Hasse Principle” for Finite p-Groups with Cyclic Subgroups of Index p2

Michitaku Fuma* Yasushi Ninomiya†

*Shinshu University
†Shinshu University

Copyright ©2004 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
“HASSE PRINCIPLE” FOR FINITE p-GROUPS WITH CYCLIC SUBGROUPS OF INDEX p^2

MICHITAKU FUMA AND YASUSHI NINOMIYA

1. Introduction

Let G be a group. A map $f : G \rightarrow G$ satisfying $f(xy) = f(x)f(y)^x$ for every $x, y \in G$, where $f(y)^x = xf(y)x^{-1}$, is called a cocycle of G. Let f be a cocycle of G. If, for every $x \in G$, there exists $a \in G$ such that $f(x) = a^{-1}ax$ then f is called a local coboundary, and if there exists $a \in G$ such that $f(x) = a^{-1}ax$ for every $x \in G$ then f is called a (global) coboundary. G is said to enjoy “Hasse principle” if every local coboundary of G is a coboundary. Abelian groups trivially enjoy “Hasse principle”. It is known that a finite group G enjoys “Hasse principle” if and only if every conjugacy preserving automorphism of G is an inner automorphism ([6], Theorem 3.1).

Some types of groups enjoying “Hasse principle” are known ([1], [2], [3], [5], [6], [7], [8], [9]). For finite p-groups, it is known that the following groups enjoy “Hasse principle”.

1. finite p-groups with cyclic subgroups of index p ([1]);
2. extraspecial p-groups ([1]);
3. finite p-groups of order p^4 ([2]).

Among the known results, the following are useful for our study:

Theorem 1 ([2]). Metacyclic groups enjoy “Hasse principle”.

Theorem 2 ([3]). Let H be a central subgroup of G. If G/H is generated by xH and yH ($x, y \in G$) and every element of G/H can be written as x^ry^sH, then G enjoys “Hasse principle”.

Recently, M. Kumar and L. R. Vermani [3] proved that for an odd prime p, every non-abelian finite p-group of order p^m having a normal cyclic subgroup of order p^{m-2} but having no element of order p^{m-1} enjoys “Hasse principle”. Further they have described that there are fourteen 2-groups (up to isomorphism) of order 2^m of the above type and they showed that twelve of them enjoy “Hasse principle” but remaining two do not enjoy “Hasse principle”. In [4], for any prime p, all finite non-abelian p-groups of order p^m having cyclic subgroups of order p^{m-2} but having no element of order p^{m-1} are classified. From the result we see that there is a missing group in a description in [3], which is given by

$$\langle a, b \mid a^{2^{m-2}} = 1, b^4 = a^{2^{m-3}}, b^{-1}ab = a^{-1} \rangle$$
(see [4], Remark 3 (1)). This group is metacyclic, and so enjoys “Hasse principle”. Further, two groups given in [3], Theorem 3.4 are isomorphic (see [4], Remark 3 (2)).

In this note we report that every non-abelian p-group of order p^m having a cyclic subgroup of order p^{m-2} but having no normal cyclic subgroup of order p^{m-2} and no element of order p^{m-1} enjoys “Hasse principle”. From now on suppose that G is a non-abelian p-group of this type.

(I) For an odd prime p, there are seven possibilities about G. Using notation given in [4], we here list these groups:

$$G_1 = \langle x, y, z | x^{p^{m-2}} = 1, y^p = z^p = 1, xy = yx, z^{-1}xz = xy, yz = zy \rangle \quad (m \geq 3);$$

$$G_5 = \langle x, y, z | x^{p^{m-2}} = 1, y^p = z^p = 1, xy = yx, z^{-1}xz = xy, z^{-1}yz = x^{p^{m-3}}y \rangle \quad (m \geq 4);$$

$$G_6 = \langle x, y, z | x^{p^{m-2}} = 1, y^p = z^p = 1, xy = yx, z^{-1}xz = xy, z^{-1}yz = x^{p^{m-3}}y \rangle \quad (m \geq 4),$$

where r is a quadratic nonresidue mod p.

