Ergodic theorems for d-parameter semigroups of Dunford-Schwartz operators

Ryotaro Sato*

*Okayama University

ERGODIC THEOREMS FOR d-PARAMETER SEMIGROUPS OF DUNFORD-SCHWARTZ OPERATORS

RYOTARO SATO

1. Introduction. Let $\Gamma = \{T(t_1, \ldots, t_d); t_1, \ldots, t_d > 0\}$ be a strongly continuous d-parameter semigroup of Dunford-Schwartz operators on $L_1(\Omega) = L_1(\Omega, \mathcal{F}, \mu)$, where $(\Omega, \mathcal{F}, \mu)$ is a σ-finite measure space. In this paper Γ will be extended to a semigroup of linear operators on the class $L_1(\Omega) + L_\infty(\Omega)$ of all functions f of the form $f = g + h$, with $g \in L_1(\Omega)$ and $h \in L_\infty(\Omega)$, so that $\|T(t_1, \ldots, t_d)f\|_p \leq 1$ for every $1 \leq p \leq \infty$ and also so that $\lim_{n} T(t_1, \ldots, t_d)f_n = T(t_1, \ldots, t_d)f$ almost everywhere on Ω whenever $f_n \in L_\infty(\Omega)$, $\sup_n \|f_n\|_\infty < \infty$ and $\lim_{n} f_n = f$ almost everywhere on Ω. Then for every $f \in L_1(\Omega) + L_\infty(\Omega)$ the averages

$$A(\alpha_1, \ldots, \alpha_d)f = \frac{1}{\alpha_1 \cdots \alpha_d} \int_0^{\alpha_1} \cdots \int_0^{\alpha_d} T(t_1, \ldots, t_d)f \, dt_1 \cdots dt_d$$

are well-defined, and now it would be interesting to ask the following questions: For what functions f does the almost everywhere convergence of the averages $A(\alpha_1, \ldots, \alpha_d)f$ hold as $\alpha_1 \to 0$, \cdots, $\alpha_d \to 0$ independently? For what functions f does the almost everywhere convergence of the averages $A(\alpha_1, \ldots, \alpha_d)f$ hold as $\alpha_1 \to \infty$, \cdots, $\alpha_d \to \infty$ independently?

It will be proved below that if $f \in L_1(\Omega) + L_\infty(\Omega)$ satisfies

$$\left\{ \frac{|f|}{t} \left[\log \frac{|f|}{t} \right]^{d-1} \right\} \, d\mu < \infty$$

for every $t > 0$, then the averages $A(\alpha_1, \ldots, \alpha_d)f$ converge almost everywhere on Ω as $\alpha_1 \to 0$, \cdots, $\alpha_d \to 0$ independently, and also the averages $A(\alpha_1, \cdots, \alpha_d)f$ converge almost everywhere on Ω as $\alpha_1 \to \infty$, \cdots, $\alpha_d \to \infty$ independently. This may be considered to be an extension of Terrell's local ergodic theorem [10] and Dunford-Schwartz's ergodic theorem [2].

The method of proof chiefly depends upon a weak type maximal inequality similar to Fava's [4].

