On powers of artinian rings without identity

Ichiro Murase* \quad Hisao Tominaga†

*Japan Women’s University
†Okayama University

ON POWERS OF ARTINIAN RINGS WITHOUT IDENTITY

ICHIRO MURASE and HISAO TOMINAGA

0. Introduction. Throughout this paper an Artinian (Noetherian) ring means a left Artinian (Noetherian) ring, i.e., an associative ring with minimum (maximum) condition on left ideals. The existence of an identity is not assumed.

Recently L. S. Levy [3] proved that there is a surprising abundance of indecomposable Artinian, non-Noetherian rings; moreover they can be nonnilpotent. Here an indecomposable ring means a ring which is not the ring-direct sum of two nonzero rings, and this restriction aims to rule out uninteresting trivial cases. According to Hopkins' famous theorem ([2], p. 728)), every Artinian, non-Noetherian ring can not have a left or right identity, because an Artinian ring A is necessarily Noetherian if A contains such an identity. Therefore we have a large class of nonnilpotent rings which can not contain a left or right identity by the nature of themselves. The present paper is motivated by this interesting result.

Let A be any Artinian ring, and consider the descending chain of left ideals: $A \supseteq A^2 \supseteq A^3 \supseteq \cdots$. Then after a finite number of terms we have equalities only. We are interested in the subrings A^k. We shall prove that all A^k for $k \geq 2$ are Artinian and Noetherian even if A is non-Noetherian. It will be further proved that if $A \neq A^2$ then every A^k can not contain a (two-sided) identity.

As is well known, in an Artinian, non-Noetherian ring A the additive group of A contains a divisible torsion subgroup ([1], p. 285). There exists a unique maximal divisible, torsion subgroup D of A. The subgroup D is contained in the total annihilator W of A, i.e., $DA=0=AD$ ([1], p. 281). We shall consider such a ring A and prove the following theorems. But, N denotes the radical of A.

First, if A is indecomposable, then $A \neq A^2$, $N^2 \neq 0$, $A^2 \cap D \neq 0$ and A^2 contains no left or right identity. Next, according to Levy [3], if A is indecomposable then the ring $S=A/D$ can not have a left or right identity. However, it can be proved more generally that A/W can not have a left or right identity, whether A may be non-Noetherian or not, provided that A is indecomposable. Further, if $S=S^2$ and if A is indecomposable, then every A^k can not contain a left or right identity.
1. Every A^k is Artinian.

Theorem 1. If A is an Artinian (Noetherian) ring, then every subring A^k is Artinian (Noetherian).

Proof. We state the proof only for Artinian case. The slight modification needful in Noetherian case is obvious.

Assume that A^k is Artinian for some integer k. Let $L_1 \supseteq L_2 \supseteq L_3 \supseteq \cdots$ be any descending chain of left ideals of A^{k+1}. We claim that after a finite number of terms only the equality holds.

Consider first the descending chain of left ideals of A^k, $A^k L_1 \supseteq A^k L_2 \supseteq \cdots$. Then by assumption there exists an integer m such that $A^k L_m = A^k L_{m+1} = \cdots = M$.

Consider next the following two chains:

$$L_n + M \supseteq L_{n+1} + M \supseteq \cdots,$$

$$L_n \cap M \supseteq L_{n+1} \cap M \supseteq \cdots.$$

All $L_j + M$ and $L_j \cap M$ ($j = m, m+1, \cdots$) are left ideals of A^k, because $A^k (L_j + M) = A^k (L_j + A^k L_j) \subseteq M + A^{k+1} L_j \subseteq M + L_j$, and similarly $A^k (L_j \cap M) \subseteq M \cap L_j$. Therefore there exists an integer $n \geq m$ such that

$$L_n + M = L_{n+1} + M = \cdots,$$

$$L_n \cap M = L_{n+1} \cap M = \cdots.$$

Then, using the modular law, we can have

$$L_n = L_n \cap (L_n + M) = L_n \cap (L_{n+1} + M) = L_{n+1} + (L_{n+1} \cap M) = L_{n+1}.$$

The proof can be now completed by induction on k.

