On modified chain conditions

Hiroaki Komatsu* Hisao Tominaga†

*Okayama University
†Okayama University

ON MODIFIED CHAIN CONDITIONS

To Professor Yoshikazu Nakai on his sixtieth birthday

HIROAKI KOMATSU and HISAO TOMINAGA

Throughout the present paper, A will represent a ring without (possibly with) identity, N the prime radical of A, and M a left A-module. Given a left ideal I of A and an A-submodule M' of M, for each positive integer i we set $I^{-i}M' = \{ u \in M \mid I^{i}u \subseteq M' \}$. Following F. S. Cater [1], we say that M is almost Artinian (resp. almost Noetherian) if for each infinite descending (resp. ascending) chain $M_{1} \supseteq M_{2} \supseteq \cdots$ (resp. $M_{1} \subseteq M_{2} \subseteq \cdots$) of A-submodules of M there exist positive integers m, q such that $A^{q}M_{m} \subseteq M_{i}$ (resp. $M_{i} \subseteq A^{-q}M_{m}$) for all i, or equivalently there exists a positive integer p such that $A^{p}M_{p} \subseteq M_{i}$ (resp. $M_{i} \subseteq A^{-p}M_{p}$) for all i. Every left A-module which is Artinian (resp. Noetherian) in the usual sense is clearly almost Artinian (resp. almost Noetherian). If A is almost Artinian (resp. almost Noetherian), we say that A is an almost left Artinian (resp. almost left Noetherian) ring.

If M is a trivial left A-module, i.e. $AM = 0$, then clearly M is both almost Artinian and almost Noetherian. Further, every nilpotent ring is both almost left Artinian and almost left Noetherian. It is easy to construct a nilpotent ring which is neither left Artinian nor left Noetherian, e.g. $\begin{pmatrix} 0 & 0 \\ Q & 0 \end{pmatrix}$ is such a ring. On the other hand, $\begin{pmatrix} Q & 0 \\ Q & 0 \end{pmatrix}$ is a non-nilpotent ring which is almost left Artinian but not left Artinian, and $\begin{pmatrix} Z & 0 \\ Q & 0 \end{pmatrix}$ is a non-nilpotent ring which is almost left Noetherian but neither left Noetherian nor almost left Artinian.

In §1, several preliminary results in [1] will be reproved with notable briefness. In §2, we shall improve Theorems A, B of [1] (Theorems 1 and 2). The principal theorem of §3 states that if A is almost left Noetherian then A satisfies the ascending chain condition for semiprime ideals, every nil subring of A is nilpotent and the nilpotency indices of nil subrings are bounded (Theorem 3). In §4, we shall give some new conditions for a ring to be almost left Artinian (Theorem 4).

1. We begin with improving Propositions 4 and 9 of [1] all together.

Proposition 1. (1) The following are equivalent:

131
1) \(\lambda M \) is almost Artinian.

2) For each infinite descending chain \(M_1 \supseteq M_2 \supseteq \cdots \) of \(\lambda \)-submodules of \(M \) there exists a positive integer \(q \) such that \(A^q M_i = A^q M_i \) for all \(i \geq q \).

3) In each non-empty family \(\mathcal{M} \) of \(\lambda \)-submodules of \(M \) such that \(M' \in \mathcal{M} \) implies \(\lambda M' \in \mathcal{M} \), there exists a minimal member.

4) For each non-empty family \(\mathcal{M} \) of \(\lambda \)-submodules of \(M \), there exists a positive integer \(q \) and a member \(M' \) of \(\mathcal{M} \) such that \(\lambda A^q M' \subseteq M'' \) for every \(M'' \in \mathcal{M} \) with \(M' \subseteq M'' \).

(2) The following are equivalent:

1) \(\lambda M \) is almost Noetherian.

2) For each infinite descending chain \(M_1 \subseteq M_2 \subseteq \cdots \) of \(\lambda \)-submodules of \(M \) there exists a positive integer \(q \) such that \(A^q M_i = A^q M_i \) for all \(i \geq q \).