2. Preliminaries. Let $(\Omega, \mathcal{F}, \mu)$ be a σ-finite measure space and let $L_p(\Omega) = L_p(\Omega, \mathcal{F}, \mu)$, $1 \leq p \leq \infty$, be the usual Banach spaces of real or complex functions on $(\Omega, \mathcal{F}, \mu)$. A Dunford-Schwartz operator T on $L_1(\Omega)$
is a linear contraction on $L_1(\Omega)$ (i.e. $\|T\|_1 \leq 1$) such that for every $f \in L_1(\Omega) \cap L_\infty(\Omega)$
\[\|Tf\|_\infty \leq \|f\|_\infty. \]
It is well-known that a Dunford-Schwartz operator T on $L_1(\Omega)$ satisfies
\[\|Tf\|_p \leq \|f\|_p \]
for all $f \in L_1(\Omega) \cap L_p(\Omega)$, with $1 < p < \infty$. By this, T can be uniquely extended to a linear contraction on each $L_p(\Omega)$, with $1 < p < \infty$. Furthermore it can be extended to a linear contraction on $L_\infty(\Omega)$ as follows. If $0 \leq f \in L_\infty(\Omega)$, choose $f_n \in L_1(\Omega)$ so that $0 \leq f_n \leq f_{n+1} \leq f$ and $\lim f_n = f$ almost everywhere (a.e.) on Ω. Then for $n > m$ we have
\[|Tf_n - Tf_m| \leq \tau(f_n - f_m) \leq (\lim_k \tau f_k) - \tau f_m \text{ a.e. on } \Omega \]
where τ denotes the linear modulus of T in the sense of Chacon-Krenkel [1]. (Thus τ is a positive Dunford-Schwartz operator on $L_1(\Omega)$ such that
\[\tau g = \sup \{|Th| : h \in L_1(\Omega), |h| \leq g \text{ a.e. on } \Omega}\]
for any $0 \leq g \in L_1(\Omega)$.) On the other hand, if $0 \leq u \in L_1(\Omega) \cap L_\infty(\Omega)$ and $0 < u$ a.e. on Ω, then it may be readily seen that $0 \leq \tau^* u \in L_1(\Omega)$ and $\|\tau^* u\|_1 \leq \|u\|_1$, where τ^* denotes the adjoint operator of τ, acting on $L_\infty(\Omega) = L_1(\Omega)^*$. Thus, putting
\[g_n = (\lim_k \tau f_k) - \tau f_n \text{ a.e. on } \Omega, \]
we have, by Lebesgue's dominated convergence theorem,
\[\int g_n u \, d\mu = \int (\lim_k \tau f_k) \tau^* u \, d\mu - \int f_n \tau^* u \, d\mu \to 0 \]
as $m \to \infty$. Since $u > 0$ a.e. on Ω and $g_n \geq g_{n+1} \geq 0$ a.e. on Ω, this proves that $\lim g_n = 0$ a.e. on Ω, and hence for almost all $\omega \in \Omega$ the sequence $Tf_n(\omega)$, $n = 1, 2, \cdots$, is a Cauchy sequence. Therefore it is possible to define
\[Tf(\omega) = \lim_{n \to \infty} Tf_n(\omega) \text{ a.e. on } \Omega. \]

It is now a routine matter to check that this definition of Tf does not depend upon the particular choice of such a sequence (f_n) in $L_1(\Omega)$, and so by linearity T can be extended to a linear operator on $L_\infty(\Omega)$. From the definition of T on $L_\infty(\Omega)$, it follows that $\|T\|_\infty \leq 1$ and that if $f_n \in L_\infty(\Omega)$, $n = 1, 2, \cdots$, is a sequence satisfying $\sup_n \|f_n\|_\infty < \infty$ and $\lim f_n = f$ a.e. on Ω for some $f \in L_\infty(\Omega)$, then

http://escholarship.lib.okayama-u.ac.jp/mjou/vol23/iss1/8
ERGODIC THEOREMS

\[Tf = \lim_{n} T f_n \, \text{a.e. on } \Omega. \]

The above discussion ensures that we may and will assume, throughout this paper, that a Dunford-Schwartz operator \(T \) is a linear operator on the class \(L_1(\Omega) + L_\infty(\Omega) \) such that \(\|T\|_p \leq 1 \) on each \(L_p(\Omega) \) with \(1 \leq p \leq \infty \) and also such that

\[Tf = \lim_{n} T f_n \, \text{a.e. on } \Omega \]

whenever \(f_n \in L_\infty(\Omega) \), \(\sup\{\|f_n\|_\infty : n \geq 1\} < \infty \) and \(f = \lim f_n \, \text{a.e. on } \Omega. \)

Let us now consider a \(d \)-parameter semigroup \(\Gamma = \{T(t_1, \cdots, t_d) : t_1, \cdots, t_d > 0\} \) of Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega), \ d \geq 1 \) being a fixed integer. Thus each \(T(t_1, \cdots, t_d) \) is a Dunford-Schwartz operator on \(L_1(\Omega) + L_\infty(\Omega) \), and \(\Gamma \) satisfies

\[T(t_1, \cdots, t_d)T(s_1, \cdots, s_d) = T(t_1 + s_1, \cdots, t_d + s_d). \]