2. Principal Peirce decompositions of A and A^k. Let A be any nonnilpotent Artinian ring, and N the radical of A. Then the identity of the ring A/N can be lifted to an idempotent e of A, which will be called a principal idempotent of A. We have the Peirce decompositions:

$$A = Ae + L, \quad A = eA + R,$$

where L is the left annihilator of e in A, and R the right annihilator of e in A. Naturally both L and R are contained in N, and so we
have

\[N = Ne + L, \quad N = eN + R. \]

Since \(R = Re + R \cap L \) and \(L = eL + L \cap R \),

(1)

\[A = eAe + Re + eL + L \cap R, \]

\[N = eNe + Re + eL + L \cap R. \]

We call (1) the principal Peirce decomposition of \(A \) with respect to \(e \).

Let \(T = L \cap R \). Then we have

\[RL = (Re + T) (eL + T) = ReL + T^2, \]

\[RT^k = (Re + T) T^k = T^{k+1} = T^kL \]

for all positive integers \(k \).

Theorem 2. Let \(A \) be any nonnilpotent Artinian ring, and let \(T_k = ReL + T^k \) \((k \geq 1)\). Then there hold the following:

(i) \(A^* = eAe \oplus Re \oplus eL \oplus T_k \).

(ii) Let \(N_k = eNe \oplus Re \oplus eL \oplus T_k \). Then \(N_k \) is the radical of \(A^* \).

(iii) \(N_k = A^{k-1}N + NA^{k-1} \). But, here \(k \geq 2 \).

(iv) \(A^*/N_k \cong A/N \) (a ring-isomorphism).

Remark. Here the notation \(\oplus \) means a module-direct sum, while \(+ \) means merely a linear sum. However, when it is self-evident and there is no fear of confusion, we write \(+ \) also for \(\oplus \).

Proof. (i) Recall (1). Then it is obvious that (i) holds for \(k = 1 \). Therefore it can be proved by induction on \(k \). Assume that it holds for some integer \(k \). Then we have

\[A^{k+1} = (eA + R) (eAe + Re + eL + ReL + T^k) \]

\[= eA (eAe + Re) + R (eAe + Re) \]

\[+ eA (eL + ReL + T^k) + R (eL + ReL + T^k) \]

\[= eA + Re + eL + ReL + T^{k+1}. \]

(ii) – (iv) We have

\[A^{k-1}N + NA^{k-1} = (eAe + Re + eL + ReL + T^{k-1}) (Ne + L) \]

\[+ (eN + R) (eAe + Re + eL + ReL + T^{k-1}) \]

\[= (eAe + eL)Ne + (Re + ReL + T^{k-1})Ne \]

\[+ (eAe + eL)L + (Re / ReL + T^{k-1}) L \]

\[+ eN(eAe + Re) + eN(eL + ReL + T^{k-1}) \]

\[+ R(eAe / Re) + R(eL + ReL + T^{k-1}). \]

Deleting redundant terms, we get
1. MURASE and H. TOMINAGA

\[A^{k-1}N + NA^{k-1} = eNe + eL + Re + ReL + T^k = N_k. \]

Clearly \(N_k \) is a nilpotent two-sided ideal of \(A^k \). Moreover it is easy
to see the following ring-isomorphisms:

\[A^k/N_k \cong eAe/eNe \cong A/N. \]

Hence \(N_k \) is the radical of the Artinian ring \(A^k \).

Remember that (i) is the principal Peirce decomposition of \(A^k \) with
respect to \(e \).

Consider the descending chain of left ideals:

\[A \supseteq A^2 \supseteq A^3 \supseteq \ldots. \]

Let \(\rho \) be the nilpotency exponent of \(N \). Then \(T^\rho = 0 \), because \(T = L \cap R \subseteq N \), and so

\[A^\rho = eAe + Re + eL + ReL. \]

Besides, \(A^k = A^\rho \) for all \(k \geq \rho \).

Theorem 3. For a non-nilpotent Artinian ring \(A \), we have \(A^k = A^{k+1} \)
if and only if \(T^k \subseteq ReL \).

Proof. Clearly \(A^k = A^{k+1} \) is equivalent to \(A^k = A^\rho \), which holds if
and only if \(ReL \rightarrow T^\rho = ReL \). This is equivalent to \(T^k \subseteq ReL \).

Theorem 4. Let \(A \) be a non-nilpotent Artinian ring. Then there
hold the following:

(i) \(A = A^2 \) if and only if \(R \cap L = RL \).

(ii) \(A^2 = A^3 \) if and only if \(RL = ReL \).

Proof. (i) By Theorem 3, \(A = A^2 \) if and only if \(R \cap L \subseteq ReL \).