3) In each non-empty family \(\mathcal{M} \) of \(\lambda \)-submodules of \(M \) such that \(M' \in \mathcal{M} \) implies \(\lambda A^{-1} M' \in \mathcal{M} \), there exists a maximal member.

4) For each non-empty family \(\mathcal{M} \) of \(\lambda \)-submodules of \(M \), there exists a positive integer \(q \) and a member \(M' \) of \(\mathcal{M} \) such that \(M'' \subseteq \lambda A^{-1} M' \) for every \(M'' \in \mathcal{M} \) with \(M' \subseteq M'' \).

\textbf{Proof.} (1) As is easily seen, 4) \(\implies 3) \implies 2) \implies 1) \). Now, suppose 4) does not hold for some \(\mathcal{M} \). Then we can find successively \(M_i \in \mathcal{M} \) \((i = 1, 2, \ldots) \) such that \(M_{i+1} \subseteq M_i \) but \(\lambda A^i M_i \not\subseteq M_{i+1} \). We have thus seen that 1) implies 4).

(2) Obviously, 4) \(\implies 3) \implies 2) \implies 1) \). Suppose now that 4) does not hold for some \(\mathcal{M} \). Then we can find successively \(M_i \in \mathcal{M} \) \((i = 1, 2, \ldots) \) such that \(M_i \subseteq M_{i+1} \) but \(M_{i+1} \not\subseteq \lambda A^{-1} M_i \). Thus we have seen that 1) implies 4).

Now, Proposition 1 makes short the proof of [1, Proposition 7].

\textbf{Proposition 2} ([1, Proposition 7]). (1) Let \(\lambda M' \) be an \(\lambda \)-submodule of \(M \). Then \(\lambda M \) is almost Artinian if and only if both \(\lambda M' \) and \(\lambda M/M' \) are almost Artinian.

(2) Let \(\lambda M' \) be an \(\lambda \)-submodule of \(M \). Then \(\lambda M \) is almost Noetherian if and only if both \(\lambda M' \) and \(\lambda M/M' \) are almost Noetherian.

\textbf{Proof.} (1) It suffices to prove the if part. Let \(M_1 \supseteq M_2 \supseteq \cdots \) be an arbitrary descending chain of \(\lambda \)-submodules of \(M \). By Proposition 1 (1), there exists a positive integer \(p \) such that \(A^p M_i + M' = A^p M_i + M' \) and \(A^p (M_i \cap M') = A^p (M_i \cap M') \) for all \(i \geq p \). Since \(A^n M_i \subseteq A^n M_i + (A^p M_i \cap M') \subseteq A^n M_i + (M_i \cap M') \), it follows that \(A^n M_i \subseteq A^n M_i + \)
ON MODIFIED CHAIN CONDITIONS

\[A^p(M \cap M') = A^p M_1 + A^p(M_i \cap M') \subseteq M_i. \]

(2) It is enough to prove the if part. Let \(M_1 \subseteq M_2 \subseteq \ldots \) be an arbitrary ascending chain of \(A \)-submodules of \(M \). There exists a positive integer \(p \) such that \(A^p M_1 + M' \subseteq M_p + M' \) and \(A^p(M_i \cap M') \subseteq M_p \cap M' \) for all \(i \). Since \(A^p M_1 \subseteq M_p + (M_i \cap M') \), it follows \(A^p M_1 \subseteq A^p M_p + A^p(M_i \cap M') \subseteq M_p. \)

