On coprimary decomposition theory for modules

Isao Mogami* Hisao Tominaga†
ON COPRIMARY DECOMPOSITION THEORY FOR MODULES

ISAO MOGAMI and HISAO TOMINAGA

Recently, in his paper [2], D. Kirby introduced the notion of coprimary modules over a commutative ring, and obtained several results on coprimary decompositions for Artinian modules. In this note, by making use of the technique employed in [1] and [3], we shall investigate the s-coprimary decomposition theory for modules over non-commutative rings.

1. Preliminaries. Throughout, \(R \) will represent a ring, and \(M \) a non-zero left \(R \)-module. Given an ideal \(\alpha \) of \(R \), \(M^\alpha \) is defined to be the intersection \(\cap bM \), where \(b \) runs over all the finite products of ideals of \(R \) not contained in \(\alpha \). (\(M^\emptyset = M \) by definition.) As in [3], \(p(M) \) will denote the prime radical of \(l(M) = \{ x \in R | xM = 0 \} \). If \(l(M') \subseteq p(M) \), or equivalently \(p(M') = p(M) \), for every non-zero submodule \(M' \) of \(M \), 0 is defined to be a primary submodule of \(M \) (cf. [1]). Now, dualizing the notion, \(M \) is defined to be coprimary if \(l(M/M') \subseteq p(M) \), or equivalently \(p(M/M') = p(M) \), for every proper submodule \(M' \) of \(M \). In case \(M \) is coprimary and \(p = p(M) \), \(M \) will be called a \(p \)-coprimary module. If \(M \) is coprimary and \(p(M) \) is nilpotent modulo \(l(M) \), \(M \) is defined to be s-coprimary.

The next is easy, and will be freely used without mention.

Proposition 1. The following conditions are equivalent:

1. \(M \) is coprimary.
2. \(\alpha M = M \) for every ideal \(\alpha \) of \(R \) not contained in \(p(M) \).
3. \(M^{\alpha(M)} = M \).

An ideal \(\alpha \) of \(R \) is called a coassociated ideal of \(M \) if there exists a proper submodule \(M' \) such that \(M/M' \) is \(\alpha \)-coprimary. The set of all coassociated ideals of \(M \) will be denoted by \(P^*(M) \). (\(P^*(0) = \emptyset \) by definition.) If there exists an ideal \(\alpha \) in \(R \) such that \(P^*(M/M') = \{ \alpha \} \) for every proper submodule \(M' \) of \(M \) then \(M \) is called a \(P^*-module \).

Proposition 2. (1) If \(M \) is coprimary, and \(M' \) a proper submodule of \(M \), then \(l(M/M') \) is a right-primary ideal.

(2) Let \(N \) and \(M' \) be submodules of \(M \). If \(N \) is \(p \)-coprimary and not contained in \(M' \) then \(N + M' \) is \(p \)-coprimary.

125
(3) If N and N' are \wp-coprimary submodules of M, then so is $N+N'$.

Proof. (1) Assume that there exist ideals a, b of R such that $ab \subseteq \iota(M/M')$ and $b \nsubseteq p(M/M')$. Then, $M' \supseteq abM = aM$, namely, $a \subseteq \iota(M/M')$.

(2) This is obvious by $N+M'/M' \cong N/N \cap M'$.

(3) Since $\iota(N+N') = \iota(N) \cap \iota(N')$, we have $p(N+N') = p(N) \cap p(N') = p$. If a is an ideal of R not contained in p, then $aN = N$ and $aN' = N'$, and hence $a(N+N') = N+N'$.

Proposition 3. (1) If M is \wp-s-coprime then p is prime and $aM \not= M$ for every ideal a of R contained in p.

(2) Let N and M' be submodules of M. If N is \wp-s-coprime and is not contained in M' then $M+M'/M'$ is \wp-s-coprime.

(3) If N and N' are \wp-s-coprime, then so is $N+N'$.

Proof. (2) and (3) are easy by Prop. 2 (2) and (3).

(1) If a is an ideal of R contained in p then there exists a positive integer h such that $a^hM = 0$, which means $aM \not= M$. Next, we shall prove that p is prime. Let b, c be ideals of R such that $bc \subseteq p$. As was shown just above, there holds $bcM \not= M$. If $c \not\subseteq p$, then $M \supseteq bcM = bM$, and hence $b \subseteq p$.

Proposition 4. If N is a submodule of M then $P^*(M/N) \subseteq P^*(M) \subseteq P^*(N) \cup P^*(M/N)$.