$$G_7 = \langle x, y, z | x^{p^{m-2}} = 1, y^p = z^p = 1, y^{-1}xy = x^{1+p^{m-3}}, z^{-1}xz = xy, yz = zy \rangle \quad (m \geq 4);$$

$$G_9 = \langle x, y | x^{p^{m-2}} = 1, y^2 = 1, y^{-1}xy = x^{1+p} \rangle \quad (m \geq 5);$$

$$G_{10} = \langle x, y | x^{p^{m-2}} = 1, x^{p^{m-3}} = y^2, y^{-1}xy = x^{1-p} \rangle \quad (m \geq 6);$$

$$G_{11} = \langle x, y, z | x^9 = 1, y^3 = 1, z^3 = x^3, xy = yx, z^{-1}xz = xy, z^{-1}yz = x^6y \rangle \quad (m \geq 4).$$

By Theorem 2, G_1 enjoys “Hasse principle”, and because G_9 and G_{10} are metacyclic by Theorem 1, they also enjoy “Hasse principle”.

(II) For $p = 2$, there are twelve possibilities about G. Again, using notation in [4], we list these groups:

$$G_5 = \langle x, y, z | x^{2^{m-2}} = 1, y^2 = z^2 = 1, xy = yx, z^{-1}xz = xy, yz = zy \rangle \quad (m \geq 4);$$

$$G_9 = \langle x, y | x^{2^{m-2}} = 1, y^4 = 1, x^{-1}yx = y^{-1} \rangle \quad (m \geq 5);$$

$$G_{13} = \langle x, y, z | x^{2^{m-2}} = 1, y^2 = z^2 = 1, xy = yx, z^{-1}xz = x^{-1}y, yz = zy \rangle \quad (m \geq 5);$$

$$G_{14} = \langle x, y, z | x^{2^{m-2}} = 1, y^2 = 1, z^2 = x^{2^{m-3}}, xy = yx, z^{-1}xz = x^{-1}y, yz = zy \rangle \quad (m \geq 5);$$
Proof. Let $f \in \text{Aut}_c G_5$ such that $f(z) = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_5$ with $0 \leq i, r < p^{m-2}$, $0 \leq j, s, t < p$ such that $f(x) = a^{-1} x a, f(y) = b^{-1} y b$, and so

\[f(x) = z^{-k} y^{-j} x^{-i} \cdot x \cdot x^i y^j z^k = z^{-k} x z^k, \]

\[f(y) = z^{-t} y^{-s} x^{-r} \cdot y \cdot x^r y^s z^t = z^{-t} y z^t. \]
As \(z^{-1}xz = xy \) and \(z^{-1}yz = x^{p^m - 3}y \) we have

\[
z^{-k}xz^k = x^{1 + (1 + 2 + \cdots + (k - 1))p^m - 3}y^k = x^{1 + \frac{k(k - 1)}{2}p^m - 3}y^k.
\]

We also have \(z^{-t}yz^t = x^{tp^m - 3}y \). Therefore \(f(x) = x^{1 + \frac{k(k - 1)}{2}p^m - 3}y^k, \ f(y) = x^{tp^m - 3}y \). Since \(f \) is an automorphism,

\[
f(z)^{-1}f(x)f(z) = f(z^{-1}xz) = f(xy) = f(x)f(y).
\]

We have

\[
f(z)^{-1}f(x)f(z) = z^{-1}(x^{1 + \frac{k(k - 1)}{2}p^m - 3}y^k)z = (z^{-1}xz)^{1 + \frac{k(k - 1)}{2}p^m - 3}(z^{-1}yz)^k = x^{1 + (k + \frac{k(k - 1)}{2})p^m - 3}y^{1 + k},
\]

\[
f(x)f(y) = x^{1 + \frac{k(k - 1)}{2}p^m - 3}y^kx^{tp^m - 3}y = x^{1 + (t + \frac{k(k - 1)}{2})p^m - 3}y^{1 + k}.
\]

Therefore the following congruence holds:

\[
1 + \left(k + \frac{k(k - 1)}{2} \right)p^m - 3 \equiv 1 + \left(t + \frac{k(k - 1)}{2} \right)p^m - 3 \pmod{p^m - 2}.
\]

From this it follows that \(k \equiv t \pmod{p} \). Then because \(0 \leq k, t < p \), we have \(k = t \). Thus we have \(f(x) = z^{-k}xz^k, \ f(y) = z^{-k}xz^k, \ f(z) = z^{-k}xz^k \). This shows that \(f \in \text{Inn} \ G_5 \), and so \(G_5 \) enjoys “Hasse principle”. By an analogous argument we can show that \(G_6 \) enjoys “Hasse principle”. \(\square \)

In the rest of the paper, we proceed with a similar argument as above. Given \(f \in \text{Aut}_c G \), the image \(f(g) \) of \(g \in G \) will be denoted by \(\overline{g} \).