A left \(A \)-module \(M \) is said to be \(s \)-unital if \(u \in Au \) for each \(u \in M \), or equivalently if \(M' = AM' \) for each \(A \)-submodule \(M' \) of \(M \). If \(A \) is \(s \)-unital, we term \(A \) a left \(s \)-unital ring. Any ring \(A \) with a left identity is a left \(s \)-unital ring. Obviously, for \(s \)-unital left \(A \)-modules, the concept of "almost Artinian" (resp. "almost Noetherian") coincides with that of "Artinian" (resp. "Noetherian"). Now, suppose that \(A/\text{Ann} (M) \) is left \(s \)-unital. Then by [6, Theorem 1], \(A/AM \) is seen to be \(s \)-unital, and therefore by Proposition 2 (1) (resp. (2)), \(A/AM \) is almost Artinian (resp. almost Noetherian) when and only when \(A/AM \) is Artinian (resp. Noetherian). In particular, if \(A/I(A) \) is left \(s \)-unital, then \(A \) is almost left Artinian (resp. almost left Noetherian) when and only when \(A^2 \) is a left Artinian (resp. Noetherian) ring.

Lemma 1. (1) If a unital left \(A \)-module \(M \) is almost Artinian, then the socle of \(AM \) is essential in \(AM \).

(2) If a left \(A \)-module \(M \) is the sum of \(s \)-unital \(A \)-submodules \(M_\lambda \) (\(\lambda \in \Lambda \)), then \(M \) is \(s \)-unital. In particular, every completely reducible left \(A \)-module is \(s \)-unital.

Proof. (1) Immediate from the condition 3) of Proposition 1 (1).

(2) Let \(u \) be an arbitrary element of \(M \). Then \(u = u_1 + \cdots + u_k \) with some \(u_i \subseteq M_\lambda \). If \(k = 1 \) then \(au = u \) with some \(a \in A \), by hypothesis. Now, assume \(k > 1 \), and choose \(b \in A \) such that \(bu_k = u_k \). Then \(u - bu = (u_1 - bu_2) + \cdots + (u_{k-1} - bu_{k-1}) \). By induction method, there exists \(c \in A \) such that \(c(u - bu) = u - bu \). We conclude then \(u = (b + c - cb) u \).

The next is [1, Lemma 2]. However, for the sake of convenience, we shall give a somewhat economical proof.

Lemma 2. Let \(A \) be an almost left Artinian ring.

(1) Every non-nilpotent left ideal contains a minimal non-nilpotent left ideal.

(2) Every nil left ideal of \(A \) is nilpotent.
Proof. (1) is obvious by the condition 3) of Proposition 1 (1). In order to prove (2), suppose contrarily that there exists a nil left ideal \(I \) which is not nilpotent. By (1), we may assume that \(I \) is a minimal non-nilpotent left ideal. Consider the family of all left subideals \(I' \) of \(I \) with \(II' \not= 0 \). Then, again by the condition 3) of Proposition 1 (1), the family contains a minimal member \(I^* \). Since \(II^* = I^* \), there exists \(a^* \in I^* \) such that \(Ia^* = I^* \). Hence, \(aa^* = a^* (\neq 0) \) with some \(a \in I \). Obviously, \(a \) is not nilpotent. But this contradicts the hypothesis that \(I \) is nil.

Now, by making use of Lemmas 1 and 2, we reprove [1, Theorem 1].

Proposition 3. If \(A \) is almost left Artinian, then \(A \) is semiprimary, namely \(N \) is nilpotent and \(A/N \) is Artinian (semisimple).

Proof. Since \(N \) is nilpotent by Lemma 2 (2), it suffices to prove that if \(A \) is semiprime and almost left Artinian then \(A \) is Artinian semi-

simple. By Lemma 1 (1), the left socle \(S \) of \(A \) is essential in \(_A\!A \). Since \(_A\!S \) is completely reducible and Artinian (Lemma 1 (2)) and every minimal left ideal of \(A \) is generated by an idempotent, it is known that \(S \) itself is generated by an idempotent. Hence, \(S \) coincides with \(A \), whence we can conclude the assertion.

2. First, we state the following that includes Theorems A and B of [1].

Theorem 1. Let \(I, I_1, \ldots, I_k \) be left ideals of \(A \).