Note the following relation:

\[R \cap L \supseteq RL \supseteq ReL. \]

Then (i) is obvious.

(ii) By Theorem 3, \(A^2 = A^3 \) if and only if \(T^2 \subseteq ReL \), which is
equivalent to \(RL = ReL \), because \(RL = ReL + T^\rho \).

3. **Every** \(A^k (k \geq 2) \) **is Noetherian.** In the previous paper [4], we
have proved the following theorem: An Artinian ring \(A \) is Noetherian if
and only if \(R \) is a finite set. But, let \(R = A \) if \(A \) is nilpotent.

Now, recall the theorem of Hopkins that \(Re \) is a finite set, which
was also reproved in [4]. Then, since \(R = Re + R \cap L = Re + T \),
we can restate the above theorem as follows.

Theorem 5. An Artinian ring \(A \) is Noetherian if and only if \(T \) is
a finite set. But, let \(T = A \) if \(A \) is nilpotent.

For further study we cite also the following result of the previous paper \([4]\): In an Artinian ring \(A \), the group \((R, +)\) satisfies the minimum condition on subgroups. But, let \(R = A \) if \(A \) is nilpotent.

Theorem 6 (cf. the proof of \([3]\), Proposition 2.6). In a nonnilpotent Artinian ring \(A \), \(ReL \) is a finite set.

Proof. The elements of \(ReL \) are finite sums \(\sum a_i b_i, a_i \in Re, b_i \in eL \). Therefore \(ReL \) forms a subgroup of the group \((R, +)\), and it satisfies the minimum condition on subgroups. Besides, the group \(ReL \) is of bounded order, because \(Re \) is a finite subgroup of \((R, +)\). Now, as is well known, an additive Abelian group \(G \) of bounded order is a direct sum of cyclic groups. If \(G \) moreover satisfies the minimum condition, then the number of the summands must be finite, and hence \(G \) is finite. By this reason, \(ReL \) is finite.

Theorem 7 (Levy \([3]\), p. 281). Let \(A \) be an Artinian ring. If \(A = A^2 \) then \(A \) is Noetherian.

Proof. Clearly we can assume that \(A \) is nonnilpotent. If \(A = A^2 \), then we have \(T = RL = ReL \) by Theorem 4. Hence \(T \) is finite, and so \(A \) is Noetherian by Theorem 5.

According to Fuchs \([1]\), an Artinian ring \(A \) is Noetherian if and only if the group \((A, +)\) contains no quasicyclic \(p \)-group. A quasicyclic \(p \)-group is a group of type \(Z(p^\infty) \), and so it is a divisible torsion group. Furthermore such a group belongs to the total annihilator \(W \) of \(A \).

Let \(A \) be an Artinian, non-Noetherian ring. Then by the above theorem, \(A \) contains a divisible torsion subgroup, and the subgroup is contained in \(R \), because naturally \(W \subseteq R \).

Recall now the following theorem of Kuroš ([1], p. 65): The subgroups of an additive Abelian group \(G \) satisfy the minimum condition if and only if \(G \) is a direct sum of a finite number of quasicyclic and/or cyclic \(p \)-groups.

Since the group \((R, \div)\) satisfies the minimum condition on subgroups, the theorem of Kuroš can be applied to the subgroup \(T \) of \(R \). Thus we have

\[
(3) \quad T = T_0 + D, \quad T_0 \cap D = 0,
\]

where \(T_0 \) is a finite subgroup and \(D \) is the direct sum of a finite number
of quasicyclic p-groups. Therefore we can write
\[A = A_0 + D, \quad A_0 \cap D = 0, \]
where $A_0 = eAe + Re + eL + T_0$. Then it is obvious that D is a unique maximal divisible, torsion subgroup of the additive group of A.

Remark. The following theorem of Szász-Levy ([3], p. 281) is worthy of note: If an Artinian, non-Noetherian ring A is indecomposable, then the additive group of A is primary. It implies that the subgroups of type $Z(p^n)$ of A are of the same prime p.

Theorem 8. Let A be any Artinian ring. Then every subring A^k is Noetherian for $k \geq 2$.

Proof. If A itself is Noetherian, then every A^k is Noetherian. It is already proved in Theorem 1. Therefore there remains the case where A is non-Noetherian. In this case the group $(A, +)$ contains the maximal divisible, torsion subgroup D.