\(G_7 \) enjoys “Hasse principle”.

Proof. Let \(f \in \text{Aut}_c G_7 \) such that \(\overline{z} = z \). Then there exist \(a = x^iy^jz^k \), \(b = x^iy^sz^t \in G_7 \) with \(0 \leq i, r < p^m - 2, 0 \leq j, k, s, t < p \) such that \(\overline{a} = a^{-1}xa, \ \overline{b} = b^{-1}yb \). We then have \(\overline{x} = x^{1 + jp^m - 3}y^k, \ \overline{y} = x^{-rp^m - 3}y, \ \overline{z} = z \). Since \(f \) is an automorphism, \(\overline{z}^{-1}\overline{x}\overline{z} = \overline{x}\overline{y} \). Because \(\overline{x}\overline{y} = x^{1 + (j - r)p^m - 3}y^{k + 1}, \ \overline{z}^{-1}\overline{x}\overline{z} = x^{1 + jp^m - 3}y^{k + 1} \), we have

\[
\overline{z}^{-1}\overline{x}\overline{z} = \overline{x}\overline{y} \iff rp^m - 3 \equiv 0 \pmod{p^m - 2}.
\]

Thus we have \(\overline{x} = x^{1 + jp^m - 3}y^k, \ \overline{y} = y, \ \overline{z} = z \). Therefore setting \(u = y^iz^k \), we have

\[
f(x) = u^{-1}xu, \ f(y) = u^{-1}yu, \ f(z) = u^{-1}zu,
\]

and so \(f \in \text{Inn} \ G_7 \). \(\square \)

\(G_{11} \) enjoys “Hasse principle”.
“HASSE PRINCIPLE” FOR FINITE p-GROUPS

Proof. Let $f \in \text{Aut}_c G_{11}$ such that $z = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{11}$ with $0 \leq i, r < 2^{m-2}$, $0 \leq j, k, s, t < 2$ such that $x = x^{-1} xa$, $y = b^{-1} yb$. We then have $x = x^{1+3k(k-1)} y^k$, $y = x^{6t} y$, $z = z$. Since f is an automorphism, $z^{-1} x z = x y$. Because $x y = x^{1+6t+3k(k-1)} y^{k+1}$, $z^{-1} x z = x^{1+6k+3k(k-1)} y^{k+1}$, we have $z^{-1} x z = x y$, $k = t$. Thus we have $x = x^{1+3k(k-1)} y^k$, $y = x^{6k} y$, $z = z$. Therefore setting $u = z^k$, we have

$$f(x) = u^{-1} xu, \quad f(y) = u^{-1} yu, \quad f(z) = u^{-1} zu,$$

and so $f \in \text{Inn} G_{11}$.

3. THE CASE $p = 2$

We here show that the groups $G_{17}, G_{18}, G_{22}, G_{24}, G_{25}$ and G_{26} given in (II) enjoy “Hasse principle”.

G_{17} enjoys “Hasse principle”.

Proof. Let $f \in \text{Aut}_c G_{17}$ such that $z = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{17}$ with $0 \leq i, r < 2^{m-2}$, $0 \leq j, k, s, t < 2$ such that $x = x^{-1} xa$, $y = b^{-1} yb$. We then have $x = x^{1+j+2^m-3} y^k$, $y = x^{j+2^m-3} y$, $z = z$. Since f is an automorphism, we have $z^{-1} x z = x y$. Because $x y = x^{1+(j+r)2^m-3} y^{k+1}$, $z^{-1} x z = x^{1+2^m-3} y^{k+1}$, we have $z^{-1} x z = x y$, $k = 0 \pmod{2}$. Thus we have $x = x^{1+j+2^m-3} y^k$, $y = y$, $z = z$. Therefore setting $u = y^j z^k$, we have $x = u^{-1} xu$, $y = u^{-1} yu$, $z = u^{-1} zu$, and so $f \in \text{Inn} G_{17}$.

G_{18} enjoys “Hasse principle”.