(1) If \(_A\!A/I \) is completely reducible and \(IM = 0 \), then the following are equivalent:
1) \(_A\!M \) is almost Artinian.
2) \(_A\!AM \) is Artinian.
3) \(_A\!AM \) is finitely generated.
4) \(_A\!AM \) is Noetherian.
5) \(_A\!M \) is almost Noetherian.

(2) If \(_A\!A/I_j (j = 1, \ldots, k) \) are completely reducible and \(I_1 \cdots I_k M = 0 \), then the following are equivalent:
1) \(_A\!M \) is almost Artinian.
2) \(_A\!(AM/I_j M), (_A\!M/I_{j-1} I_k M), \ldots, (_A\!M/I_2 \cdots I_k M) \) are finitely generated.
3) \(_A\!M \) is almost Noetherian.
In particular, if \(A \) is semiprimary then a left \(A \)-module is almost Artinian
if and only if it is almost Noetherian.

Proof. (1) It is easy to see that $\mathcal{A}M$ is completely reducible. Hence, the equivalence of 2), 3) and 4) is obvious. Since $\mathcal{A}(A/{\text{Ann}}(M))$ is s-unital by Lemma 1 (2), the equivalences of 1) and 2) and of 4) and 5) are evident by the remark mentioned just before Lemma 1.

(2) Observe the descending chain

$$M \supseteq I_k M \supseteq I_{k-1} M \supseteq \cdots \supseteq I_2 \cdots I_k M \supseteq I_1 \cdots I_k M = 0.$$

Then the assertion can be proved by (1) and Proposition 2 (1).

Now, let \mathcal{A}_M be the set of almost Artinian A-submodules of M, and Γ_M the set of A-submodules U of M such that $\mathcal{A}M/U$ is almost Noetherian. Obviously, \mathcal{A}_M and Γ_M contain 0 and M, respectively. Moreover, by Proposition 2 (1) (resp. (2)), if M' and M'' are in \mathcal{A}_M (resp. Γ_M) then $M' + M''$ and $A^{-1}M'$ (resp. $M' \cap M''$ and AM') are in \mathcal{A}_M (resp. Γ_M).

We set $\mathcal{A}(M) = \sum_{i \in \mathcal{A}_M} U$ and $\Gamma(M) = \cap_{i \in \Gamma_M} U$. Needless to say, if $\mathcal{A}M$ is almost Artinian (resp. almost Noetherian) then $\mathcal{A}(M) = M$ (resp. $\Gamma(M) = 0$), but not conversely. If $\mathcal{A}M$ is almost Noetherian, then by Proposition 1 (2) we see that $\mathcal{A}(M)$ is the greatest member of \mathcal{A}_M and is characterized as the least one among the A-submodules U of M with $\mathcal{A}(M/U) = 0$; in particular $\mathcal{A}M$ is almost Artinian if and only if $\mathcal{A}(M) = M$. On the other hand, if $\mathcal{A}M$ is almost Artinian, then by Proposition 1 (1) we see that $\Gamma(M)$ is the least member of Γ_M and is characterized as the greatest one among the A-submodules U of M with $\Gamma(U) = U$; in particular $\mathcal{A}M$ is almost Noetherian if and only if $\Gamma(M) = 0$.

In the proof of the following partial extension of Theorem 1 (1), we shall use freely the facts mentioned above.

Theorem 2. Let I be a left ideal of A such that $\mathcal{A}A/I$ is completely reducible.

(1) If $\mathcal{A}M$ is almost Noetherian and $I^{-1}M' \neq M'$ for every proper A-submodule M' of M, then $\mathcal{A}M$ is almost Artinian.

(2) If $\mathcal{A}M$ is almost Artinian and $IM' \neq M'$ for every non-zero A-submodule M' of M, then $\mathcal{A}M$ is almost Noetherian.