First, assume that A is non-nilpotent, and consider the Peirce decompositions (1) of A and (i) of A^k in Theorem 2. The term T can be written as (3). Note that T_0 is a finite subgroup of T. Then obviously $T^k = T_0^k$, and it is finite. Therefore, by Theorem 6, $T_k = ReL + T^k$ is finite, too. Hence A^k is Noetherian by Theorem 5.

Next, assume that A is nilpotent. Then, since the group $(A, +)$ satisfies the minimum condition, by the theorem of Kuroš we can write $A = A_0 + D, \quad A_0 \cap D = 0$, where A_0 is a finite subgroup. Then clearly $A^k = A_0^k$, and it is finite. Hence A^k is Noetherian.

Theorem 9. Let A be an Artinian ring such that $A \neq A^2$. Then every A^k can not contain an identity.

Proof. In case A is nilpotent, it is trivial. Further, if A is decomposable and $A \neq A^2$, then for some indecomposable direct summand A_i we have $A_i \neq A_i^2$. Therefore it is clear that A may be assumed to be indecomposable and non-nilpotent.

Under this assumption, suppose that A^k contains an identity e'. We first claim that e' is a principal idempotent of A.

Consider (1) and write an element a of A as
\[a = a_{11} + a_{01} + a_{10} + a_{00}, \]
ON POWERS OF ARTINIAN RINGS WITHOUT IDENTITY

\[a_{11} \subseteq eAe, \ a_{01} \subseteq Re, \ a_{10} \subseteq eL, \ a_{00} \subseteq T. \]

Then \(a + N = a_{11} + N \). Since \(a_{11} \subseteq A^k \), we have

\[
(e' + N)(a + N) = (e' + N)(a_{11} + N) = e'a_{11} + N = a_{11} + N = a + N.
\]

Therefore \(e' + N \) is the identity of the semisimple ring \(A/N \), and hence \(e' \) is a principal idempotent of \(A \).

Take now \(e' \) as the principal idempotent \(e \) for (1), and consider (i) of Theorem 2. Then we must have \(A^k = eAe \), and so \(Re = 0 \) and \(eL = 0 \). Consequently,

\[A = eAe + T, \quad A^2 = eAe + T^2. \]

Here \(T \neq 0 \), because \(A \neq A^2 \). Moreover, \(A = eAe + T \) is clearly a ring-direct sum. It is a contradiction.

Theorem 10. Let \(A \) be a nonnilpotent Artinian, non-Noetherian ring. If \(A \) is indecomposable, then there hold the following:

(i) \(A \neq A^2 \).

(ii) \(N^2 \neq 0 \).

(iii) \(A^2 \cap D \neq 0 \).

(iv) \(A^2 \) contains no left or right identity.

Proof. (i) It is clear by Theorem 7.

(ii) Suppose \(N^2 = 0 \). Then by (i) of Theorem 2, we have \(A^2 = eAe + Re + eL \), because both \(ReL \) and \(T^2 \) are contained in \(N^2 \). Therefore we have \(A = A^2 + T \) and \(A^2 T = 0 = TA^2 \). It follows that \(A \) is the ring-direct sum of \(A^2 \) and \(T \), contradictory to assumption.

(iii) Suppose \(A^2 \cap D = 0 \). Note that \(D \) is a direct summand of \(A \) and that the complementary summand can be so chosen as to contain \(A^2 \) ([1], p. 63). Therefore we can write

\[A = B + D, \quad B \cap D = 0, \quad A^2 \subseteq B. \]

Then \(B^2 = (B + D)^2 = A^2 \subseteq B. \) Hence \(A = B \oplus D \), a ring-direct sum. It is a contradiction.

(iv) By reason of (iii) \(A^2 \) contains a nonzero element of \(D \). It annihilates every element of \(A^2 \). Therefore \(A^2 \) can not contain a left or right identity.

Theorem 11. Let \(A \) be a nonnilpotent Artinian ring with radical \(N \) of nilpotency exponent \(\rho \geq 2 \). If \(A^{\rho - 1} \neq A^\rho \) and \(A^{\rho - 1} \) is indecomposable, then \(A^\rho \) contains no left or right identity.