Proof. Let S be a proper submodule of M such that M/S is \wp-coprimary. If $S+N \not= M$ then $M/S+N$ is \wp-coprimary and $p \subseteq P^*(M/N)$. On the other hand, if $S+N = M$ then $N/N \cap S \subseteq M/S$ is \wp-coprimary and $p \subseteq P^*(N)$. The inclusion $P^*(M/N) \subseteq P^*(M)$ is almost evident.

2. Coprimary decompositions. A finite set $\{M_i | i \in I\}$ of coprimary (resp. s-coprimary) submodules of M is called a coprimary (resp. s-coprimary) decomposition of M if $M = \sum_{i \in I} M_i$, $M \not= \sum_{i \in I'} M_i$ for every proper subset I' of I, and $\varphi(M_i) \not= \varphi(M_j)$ for every $i \not= j$. If $\{N_j | j \in J\}$ is a finite set of coprimary (resp. s-coprimary) submodules of M with $M = \sum_{j \in J} N_j$, then Prop. 2 (3) (resp. Prop. 3 (3)) secures the existence of a coprimary (resp. s-coprimary) decomposition of M.

Proposition 5. Let $\{M_i | i = 1, \cdots, k\}$ be an s-coprimary decomposition of M, and $\wp_i = \varphi(M_i)$ $(i = 1, \cdots, k)$. Let a be an ideal of R.

(1) If $aM = M$ then $a \nsubseteq \wp_i$ $(i = 1, \cdots, k)$, and conversely.

(2) $M^a = \sum_{i \in a} M_i$. If a does not contain all \wp_i's then $M^a = bM$ with a finite product b of ideals of R not contained in a.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol17/iss2/3
Proof. (1) If \(a \) is contained in some \(p_i \), then \(a^\infty M_i = 0 \) for some positive integer \(h \). Accordingly, we have \(a^\infty M = M \), whence it follows \(a M = M \). The converse is obvious.

(2) Without loss of generality, we may assume that \(p_1, \ldots, p_i \subseteq a \) and \(p_{i+1}, \ldots, p_k \not\subseteq a \). In case \(l = k \), our assertion is evident by (1). Henceforth, we assume that \(0 < l < k \). There exists a positive integer \(h \) such that \(p_j^h M_i = 0 \) \((j = l + 1, \ldots, k)\). Since every \(p_i \) is prime by Prop. 3 (1), \(b = (p_{i+1} \cdots p_k)^h \not\subseteq p_i \) \((i = 1, \ldots, l)\). There holds then \(M^a = \sum_{i=1}^l M_i^a = \sum_{i=1}^l M_i p_i = \sum_{i=1}^l M_i = b M \supseteq M^a \), namely, \(M = \sum_{i=1}^l M_i = M \).

Theorem 1. Let \(\{M_i | i = 1, \ldots, k \} \) be an \(s \)-coprimary decomposition of \(M \), and \(p_i = p(M_i) \) \((i = 1, \ldots, k)\). Then there holds the following:

1. \(P^*(M) = \{p, \ldots, p_k\} \).

2. A prime divisor \(p \) of \(l(M) \) is contained in \(P^*(M) \) if and only if \(p M^p \not\subseteq M^p \). Every minimal prime divisor of \(l(M) \) is contained in \(P^*(M) \), and if \(p_i \) is minimal in \(P^*(M) \) then \(M^{p_i} = M_i \).

Proof. (1) Evidently, \(p(M) \) is nilpotent modulo \(l(M) \). Next, we claim that if \(M \) is \(s \)-coprimary then \(k = 1 \). Since \(p = p(M) = \cap_{i=1}^k p_i \) is prime by Prop. 3 (1), without loss of generality, we may assume that \(p_1, \ldots, p_m \subseteq p \) \((m > 1)\) and \(p_{m+1}, \ldots, p_k \not\subseteq p \). Then, by Prop. 5, \(M = M^p = \sum_{i=1}^m M_i \), whence it follows \(m = k \). Combining this with \(p = \cap_{i=1}^k p_i \), we obtain \(k = 1 \).

Now, we shall proceed into the proof of (1). Obviously, \(M = \sum_{i=1}^k M_i \) is \(p \)-coprimary as a non-zero homomorphic image of \(M_0 \), and so \(P^*(M) \supseteq \{p_i, \ldots, p_k\} \). Conversely, assume that \(M/N \) is \(p \)-coprimary. Then, \(M/N = \sum_{j=1}^m (M_j + N)/N \), where \((M_j + N)/N \) is either 0 or \(p \)-coprimary by Prop. 3 (2). Accordingly, by Prop. 5 (3), \(M/N \) has an \(s \)-coprimary decomposition \(\{M_j/N | j = 1, \ldots, l\} \) such that \(p(M_j/N) | j = 1, \ldots, l \subseteq \{p_i, \ldots, p_k\} \).

