On the p'-section sum in a finite group ring

Yukio Tsushima*

*Osaka City University

ON THE p'-SECTION SUM IN A FINITE
GROUP RING

YUKIO TSUSHIMA

Let G be a finite group, and p a prime number. Let $C_1 = \{1\}, C_2, \ldots, C_r$ be all the p-regular classes of G. We denote by S_i the p'-section containing C_i, namely $S_i = \{ \sigma \in G | \sigma' \in C_i \}$, where σ' denotes the p'-component of the element σ of $G (i = 1, 2, \ldots, r)$. In particular, S_1 is the set consisting of all the p-elements of G. Let k be a field of characteristic p, and J the Jacobson radical of the group ring $k[G]$.

Recently, the author is informed by T. Okuyama that in 1955 R. Brauer stated the following without proof.

Theorem (Brauer [2]). Let $\hat{S}_i = \sum \sigma$, where the summation is taken over all $\sigma \in S_i$. Then there holds that $\cap_{i=1}^r (0 : \hat{S}_i) = J$.

We recall here the previous paper [6]. There, we showed that $(0 : \hat{S}_1) \supset J$, while the inclusion $\cap_{i=1}^r (0 : \hat{S}_i) \subset J$ is an easy deduction of Proposition 1 in [6]. So that, we should like to provide a new proof of the above Theorem along with the arguments used in the proofs of these results.

As a consequence of the Theorem, we have that if e is a primitive idempotent of $k[G]$, then $k[G] \hat{S}_e$ is the socle of $k[G] e$, provided $\hat{S}_e \neq 0$. The condition will be described by the value on C_1 of the Brauer character afforded by $k[G] e$. On the other hand, Okuyama's proof of the Theorem is different from ours. There, the condition $\hat{S}_e \neq 0$ is discussed in connection with the coefficients a_i's which appear in the expression $e = \sum_{i=1}^r a_i \sigma$, $a_i \in k$. We refer to it at the end of this paper.

In the proof of the Theorem, from the beginning, we may assume that k is a splitting field for G. In addition to the notations introduced above, we shall use the following.

Let p be a prime divisor of p in an algebraic number field containing the $|G|$-th roots of unity, and ν the exponential valuation associated with p multiplied by a factor to make $\nu(p) = 1$. We assume henceforth k is the residue class field of ν. If α is a p-integer, then $\overline{\alpha}$ denotes the residue class of α in k. Let $\{\eta_1, \eta_2, \ldots, \eta_r\}$ and $\{\phi_1, \phi_2, \ldots, \phi_r\}$ be the set of the principal indecomposable Brauer characters of G and the set of
the irreducible Brauer characters of G respectively, in which we arrange the indices so that $(\eta_j, \phi_j) = \delta_{ij}$ for all i, j ($i, j = 1, 2, \cdots, r$). The k-algebra $k[G]/J$ is isomorphic to a direct sum of full matrix algebras over k; $k[G]/J \cong \sum_{i=1}^{r} M(n_i, k)$. We assume that under the isomorphism the simple component corresponding to the irreducible k-character φ_i is mapped onto $M(n_i, k)$ and so $n_i = \phi_i(1)$. If I is a subset of $k[G]$, then $(0 : I)$ denotes the set of the right annihilators of I in $k[G]$. Finally, we put $\lambda(\sum_{a \in k} a_a) = a_1$, where $a_a \in k$ and 1 denotes the identity of G.

Now we enter into the proof of the Theorem. Let S_i be a fixed p'-section and $\sigma \in C_i$. There holds that $\nu(\eta_i(\sigma)) \geq \nu(|C_0(\sigma)|)$ for all η_i ([3], (84.14)). After a suitable change of indices if necessary, we may assume that the first $\eta_1, \eta_2, \cdots, \eta_i$ are all that enjoy the equality sign in the above. We put $\eta_i(\sigma) = \eta_i(\sigma)/\mu \sigma$, where $|C_0(\sigma)| = \mu \sigma h$, $(\mu, h) = 1$.