Proof. Suppose that \(A^\rho \) contains a left identity \(e' \). By the same
argument as that in the proof of Theorem 9, we can see that e' is a principal idempotent of A. Take e' as e for (1), and consider (2). Then we must have $A^p = e Ae + e L$, and

$$A^{p-1} = (e Ae + e L) + T^{p-1} = A^p + T^{p-1}.$$

Here $(e Ae) T^{p-1} = 0 = T^{p-1} (e Ae)$, $(e L) T^{p-1} \subseteq N^p = 0$ and $T^{p-1} (e L) = 0$. Therefore A^{p-1} is the ring-direct sum of $A^p \neq 0$ and $T^{p-1} \neq 0$. It is a contradiction.

5. The ring $S = A/D$.

Theorem 12. Let A be a nonnilpotent Artinian ring with the total annihilator $W \neq 0$. If A is indecomposable, then the ring A/W contains no left or right identity.

Proof. Suppose that A/W contains a left identity $f + W$, $f \in A$. Then $f^2 \equiv f \pmod W$, and f acts on the elements of A as a left identity modulo W. Since W is contained in the radical N of A, the element f acts on A as a left identity modulo N. Hence $f + N$ is the identity of A/N.

Let $w = f^2 - f$ and $e = f + w$. Then $e^2 = f^2 = f + w = e$, and $e \equiv f \pmod N$. Therefore e is a principal idempotent of A. Consider the Peirce decomposition of A with respect to e, and let it be (1). Then we have naturally $W \subseteq R \cap L$.

For every element x of R,

$$fx = (e - w)x = ex - wx = 0.$$

On the other hand we have $fx \equiv x \pmod W$. Therefore $x \in W$, and we see $R \subseteq W$. It follows that $Re = 0$ and $R \cap L \subseteq W$. Hence $W = R \cap L$. Therefore we have

$$A = (e Ae + e L) \oplus W.$$

This is a ring-direct sum. It is a contradiction.

Theorem 13 (Levy [3], p. 290). If a nonnilpotent Artinian, non-Noetherian ring A is indecomposable, then the ring $S = A/D$ contains no left or right identity.

Proof. Suppose that S has a left identity $f + D$. Then f acts on the elements of A as a left identity modulo D, and also modulo W, because $D \subseteq W$. Then $f + W$ is a left identity of A/W, contradictory to Theorem 12.
Theorem 14. Let A be a nonnilpotent Artinian, non-Noetherian ring, and let $S = A/D$. Then $S = S^2$ if and only if $T = ReL + D$.

Proof. Consider (1) and (2):

$$A = e Ae + Re + eL + T,$$

$$A^p = e Ae + Re + eL + ReL.$$

The condition $S = S^2$ is equivalent to $S = S^p$, i.e.,

$$A/D = (A/D)^p = (A^p + D)/D.$$

Therefore, if $S = S^2$, then we have $A = A^p + D$, which implies $T = ReL + D$.

Theorem 15. Let $S = A/D$ under the same assumption as that in Theorem 14. If $S = S^2$, and if A is indecomposable, then every A^p can not contain a left or right identity.

Proof. By Theorem 14, $T = ReL + D$. Here we have $ReL \cap D \neq 0$, because otherwise we would have

$$A = A^p \oplus D$$

(a ring-direct sum), contradictory to assumption. Therefore every A^p contains a nonzero element of D, and hence it can not contain a left or right identity.

As for the case of $S \neq S^2$, it is not yet certain to the authors whether $A^p (= A^{p+1} = \cdots)$ can contain a one-sided identity or not. Remember that A^p is an idempotent Artinian, Noetherian ring. In general, some of such rings can contain a one-sided identity, others can not.

Example. Let $K = \mathbb{Z}/p\mathbb{Z}$ (p a prime), and consider the ring A expressed as follows:

$$A = \begin{pmatrix} K & 0 & 0 \\ K & 0 & 0 \\ K & K & K \end{pmatrix}.$$

It is an Artinian, Noetherian ring with $A = A^2$. The radical of A is

$$N = \begin{pmatrix} 0 & 0 & 0 \\ K & 0 & 0 \\ K & K & 0 \end{pmatrix}.$$

We have $AN \neq N$ and $NA \neq N$. Therefore A contains neither left nor right identity.
I. MURASE and H. TOMINAGA

REFERENCES

DEPARTMENT OF MATHEMATICS
JAPAN WOMEN'S UNIVERSITY
2-8-1, MEJIRODAI, BUNKYO-KU
TOKYO, 112 JAPAN

AND

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY
3-1-1, TSUSHIMA-NAKA
OKAYAMA, 700 JAPAN

(Received April 3, 1978)