Throughout this paper we shall assume that \(\Gamma \) is strongly continuous with respect to the norm topology of \(L_1(\Omega) \), i.e. for each \(f \in L_1(\Omega) \) the function \(T(t_1, \cdots, t_d)f \) of \((t_1, \cdots, t_d) \in R^d_+ \), where \(R^d_+ = \{(t_1, \cdots, t_d) : t_1, \cdots, t_d > 0\} \), is continuous with respect to the norm topology of \(L_1(\Omega) \). It then follows from an approximation argument that \(\Gamma \) is strongly continuous with respect to the norm topology of each \(L_p(\Omega) \) with \(1 \leq p < \infty \), and that for each \(f \in L_p(\Omega) \) with \(1 \leq p < \infty \) there exists a scalar function \(g(t_1, \cdots, t_d, \omega) \), defined on \(R^d_+ \times \Omega \) and measurable with respect to the product of the Lebesgue measurable subsets of \(R^d_+ \) and \(\mathcal{F} \), such that for each fixed \((t_1, \cdots, t_d) \in R^d_+ \), \(g(t_1, \cdots, t_d, \omega) \) as a function of \(\omega \in \Omega \) belongs to the equivalence class of \(T(t_1, \cdots, t_d)f \in L_p(\Omega) \). Therefore, in the sequel, \(g(t_1, \cdots, t_d, \omega) \) will be denoted by \(T(t_1, \cdots, t_d)f(\omega) \). It then follows from Fubini's theorem that there exists a \(\mu \)-null set \(E(f) \), dependent on \(f \) but independent of \((t_1, \cdots, t_d) \), such that for each fixed \(\omega \in E(f) \), \(T(t_1, \cdots, t_d)f(\omega) \) as a function of \((t_1, \cdots, t_d) \in R^d_+ \) is Lebesgue integrable over every finite interval \((\alpha_1, \beta_1) \times \cdots \times (\alpha_d, \beta_d) \subset R^d_+ \) with respect to the Lebesgue measure, and the integral

\[\int_{\alpha_1}^{\beta_1} \cdots \int_{\alpha_d}^{\beta_d} T(t_1, \cdots, t_d)f(\omega) \, dt_1 \cdots dt_d \quad (\omega \notin E(f)) \]

as a function of \(\omega \in \Omega \) belongs to the equivalence class of the Bochner integral

\[\int_{\alpha_1}^{\beta_1} \cdots \int_{\alpha_d}^{\beta_d} T(t_1, \cdots, t_d)f \, dt_1 \cdots dt_d \quad (\in L_p(\Omega)). \]

Next we will observe that a similar situation holds for \(f \in L_\infty(\Omega) \). In fact, let \((f_n) \) be a sequence in \(L_1(\Omega) \) such that \(|f_n| \leq |f| \) and \(\lim f_n = f \) a.e.
on Ω. Then for every $(t_1, \cdots, t_d) \in \mathbb{R}^d$

$$T(t_1, \cdots, t_d)f = \lim_n T(t_1, \cdots, t_d)f_n \quad \text{a.e. on } \Omega,$$

and hence by Fubini's theorem we may define

$$g(t_1, \cdots, t_d, \omega) = \lim_n T(t_1, \cdots, t_d)f_n(\omega)$$

for almost all $(t_1, \cdots, t_d, \omega) \in \mathbb{R}^d \times \Omega$ with respect to the product of the Lebesgue measure and μ. Since, for each fixed $(t_1, \cdots, t_d) \in \mathbb{R}^d$, $g(t_1, \cdots, t_d, \omega)$ as a function of $\omega \in \Omega$ belongs to the equivalence class of $T(t_1, \cdots, t_d)f \in L_\omega(\Omega)$, $g(t_1, \cdots, t_d, \omega)$ will be again denoted by $T(t_1, \cdots, t_d)f(\omega)$. It then follows from Fubini's theorem that there exists a μ-null set $E(f)$, dependent on f but independent of (t_1, \cdots, t_d), such that for each fixed $\omega \notin E(f)$, $T(t_1, \cdots, t_d)f(\omega)$ as a function of $(t_1, \cdots, t_d) \in \mathbb{R}^d$ is Lebesgue integrable over every finite interval $(\alpha_1, \beta_1) \times \cdots \times (\alpha_d, \beta_d) \subset \mathbb{R}^d$, and the integral

