] = 0$. Hence $x[x^{n^2}, y^{n^2}] = 0$ by (II), and in particular $x[x^{n^2}, y^{n^2}] = 0$. So we have

$$[x, (xy)^n] = x[(xy)^n - (yx)^n] = x[x^{n^2}, y^{n^2}] = 0.$$

$P_4(n) \Rightarrow P_6(n)$. By [12, Theorem], there exists a positive integer k such that $kD = 0$. If u is in N, then for any $x \in R$ we have

$$[x, u] = [(1 + u)(1 + u)^{-1}x]^{n^1} + u = 0.$$

Hence, noting that $D \subseteq N$ by Proposition 2, we see that $[x^n, [x, y]] = 0$.

Next, if R has $P_7(n)$, then

$$[x, (x + y)^n - y^n] = [\psi(x), (x + y) - y] = 0.$$
SOME POLYNOMIAL IDENTITIES AND COMMUTATIVITY

\[[x,y^n] - [x^n,y] = [x(x+y)^n] - [(x+y)^n,y] = [x+y, (x+y)^n] = 0. \]

We have thus seen the equivalence of \(P_7(n) - P_6(n) \).

Now, suppose \(R \) has the property \(P_5(n) \). By [7, Lemma 1] there exists a positive integer \(h \) such that \([x,y]^h = 0 \) for all \(x, y \in R \). Choose a positive integer \(k \) such that \(n^k \geq h \), and let \(T = \langle x^n | x \in R \rangle \). Since \([[(x,y), z^n] = [[x,y]^n, z] = 0 \) for all \(x, y, z \in R \), Lemma 1 shows that \([s^n, t] = 0 \) for all \(s, t \in T \). It therefore follows that \([x^{n^{k+1}}, y] = [x^n, y^n] = 0 \) for all \(x, y \in R \).

Remark 1. Let \(i, j \) be non-negative integers. Let us consider the following ring-property:

\[P(i,j;n): [x(x'yx'^i)^n] = 0 \] for all \(x, y \in R \).

Obviously, \(P(1,0;n) = P_4(n) \), \(P(0,1;n) = P_5(n) \) and \(P(0,0;n) = P_6(n) \). From the proof of Proposition 3 (i), we can easily see that \(P(i,j;n) \) is equivalent to \(P_6(n) \) for any \(i, j \geq 0 \).

Obviously, if the power map \(\pi_n: x \mapsto x^n \) is a ring-homomorphism of \(R \) then \(R \) has the property \(P_5(n) \). In [6, Theorem 3], it is shown that if \(\pi_n \) is a surjective ring-homomorphism of \(R \) for some \(n \geq 2 \) then \(R \) is commutative. On the other hand, in [3, Theorem 3], it is shown that if a ring \(R \) with 1 has the property \(P_1(n) \) and is generated by \(\{x^n | x \in R \} \) or \(\{x^{n(n+1)} | x \in R \} \) then \(R \) is commutative. The next improves these results as well as [2, Corollary 2] (see also [7, Corollary 2]).

Corollary 3. Let \(n \geq 2 \). Let \(R \) be an \(s \)-unital ring having one of the properties \(P_1(n) - P_6(n) \) or a ring having one of the properties \(P_1(n) - P_5(n) \), and let \(T = \langle x^n | x \in R \rangle \). If the centralizer of \(T \) in \(R \) coincides with \(C \), then \(R \) is commutative.

Proof. If an \(s \)-unital ring \(R \) has one of the properties \(P_1(n) - P_6(n) \), then it has the property \(P_6(n) \). So the assertion is clear. If a ring \(R \) has one of the properties \(P_1(n) - P_5(n) \), then it has the property \(P_6(n^a) \) for some positive \(a \). Hence \([x^{n^{a-1}}, y^n] = [x^n, y] = 0 \) for all \(x, y \in R \). Then, \([x^{n^{a-1}}, y] = 0 \) by hypothesis. We can thus continue the same procedure to obtain the conclusion \([x,y] = 0 \).