Proof. (1) Suppose $\mathcal{A}(M) \neq M$, and choose an A-submodule $M'' \supseteq \mathcal{A}(M)$ such that $IM'' \subseteq \mathcal{A}(M)$. Since $\mathcal{A}(M/A(M)) = 0$, we see that $\mathcal{A}(M''/\mathcal{A}(M)) \neq 0$. Then, $\mathcal{A}(M''/\mathcal{A}(M))$ is completely reducible and Noetherian (Lemma 1), and therefore Artinian. This is a contradiction. Thus $\mathcal{A}M$ is almost Artinian.
(2) Obviously, $\mathcal{A} \Gamma (M) = \Gamma (M)$. Now, suppose $\Gamma (M) \neq 0$. Then $\mathcal{A} \Gamma (M)/\Gamma (M)$ is completely reducible and Artinian (Lemma 1), and therefore Noetherian. This contradiction means that $\mathcal{A} M$ is almost Noetherian.

3. In this section, we shall prove the following:

Theorem 3. Let A be an almost left Noetherian ring.

(1) A satisfies the ascending chain condition for semiprime ideals.

(2) Every nil subring of A is nilpotent and the nilpotency indices of nil subrings are bounded.

In preparation for the proof, we establish the next lemma.

Lemma 3. Let A be an almost left Noetherian ring. If $r(A) = 0$ (in particular, if A is semiprime), then A is a left Goldie ring.

Proof. Let $L_1 \subseteq L_2 \subseteq \cdots$ be an infinite ascending chain of left annihilators, where $L_i = l(S_i)$. Then there exists a positive integer p such that $A^p L_i \subseteq L_p$ for all i. Since $A^p L_i S_p = 0$, it follows $L_i S_p = 0$, namely $L_i \subseteq L_p$. Next, assume that A contains an infinite direct sum of non-zero left ideals $I_1 \oplus I_2 \oplus \cdots$. There exists a positive integer q such that

$$A^q (I_1 \oplus \cdots \oplus I_i) \subseteq I_1 \oplus \cdots \oplus I_i$$

for all i. Then $A^q I_i = 0$, and therefore $I_i = 0$ for all $i > q$. But, this is a contradiction.

Proof of Theorem 3. (1) The proof is straightforward.

(2) There exists a positive integer q such that $A^q r(A^i) \subseteq r(A^i)$ for all i. Since $A^{2q} r(A^i) \subseteq A^q r(A^i) = 0$, there holds $r(A^i) \subseteq r(A^{2q})$. This means that the right annihilator of $A/r(A^{2q})$ is zero. Hence, $A/r(A^{2q})$ is a left Goldie ring by Lemma 3. According to [2, Corollary 1.7], there exists a positive integer n such that $K^n \subseteq r(A^{2q})$ for all nil subrings K of A. It is immediate that $K^{2q+n} = 0$.

Combining Theorem 3 (2) with Proposition 3 and the latter part of Theorem 1 (2), we readily obtain

Corollary 1. If A is almost left Artinian, then every nil subring of A is nilpotent and the nilpotency indices of nil subrings are bounded.

4. In advance of stating the main theorem of this section, we shall
prove the following

Lemma 4. (1) If A is almost left Artinian, then A is a π-regular ring of bounded index.

(2) Let A be an almost left Noetherian, π-regular ring. If A/N is left s-unital, then A/N is Artinian.

Proof. (1) By Proposition 3 and [5, Lemma 2].

(2) By Lemma 3, A/N is a left Goldie ring. Then, as was claimed in the proof of [6, Theorem 3], A/N contains the identity. Moreover, it is easy to see that every regular element of A/N is a unit. Hence, A/N coincides with its left quotient ring that is Artinian semisimple.

A left ideal I of A is said to be almost maximal if A/I is a sum of minimal A-submodules. If a prime ideal P is an almost maximal left ideal, then $\downarrow A/P$ is completely reducible. (In [1], a prime ideal is called an almost prime ideal.)