$$\int_{\alpha_1}^{\beta_1} \cdots \int_{\alpha_d}^{\beta_d} T(t_1, \cdots, t_d)f(\omega) \, dt_1 \cdots dt_d \quad (\omega \notin E(f))$$

as a function of $\omega \in \Omega$ belongs to $L_\omega(\Omega)$ and satisfies

$$\left(\int_{\alpha_1}^{\beta_1} \cdots \int_{\alpha_d}^{\beta_d} T(t_1, \cdots, t_d)f(\omega) \, dt_1 \cdots dt_d, \ u(\omega) \right) = \int_{\alpha_1}^{\beta_1} \cdots \int_{\alpha_d}^{\beta_d} f \cdot T(t_1, \cdots, t_d)^*u \, dt_1 \cdots dt_d$$

for all $u \in L_1(\Omega) \cap L_\omega(\Omega)$ (where we let $\langle f, \ u \rangle = \int_\Omega fu \, d\mu$) and hence for all $u \in L_1(\Omega)$, because the adjoint semigroup $\Gamma^* = \{ T(t_1, \cdots, t_d)^* : t_1, \cdots, t_d > 0 \}$ may be regarded as a semigroup of Dunford-Schwartz operators on $L_1(\Omega) + L_\omega(\Omega)$ which is strongly continuous with respect to the norm topology of $L_1(\Omega)$.

Now let f be in the class $L_1(\Omega) + L_\omega(\Omega)$ and write $f = g + h$ with $g \in L_1(\Omega)$ and $h \in L_\omega(\Omega)$. Then we may define the integral

$$\int_{\alpha_1}^{\beta_1} \cdots \int_{\alpha_d}^{\beta_d} T(t_1, \cdots, t_d)f \, dt_1 \cdots dt_d \quad (\in L_1(\Omega) + L_\omega(\Omega))$$

over the finite interval $(\alpha_1, \beta_1) \times \cdots \times (\alpha_d, \beta_d) \subset \mathbb{R}^d$ to be the function

$$\left(\int_{\alpha_1}^{\beta_1} \cdots \int_{\alpha_d}^{\beta_d} T(t_1, \cdots, t_d)f \, dt_1 \cdots dt_d \right)(\omega) = \int_{\alpha_1}^{\beta_1} \cdots \int_{\alpha_d}^{\beta_d} T(t_1, \cdots, t_d)g(\omega) \, dt_1 \cdots dt_d + \int_{\alpha_1}^{\beta_1} \cdots \int_{\alpha_d}^{\beta_d} T(t_1, \cdots, t_d)h(\omega) \, dt_1 \cdots dt_d \quad \text{a.e. on } \Omega.$$
It is clear that this definition of the integral does not depend upon the particular choice of such a decomposition \(f = g + h \), and we have the relation
\[
\left< \int_{t_1}^{s_1} \cdots \int_{t_d}^{s_d} T(t_1, \ldots, t_d) f \, dt_1 \cdots dt_d, \ u \right>
= \int_{t_1}^{s_1} \cdots \int_{t_d}^{s_d} \left< T(t_1, \ldots, t_d) f, \ u \right> \, dt_1 \cdots dt_d
\]
for all \(u \in L_1(\Omega) \cap L_\infty(\Omega) \).