Then, as was mentioned above, we obtain \(l = 1 \) and \(p \subseteq \{p_i, \ldots, p_k\} \).

(2) If \(p \) is contained in \(P^*(M) = \{p_i, \ldots, p_k\} \), then we may assume that \(p_i, \ldots, p_m \subseteq p = p_m \) and \(p_{m+1}, \ldots, p_k \not\subseteq p \). Then, \(M^p = M_1 + \cdots + M_m \not\subseteq M^p \) by Prop. 5. Next, we shall prove the converse. Since \(p \supseteq \cap_{i=1}^m p_i \), we may assume that \(p_i, \ldots, p_m \subseteq p \) \((m > 1)\) and \(p_{m+1}, \ldots, p_k \not\subseteq p \). If \(p \) is a minimal prime divisor of \(l(M) \) then it is obviously in \(P^*(M) \).) Since \(M^p \not\subseteq P^*(M) \), we obtain \(\sum_{i=1}^m M_i \not\subseteq p(\sum_{i=1}^m M_i) \) by Prop. 5 (2), and hence \(p \subseteq p_i \), namely, \(p = p_i \), for some \(i < m \) (Prop. 5 (1)). The final assertion is evident by Prop. 5 (2).

Now, let \(\{M_i | i = 1, \ldots, k\} \) be an \(s \)-coprimary decomposition of \(M \). A subset \(P^* \) of \(\{p_i = p(M_i) | i = 1, \ldots, k\} \) is called an isolated subset of \(\{p_i | i = 1, \ldots, k\} \) if every \(p_i \) contained in one of the members of \(P^* \) belongs to \(P^* \). For an isolated subset \(P^* \) of \(\{p_i | i = 1, \ldots, k\} \) we set \(M^{P^*} = \sum_{p_i \in P^*} M_i \).
which coincides with $\sum_{p \in p^*} M^p$ by Prop. 5 (2) and is called a coisolated component of M. By Th. 1, we readily obtain the following:

Theorem 2. Suppose that M has an s-coprimary decomposition. Then, the set of coisolated components of M does not depend on the choice of s-coprimary decompositions of M.

Finally, we shall examine cases in which every s-coprimary decomposition is direct.

Theorem 3. Suppose R contains 1 and M is unital. Let $\{M_i \mid i = 1, \ldots, k\}$ be a finite set of s-coprimary submodules of M such that $M = \sum_{i=1}^k M_i$ and $(R \neq 0) \implies p_i = p(M_i)$ $(i = 1, \ldots, k)$. If p_i's are pairwise comaximal, then $M = \bigoplus_{i=1}^k M_i$ and this is the unique s-coprimary decomposition of M.

Proof. Since p_i's are comaximal, so are $l(M_i)$'s, and so $l(M_i) + l(\sum_{j \neq i} M_j) = R$. Hence, $M_i = (l(M_i) + l(\sum_{j \neq i} M_j))(M_i \cap \sum_{j \neq i} M_j) = 0$, which means $M = \bigoplus_{i=1}^k M_i$. Obviously, the last is an s-coprimary decomposition of M and $P^*(M) = \{p_1, \ldots, p_k\}$ by Th. 1. Further, every p_i is minimal in $P^*(M)$ and $M_i = M^{p_i}$ by Th. 1 (2), which means the uniqueness of the s-coprimary decompositions.

Corollary. Let R be a left Artinian ring with 1. If M is a completely reducible module with a finite number of homogeneous components, then the idealistic decomposition of M is the unique s-coprimary decomposition of M.

Proof. If N is an arbitrary irreducible submodule of M then $l(N) = p(N)$ is a maximal ideal of R and N is isomorphic to a minimal left ideal of $R/l(N)$. We have seen therefore that if N' is another irreducible submodule of M non-isomorphic to N then $p(N') \neq p(N)$. Further, to be easily seen, the homogeneous component of M containing N is $p(N)$-s-coprimary. Now, our assertion is a consequence of Th. 3.

3. **Coprimary decomposition theory and AR^*-modules.** When every non-zero submodule of M has a coprimary (resp. s-coprimary) decomposition, M is said to have the coprimary (resp. s-coprimary) decomposition theory. In case M has the coprimary (resp. s-coprimary) decomposition theory, every non-zero factor submodule of M has a coprimary (resp. s-coprimary) decomposition by Prop. 2 (resp. Prop. 3), and if N is a primary submodule of M then M/N is coprimary. Conversely, in case M has the primary decomposition theory, if M/N is coprimary then N is primary. (Cf. [3].)

If M satisfies one of the following equivalent conditions (I) and (II),
it is called an AR^*-module:

(1) For each submodule N of M and each ideal a of R, there exists a positive integer h such that $N + a^{-h}0 \supseteq a^{-1}N (= \{ x \in M | ax \subseteq N \})$.