We are now ready to complete the proof of our main theorem, which includes Theorems 5, 6 and 11 of [1].

Theorem 4. The following are equivalent:

1) A is almost left Artinian.

2) N is nilpotent and $\langle AN^{i-1}/N^{i} \rangle$ is Artinian for all $i \geq 0$.

3) A is almost left Noetherian and A/N is left Artinian.

4) A is almost left Noetherian and π-regular, and A/N is left s-unital.

5) A is almost left Noetherian and every proper prime ideal of A is an almost maximal left ideal.

6) N is nilpotent, $\langle AN^{i-1}/N^{i} \rangle$ is finitely generated for all $i \geq 0$, A satisfies the ascending chain condition for semiprime ideals, and every proper prime ideal of A is an almost maximal left ideal.

Proof. 1) \iff 2) \iff 3). Under any of the conditions 1) — 3), N is nilpotent: $N^{n} = 0$, and $\downarrow A/N$ is completely reducible (Theorem 3 (2) and Proposition 3). Observe the descending chain $A \supseteq N \supseteq N^{2} \supseteq \cdots \supseteq N^{n} = 0$. By Theorem 1 (1), $\langle N^{i-1}/N^{i} \rangle$ is almost Artinian if and only if $\langle AN^{i-1}/N^{i} \rangle$ is Artinian, or equivalently $\langle (N^{i-1}/N^{i}) \rangle$ is almost Noetherian. Hence, by Proposition 2 all the conditions 1) — 3) are equivalent.

1) \implies 4) \implies 3). By Propositions 2 (2), 3 and Lemma 4.

5) \implies 6). By Theorem 3 (1), A satisfies the ascending chain condition for semiprime ideals. Hence, by [4, Theorem 3], $N = \cap_{i=1}^{t} P_{i}$ with
some prime ideals P_i. Since $\alpha(\cap \{P_i \mid \exists \lambda \in P_i \})/(\cap \{P_i \mid \exists \lambda \in P_i \}) \cong P_i + \cap \{P_i \mid \exists \lambda \in P_i \}$ and $\alpha A/P_i$ is completely reducible, we see that $\alpha A/N$ is Artinian (Lemma 1). Now, (6) is obvious by Theorem 1 (1) and Theorem 3 (2).

(6) \Rightarrow (1). Again by [4, Theorem 3], $N = \cap \lambda \in P_i$ with some prime ideals P_i, and $\alpha A/P_i (= \alpha (A/N)/(P_i/N))$ is a completely reducible module of finite length. Hence, A/N is Artinian semisimple. Then, by Theorem 1 (2), αN is almost Artinian, and therefore A is almost left Artinian by Proposition 2 (1).

The next is an easy combination of [3, Theorem 9] and Theorem 4.

Corollary 2. If A is almost left Artinian then the full matrix ring $(A)_n$ is almost left Artinian, and eAe is left Artinian for every idempotent e of A.

Corollary 3 (cf. [1, Theorems 3 and 12]). (1) A (left and right) duo ring A is almost left Artinian if and only if A is the direct sum of an Artinian ring with identity and a nilpotent ring.

(2) A left duo ring A is almost left Artinian if and only if A is almost left Noetherian and every proper prime ideal of A is maximal.

Proof. (2) is immediate from Theorem 4. It remains only to prove the only if part of (1). Let e be an idempotent lifted from the identity of A/N (Proposition 3). Since A is a duo ring, eA coincides with eA. Hence A is the direct sum of the Artinian ring $eAe = A$ (Corollary 2) and the nilpotent ideal $I(e)$ contained in N (Proposition 3).

Remark. Let A be an almost left Artinian ring. If $AN = N$ then, as was claimed in [1, p. 17], A is left Noetherian by Proposition 3 and Theorem 1 (1). However, this is a consequence of Hopkins' theorem, too. In fact, by [7, Theorem 1], A has then a left identity.

REFERENCES

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received January 26, 1980)