Proof. Let $f \in \text{Aut}_c G_{18}$ such that $z = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{18}$ with $0 \leq i, r < 2^{m-2}$, $0 \leq j, k, s, t < 2$ such that $x = x^{-1} xa$, $y = b^{-1} yb$. We then have $x = x^{j+2^m-3} + (-1)^k (1+k2^m-4) + k2^m-4 y^k$, $y = x^{r+j+2^m-3} y$, $z = z$. Since f is an automorphism, we have $z^2 = y$. Because $y = z^2 = x^{r+j+2^m-3} y$, $z^2 = y$, $k = 0 \pmod{2}$, we have $x = x^{j+2^m-3} + (-1)^k (1+k2^m-4) + k2^m-4 y^k$, $y = y$, $z = z$. Therefore setting $u = y^j z^k$, we have $x = u^{-1} xu$, $y = u^{-1} yu$, $z = u^{-1} zu$, and so $f \in \text{Inn} G_{18}$.

G_{22} enjoys “Hasse principle”.

Proof. Let $f \in \text{Aut}_c G_{22}$ such that $z = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{22}$ with $0 \leq i, r < 2^{m-2}$, $0 \leq j, k, s, t < 2$ such that $x = x^{-1} xa$, $y = b^{-1} yb$. We then have $x = x^{1+2^m-4} y^k$, $y = x^{1+2^m-3} y$, $z = z$. Since f is an automorphism, we have $z^{-1} x z = x^{1+2^m-4} y$. Because $x^{1+2^m-4} y = x^{1+2^m-3} + (1+k)2^m-4 y^k$, $z^{-1} x z = x^{1+k2^m-3} + (1+k)2^m-4 y^k$, $z^{-1} x z = x^{1+2^m-4} y$, $k = t$.

Produced by The Berkeley Electronic Press, 2004
Thus we have $\overline{x} = x^{1+2^{m-4}} y^k$, $\overline{y} = x^{k} y^{2^{m-3}}, \overline{z} = z$. Therefore setting $u = z^k$, we have $\overline{x} = u^{-1} x u$, $\overline{y} = u^{-1} y u$, $\overline{z} = u^{-1} z u$, and so $f \in \text{Inn} G_{22}$. □

G_{23} enjoys “Hasse principle”.

Proof. Let $f \in \text{Aut}_c G_{23}$ such that $z = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{23}$ with $0 \leq i, r < 2^{m-2}$, $0 \leq j, k, s, t < 2$ such that $\overline{x} = a^{-1} x a$, $\overline{y} = b^{-1} y b$. We then have

$$
\overline{x} = \begin{cases}
 x & (k = 0) \\
 x^{-1+2^{m-4}} y & (k = 1)
\end{cases}, \quad \overline{y} = x^{2^{m-3}} y, \quad \overline{z} = z.
$$

Since f is an automorphism, we have $\overline{z}^{-1} \overline{x} \overline{z} = \overline{x}^{-1+2^{m-4}} \overline{y}$. If $k = 0$,

$$
\overline{z}^{-1} \overline{x} \overline{z} = \overline{x}^{-1+2^{m-4}} \overline{y} \iff t = 0. \quad \text{If } k = 1,
$$

$$
\overline{z}^{-1} \overline{x} \overline{z} = x^{1+(t-1)2^{m-3}}, \quad \overline{z}^{-1} \overline{x} \overline{z} = x.
$$

Therefore $\overline{z}^{-1} \overline{x} \overline{z} = \overline{x}^{-1+2^{m-4}} \overline{y} \iff t = 1$. Thus we have

$$
\overline{x} = \begin{cases}
 x^{1+2^{m-4}} & (k = 0) \\
 x^{-1+2^{m-4}+2^{m-3}} y & (k = 1)
\end{cases}, \quad \overline{y} = x^{2^{m-3}} y, \quad \overline{z} = z.
$$

Therefore setting $u = z^k$, we have $\overline{x} = u^{-1} x u$, $\overline{y} = u^{-1} y u$, $\overline{z} = u^{-1} z u$, and so $f \in \text{Inn} G_{23}$.

G_{24} enjoys “Hasse principle”.