3. Maximal operators and inequalities. We will call an operator \(M \), which maps functions in \(L_1(\Omega) + L_\infty(\Omega) \) into measurable functions on \((\Omega, \mathcal{F}) \), a maximal operator if it satisfies:

(a) \(| M(f + g) | \leq | Mf | + | Mg |\) and \(| M(cf) | = | c | \, | Mf |\) a.e. on \(\Omega \)
 where \(c \) is a constant;

(b) There exists a constant \(A > 0 \) such that for every \(f \in L_1(\Omega) + L_\infty(\Omega) \)
 and all \(\lambda > 0 \)
\[
||Mf||_\infty \leq A \|f\|_\infty \quad \text{and} \quad \mu \{|Mf| > \lambda\} \leq \frac{A}{\lambda} \|f\|_1.
\]

Lemma 1. If \(M \) is a maximal operator on \(L_1(\Omega) + L_\infty(\Omega) \) then for every \(f \in L_1(\Omega) + L_\infty(\Omega) \) and all \(t > 0 \)
\[
\mu \{|Mf| \geq (A+1)t\} \leq \frac{A}{t} \int_{|f| > t} |f| \, d\mu.
\]

Proof. Putting \(f^t(\omega) = f(\omega)1_{\{|f| > t\}}(\omega) \) and \(f_1(\omega) = f(\omega) - f^t(\omega) \), we have \(\|f_1\|_\infty \leq t \) and
\[
|Mf| \leq |M(f^t)| + |M(f_1)| \leq |M(f^t)| + At.
\]
Thus \(\{|Mf| \geq (A+1)t\} \subseteq \{|M(f^t)| > t\} \) and consequently we have
\[
\mu \{|Mf| \geq (A+1)t\} \leq \mu \{|M(f^t)| > t\} \leq \frac{A}{t} \int_{|f| > t} |f| \, d\mu,
\]
which completes the proof.

Corollary. If \(M \) is a maximal operator on \(L_1(\Omega) + L_\infty(\Omega) \) then for every \(f \in L_1(\Omega) + L_\infty(\Omega) \)
\[
\int |Mf|^p \, d\mu \leq \frac{p A(A+1)^p}{p-1} \int |f|^p \, d\mu \quad (1 < p < \infty)
\]
and
\begin{equation}
\int |Mf| \, d\mu \leq (A+1) \left[\mu(\mathcal{Q}) + A \int_{\{|f| > 1\}} |f| \log |f| \, d\mu \right].
\end{equation}

Proof. If $1 < p < \infty$ then, by Fubini's theorem,

\begin{align*}
\int |Mf|^p \, d\mu &= p \int_0^\infty r^{p-1} \mu\{|Mf| > r\} \, dr \\
&\leq p \int_0^\infty dr \left[r^{p-1} \frac{A(A+1)}{r} \int_{\{|f| > \frac{r}{A+1}\}} |f| \, d\mu \right] \\
&= p A(A+1) \int_0^\infty d\mu(\omega) \left[|f(\omega)|^{(A+1)/|f(\omega)|} r^{p-2} \right] \, dr \\
&= \frac{p A(A+1)^p}{p - 1} \int_0^\infty |f(\omega)|^p \, d\mu(\omega),
\end{align*}

and if $p = 1$ then, again by Fubini's theorem,

\begin{align*}
\int |Mf| \, d\mu &= \int_0^\infty \mu\{|Mf| > r\} \, dr \\
&\leq (A+1) \mu(\mathcal{Q}) + \int_{A+1}^\infty \mu\{|Mf| > r\} \, dr \\
&\leq (A+1) \mu(\mathcal{Q}) + \int_{A+1}^\infty dr \left[\frac{A(A+1)}{r} \int_{\{|f| > \frac{r}{A+1}\}} |f| \, d\mu \right] \\
&= (A+1) \mu(\mathcal{Q}) + A(A+1) \int_{\{|f| > 1\}} d\mu(\omega) \left[|f(\omega)|^{1/r} \frac{1}{r} \right] dr \\
&= (A+1) \mu(\mathcal{Q}) + A(A+1) \int_{\{|f| > 1\}} |f(\omega)| \log |f(\omega)| \, d\mu(\omega).
\end{align*}

Hence the proof is completed. (This argument is standard.)