Corollary 4. If \(n \geq 2 \), then the properties \(P_1(n) - P_6(n) \) are \(C(n) \)-properties.
Proof. Let R be a ring with 1 having the property $P_i(n) \land Q(n)$. If $1 \leq i \leq 6$ then, according to Proposition 3 (i), we may assume that $i = 6$. Given $u \in N$, by an easy induction on the nilpotency index of u, we can show that $u \in C$, and therefore $D \subseteq C$ by Proposition 2. Now, by (1), for any $x, y \in R$ we have $ux^{n-1}[x, y] = [x^n, y] = 0$, whence $[x, y] = 0$ follows by (II). On the other hand, if $7 \leq i \leq 9$, then R has $P_6(n^a)$ and $Q(n^a) = Q(n)$ for some positive integer a (Proposition 3 (ii)). Hence, R is commutative by what was just proved above.

Proof of Theorem 1. In virtue of Proposition 1, we may assume that R has 1. Since $P_1(n) - P_6(n)$ are $C(n)$-properties, the proof of our theorem is now immediate by [8, Proposition 1].

Corollary 5. Let m_1, \ldots, m_t and n_1, \ldots, n_t be (fixed) positive integers such that $1 \leq m_i \leq 9$, $2 \leq n_i$ $(i = 1, \ldots, t)$ and $(m_1, \ldots, n_t) = 1$. If an s-unital ring R has the property $P_{m_1}(n_1) \land \cdots \land P_{m_t}(n_t)$, then R is commutative.

Remark 2. Let $n \geq 2$, and m a strictly proper divisor of n. Then, the properties $P_3(n) - P_{10}(n)$ are not $C(m)$-properties. In this sense, the results on $P_3(n) - P_5(n)$ in Corollary 4 are best possible. To see this, we take a prime divisor p of n such that $p \nmid m$. Let S be a non-commutative algebra over $GF(p)$ such that $S^3 = 0$. Let R be the ring whose additive group is the direct sum of $GF(p)$ and S with multiplication given by $(k, s)(k', s') = (kk', ks' + k's + ss')$. It is easy to see that R has the properties $P_3(n) - P_3(n)$ and $Q(n)$, but R is not commutative. In the same way, the properties $P_1(n)$ and $P_2(n)$ are not $C(m)$-properties when n is odd. However, as is easily seen, $P_2(2)$ and $P_3(2)$ are $C(1)$-properties. In general, when n is even, we can not deny the possibility that $P_1(n)$ and $P_2(n)$ can be $C(n/2)$-properties (see [12, Examples 3 and 4]).

Remark 3. So far we did say little about $P_{10}(n)$. It is easy to see that $P_{10}(2)$ is a $C(2)$-property. However, $P_{10}(n)$ is not a $C(n)$-property if n has a divisor of the form $1 + p^r + p^{2r} + \cdots + p^{sr}$, where r and s are positive integers and p is a prime not dividing n. In fact, let n have such a divisor and let

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & a^p \end{pmatrix} \middle| a, b \in GF(p^{(s+1)r}) \right\}.$$

Then, R is an n-torsion free ring with 1 and has the property $P_{10}(n)$, but
R is not commutative. Thus, in particular, $P_{10}(n)$ is not a $C(n)$-property if $3 \leq n \leq 10$. What about $P_{10}(11)$?

Remark 4. In view of Remark 3, it seems unavoidable to exclude the property $P_{10}(n)$ from the statement in Corollary 5. However, we have the following: If an s-unital ring R has the property $P_i(m) \wedge P_j(n)$ for some positive integers i, j, m and n such that $1 \leq i, j \leq 10$, $2 \leq m, n$ and $(m, n) = 1$, then R is commutative. In fact, if R has this property, then R has the property $P_{10}(mA) \wedge P_{10}(n)$ for some positive integer a (Proposition 3 (ii)). Then R is commutative by Proposition 1 and [14. Theorem] (cf. the proof of [8. Theorem 1]).

REFERENCES

OKAYAMA UNIVERSITY

TOKUSHIMA UNIVERSITY

OKAYAMA UNIVERSITY

(Received December 9, 1981)