Proof. Let $f \in \text{Aut}_c G_{24}$ such that $z = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{24}$ with $0 \leq i, r < 2^{m-2}$, $0 \leq j, k, s, t < 2$ such that $\overline{x} = a^{-1} x a$, $\overline{y} = b^{-1} y b$. We then have

$$
\overline{x} = \begin{cases}
 x^{1+2^{m-4}} & (k = 0) \\
 x^{-1+2^{m-4}+2^{m-3}} y & (k = 1)
\end{cases}, \quad \overline{y} = x^{2^{m-3}} y, \quad \overline{z} = z.
$$

Since f is an automorphism, we have $\overline{z}^{-1} \overline{x} \overline{z} = \overline{x}^{-1+2^{m-4}} \overline{y}$. If $k = 0$,

$$
\overline{z}^{-1} \overline{x} \overline{z} = \overline{x}^{-1+2^{m-4}} \overline{y} \iff r \equiv 0 \pmod{2}. \quad \text{If } k = 1,
$$

$$
\overline{z}^{-1} \overline{x} \overline{z} = x^{1+(r-j)2^{m-3}}, \quad \overline{z}^{-1} \overline{x} \overline{z} = x^{2^{m-3}} x = x^{1+j2^{m-3}}.
$$

Therefore $\overline{z}^{-1} \overline{x} \overline{z} = \overline{x}^{-1+2^{m-4}} \overline{y} \iff r \equiv 0 \pmod{2}$. Thus we have

$$
\overline{x} = \begin{cases}
 x^{1+2^{m-4}} & (k = 0) \\
 x^{-1+2^{m-4}+2^{m-3}} y & (k = 1)
\end{cases}, \quad \overline{y} = y, \quad \overline{z} = z.
$$
Therefore setting $u = y^j$, we have $\overline{x} = u^{-1} x u$, $\overline{y} = u^{-1} y u$, $\overline{z} = u^{-1} z u$, and so $f \in \text{Inn} G_{24}$.

G_{25} enjoys “Hasse principle”.

Proof. Let $f \in \text{Aut}_c G_{25}$ such that $\overline{z} = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{25}$ with $0 \leq i, r < 2^{m-2}$, $0 \leq j, k, s, t < 2$ such that $\overline{x} = a^{-1} x a$, $\overline{y} = b^{-1} y b$. We then have

$$\overline{x} = \begin{cases} x^{1+2^{m-3}} & (k = 0) \\ x^{-1+2^{m-4}+j2^{m-3}} y & (k = 1) \end{cases}, \quad \overline{y} = x^{r2^{m-3}} y, \quad \overline{z} = z.$$

Since f is an automorphism, we have $\overline{z}^{-1} x \overline{z} = \overline{x}^{-1+2^{m-4}} \overline{y}$. If $k = 0$, $\overline{x}^{-1+2^{m-4}} \overline{y} = x^{-1+2^{m-4}+(j+r)2^{m-3}} y$, $\overline{z}^{-1} x \overline{z} = x^{-1+2^{m-4}+j2^{m-3}} y$.

Therefore $\overline{z}^{-1} x \overline{z} = \overline{x}^{-1+2^{m-4}} \overline{y} \iff r \equiv 0 \pmod{2}$. If $k = 1$, $\overline{x}^{-1+2^{m-4}} \overline{y} = x^{1+(r-j)2^{m-3}} = x^{1+(r+j)2^{m-3}}$, $\overline{z}^{-1} x \overline{z} = x^{1+j2^{m-3}}$.

Therefore setting $u = y^j$, we have $\overline{x} = u^{-1} x u$, $\overline{y} = u^{-1} y u$, $\overline{z} = u^{-1} z u$, and so $f \in \text{Inn} G_{25}$.

G_{26} enjoys “Hasse principle”.

Proof. Let $f \in \text{Aut}_c G_{26}$ such that $\overline{z} = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{26}$ with $0 \leq i, r < 8$, $0 \leq j, k, s, t < 2$ such that $\overline{x} = a^{-1} x a$, $\overline{y} = b^{-1} y b$. We then have $\overline{x} = x^{1+4j y^k}$, $\overline{y} = x^{4r y}$, $\overline{z} = z$. Since f is an automorphism, we have $\overline{x} = x^{1+4j y^k}$, $\overline{y} = x^{4r y}$, $\overline{z} = z$. Therefore setting $u = y^j z^k$, we have $\overline{x} = u^{-1} x u$, $\overline{y} = u^{-1} y u$, $\overline{z} = u^{-1} z u$, and so $f \in \text{Inn} G_{26}$.

Acknowledgement. The authors thank the referee for his or her comments.

References

Michitaku Fuma
Department of Mathematical Sciences
Faculty of Science
Shinshu University
Matsumoto 390-8621, Japan

Yasushi Ninomiya
Department of Mathematical Sciences
Faculty of Science
Shinshu University
Matsumoto 390-8621, Japan
e-mail address: ysninom@gipac.shinshu-u.ac.jp

(Received December 2, 2003)