From the orthogonality relation

$$\sum_{i=1}^{l} \eta_i(\sigma) \phi_i(\tau^{-1}) = \begin{cases} |C_0(\sigma)| & \text{if } \tau \text{ is conjugate to } \sigma \\ 0 & \text{otherwise} \end{cases}$$

and that $\varphi_i(\tau) = \varphi_i(\tau^\sigma)$ for any element τ of G, we get (reducing mod μ)

(*) \hspace{1cm} \sum_{i=1}^{l} \eta_i(\sigma) \varphi_i(\tau^{-1}) = \begin{cases} h & \text{if } \tau \in S_i \\ 0 & \text{otherwise.} \end{cases}$

Let $U_j = \sum_{i} k[G] e + J$, where e runs over the primitive idempotents such that $k[G] e$ affords a Brauer character η_i with $s > t$. Then U_j is a two sided ideal of $k[G]$. In fact, it is the inverse image of $\sum_{i=1}^{l} M(n_i, k)$ by the composite map $k[G] \rightarrow k[G]/J = \sum_{i=1}^{l} M(n_i, k)$. We identify $k[G]/U_j$ with $\sum_{i=1}^{l} M(n_i, k)$ and denote by ρ_i the projection of $k[G]/U_j$ onto $M(n_i, k)$. If we put $\mu = \sum_{i=1}^{l} \eta_i(\sigma) \rho_i$, then μ is a (symmetric) non-singular linear function on $k[G]/U_j$. Hence by Theorem 9 of Nakayama [3] (or see [1], (55.11)), there exists an element c of $k[G]$ such that $(0 : U_j) = k[G] c$ and $\eta_i(\sigma) = \lambda(\eta_i(\sigma))$ for all $x \in k[G]$, where ϕ is the natural map $k[G] \rightarrow k[G]/U_j$. From this, by making use of (*), we get easily that $c = h \hat{S}_j$ and hence $(0 : \hat{S}_j) = U_j$, as $k[G]$ is Frobeniusian. It is clear that $\cap_{j=1}^{l} U_j = J$ (namely, for any i, there exists a p-regular element σ such that $\nu(\eta_i(\sigma)) = \nu(|C_0(\sigma)|)$. This follows easily, for instance, from the relation $(\eta_i, \phi_j) = 1)$. Thus we conclude that $\cap_{j=1}^{l} (0 : \hat{S}_j) = J$ and the proof is complete.

From the above argument, we get also

Corollary A. Let e be a primitive idempotent of $k[G]$, and let η
be the Brauer character afforded by $k[G]e$. If S_j is a p'-section of G, then the following are equivalent:

1. $\hat{S}_j e \neq 0$.
2. $\nu(\eta(\sigma)) = \nu(|C_\sigma(\sigma)|)$, where σ is a p-regular element in S_j.

We continue our argument to give an alternative proof to the following result of Okuyama.

Corollary B (Okuyama [5]). Under the same notation as in Corollary A, let $e = \sum_{\sigma \in S_j} a_\sigma e$. Then the following are equivalent:

1. $\hat{S}_j e \neq 0$.
2. $\sum a_\sigma \neq 0$, where the summation is taken over all $\tau \in S_j^{-1} = \{\sigma^{-1} | \sigma \in S_j\}$.

Proof. Recall that if ξ is a symmetric linear function on $M(n, k)$, then there exists some $a \in k$ such that $\xi(x) = a \cdot \text{tr}(x)$ for all $x \in M(n, k)$ (since the set $\{xy - yx | x, y \in M(n, k)\}$ spans the subspace consisting of the elements of trace zero). In particular, we have $\xi(e) \neq 0$ for any primitive idempotent e. Keeping the notation used in the proof of the Theorem, we know that μ is a symmetric, non-singular linear function on $k[G]/U_j = \sum_{-1}^{j-1} M(n, k)$ and hence $\mu(e) \neq 0$ for any primitive idempotent e of $k[G]$ not contained in U_j. And if $e = \sum a_\sigma e$, then $\mu(e) = \sum a_\sigma \eta(\sigma) \overline{\phi_\eta(\tau)} = (\sum a_\sigma) \overline{h}$, where the second summation is taken over all $\tau \in S_j^{-1}$. From these observations, we get the above assertion.

Remark. According to a result of Okuyama [5], there holds that the summation $\sum a_\sigma$ in the above (2) is equal to the restricted summation $\sum a_\sigma$, where τ runs over all $\tau \in S_j^{-1}$.

REFERENCES

Department of Mathematics
Osaka City University

(Received January 24, 1978)