(2) For each submodule N of M and each ideal a of R, there exists a positive integer h such that $aN + (a^{-h}0 \cap N) = N$.

One may remark here that if M is an AR^*-module, then so is every non-zero factor submodule of M. Finally, M is said to be p^*-worthy if $P^*(M^*)$ is finite and non-empty for every non-zero factor submodule M^* of M.

Proposition 6. If M has the s-coprimary decomposition theory, then there holds the following:

1. M is an s-module, that is, $p(M^*)$ is nilpotent modulo $l(M^*)$ for every non-zero factor submodule M^* of M.

2. For every submodule N of M, if $N^0 \supseteq (N^0)^0 \supseteq \cdots \supseteq (\cdots (N^0)^0 \cdots)^0_n$ then $n \leq s(N)$ with a positive integer $s(N)$ depending solely on N.

3. M is p^*-worthy.

4. M is an AR^*-module.

Proof. (1)-(3) are easy by Props. 3 and 5 and Th. 1.

(4) It suffices to consider non-zero N. Let $\{ N_i \mid i = 1, \cdots, k \}$ be an s-coprimary decomposition of N. We may assume then $a \subseteq p(N^0), \cdots, p(N_k)$ and $a \not\subseteq p(N_{i+1}), \cdots, p(N_k)$. There exists a positive integer h such that $a^hN_i = 0 (i = 1, \cdots, l)$. Since $N_1 + \cdots + N_l \subseteq a^{-h}0 \cap N$ and $N_{l+1} + \cdots + N_k \subseteq aN$, it follows $aN + (a^{-h}0 \cap N) = N$.

Proposition 7. Let M be an AR^*-module and an s-module.

1. If N is a P^*-submodule of M then N is s-coprimary.

2. If M is Artinian, then M has the s-coprimary decomposition theory.

Proof. (1) Let N' be an arbitrary proper submodule of N. Since $P^*(N/N') = \{ p \}$, there exists a proper submodule N'' of N containing N' such that N/N'' is p-s-coprimary. Now, let W be an arbitrary proper submodule of N, and choose a proper submodule W' of N containing W such that N/W' is p-s-coprimary. Since $l(N/N') \subseteq l(N/N'') \subseteq p$, Prop. 3 (1) yields $l(N/N')N + W' \subseteq N$, which means that $l(N/N')N$ is small in N. By the condition (I), there exists a positive integer h such that $l(N/N')N + ((l(N/N'))^{-h}0 \cap N) = N$. It follows then $(l(N/N'))^{-h}0 \cap N = N$, namely, $l(N/N')^hN = 0$. This means that $l(N/N') \subseteq p(N)$, that is, N is s-coprimary.

(2) Since every non-zero submodule of M is a finite sum of sum-
irreducible submodules, it remains only to show that if a non-zero submodule \(N \) of \(M \) is not \(s \)-coprimary then \(N \) is not sum-irreducible. There exists a proper submodule \(N' \) of \(N \) such that \(a = l(N/N') \nsubseteq p(N) \), or \(a^s N \neq 0 \) for every positive integer \(n \). By the condition (II), there exists a positive integer \(h \) such that \(aN + (a^{-h}0 \cap N) = N \). It is obvious that \(aN \subseteq N' \subseteq N \) and \(a^{-h}0 \cap N \subseteq N \).

Combining Prop. 6 with Prop. 7, we obtain at once

Theorem 4. Let \(M \) be an Artinian module. In order that \(M \) have the \(s \)-coprimary decomposition theory, it is necessary and sufficient that \(M \) be an \(AR^* \)-module and an \(s \)-module.

In [2], D. Kirby has proved that every unital Artinian \(s \)-module over a commutative ring with 1 has the \(s \)-coprimary decomposition theory. However, the following example will show that it is not the case for non-commutative rings.

Example. Let \(R = \begin{pmatrix} F & 0 & 0 \\ F & F & 0 \\ F & F & F \end{pmatrix} \), where \(F \) is a field, and \(M \) the left \(R \)-module \(R \). To be easily seen, \(a = \begin{pmatrix} 0 & 0 & 0 \\ F & 0 & 0 \\ F & F & F \end{pmatrix} \) is an ideal of \(R \) and \(a^s = a \cdot \begin{pmatrix} 0 & 0 & 0 \\ F & 0 & 0 \\ F & F & F \end{pmatrix} \).

Moreover, \(a^{-2}0 \cap a = 0 \), and we have \(a \cdot a + (a^{-2}0 \cap a) \neq a \), which means that \(M \) is not an \(AR^* \)-module.

References

Okayama University

(Received December 18, 1973)