For each $n \geq 0$, let $R_n(\mathcal{Q})$ be the class of all functions f in $L_1(\mathcal{Q}) + L_\infty(\mathcal{Q})$ such that

\begin{equation}
\int_{\{|f| > 1\}} \left| f \right| \left[\log \left| \frac{f}{t} \right| \right]^n \, d\mu < \infty
\end{equation}

for all $t > 0$, and let $L(\mathcal{Q})[\log^+ L(\mathcal{Q})]^n$ be the class of all functions f in $L_1(\mathcal{Q}) + L_\infty(\mathcal{Q})$ such that

\begin{equation}
\int_{\{|f| > 1\}} |f| \left[\log |f| \right]^n \, d\mu < \infty.
\end{equation}

The classes $R_n(\mathcal{Q})$, $n \geq 0$, originally introduced by Fava [4] in order to
obtain a weak type inequality for a product of maximal operators, have the
following properties:

(i) For each \(n \geq 0 \), \(R_n(\Omega) \subset L(\Omega) [\log^{-1} L(\Omega)]^n \) and both classes coincide
if and only if \(\mu(\Omega) < \infty \).

(ii) \(L_1(\Omega) \subset R_0(\Omega) \) and both classes coincide if and only if \(\mu(\Omega) < \infty \).

(iii) For each \(n \geq 0 \), \(R_{n+1}(\Omega) \subset R_n(\Omega) \) and both classes coincide if and
only if there exists a constant \(\delta > 0 \) such that \(E \in \mathcal{F} \) and \(\mu(E) > 0 \) implies
\(\mu(E) > \delta \).

(iv) For each \(n \geq 0 \), \(R_n(\Omega) \) is a linear manifold of \(L_1(\Omega) + L_\infty(\Omega) \).

(v) For each \(n \geq 0 \), \(R_n(\Omega) \) includes the linear manifold generated by
\(\bigcup_{1 \leq p \leq n} L_p(\Omega) \), and both manifolds coincide if and only if \(\mu(\Omega) < \infty \) and there
exists a constant \(\delta > 0 \) such that \(E \in \mathcal{F} \) and \(\mu(E) > 0 \) implies \(\mu(E) > \delta \).

Some of the above properties are found in [4] and the others may be
directly proved, and hence we omit the details.

The following maximal theorem is a key lemma to prove individual
ergodic theorems for \(d \)-parameter semigroups \(\Gamma = \{ T(t_1, \ldots, t_d) : t_1, \ldots, t_d > 0 \} \) of Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega) \).

Theorem 1. Let \(M \) be a maximal operator on \(L_1(\Omega) + L_\infty(\Omega) \), and let
\(A > 0 \) be the constant relating to \(M \) as in the definition of a maximal operator.
Then for each \(n \geq 0 \) there corresponds a constant \(B_n = B(n, A) > 0 \) so that
for every \(f \in R_{n+1}(\Omega) \) and all \(t > 0 \)

\[
\int_{\{ |Mf| > t \}} \left[\log \frac{|Mf|}{t} \right]^n d\mu \leq \int_{\{ \mu_{n}>t \}} \frac{B_n}{t} \left[\log \frac{B_n}{t} \right]^{n+1} d\mu.
\]

Consequently \(f \in R_{n+1}(\Omega) \) implies \(Mf \in R_n(\Omega) \).

Proof. Fix any \(a > 1 \). Then for \(f \in R_{n+1}(\Omega) \) and \(t > 0 \), putting \(g = f/t \), we have by Fubini's theorem

\[
\int_{\{ |Mf| > at \}} \left[\log \frac{|Mf|}{t} \right]^n d\mu = \int_{\{ \mu f > a \}} |Mg| \left([\log r]^n + n [\log r]^{n-1} \right) d\mu
\]

\[
= \int_{a}^{\infty} \mu \{ |Mg| > a \} \left([\log r]^n + n [\log r]^{n-1} \right) dr
\]

\[
= \int_{a}^{\infty} \mu \{ |Mg| > a \} \left([\log r]^n + n [\log r]^{n-1} \right) dr
\]

\[
= I + II.
\]

Since Lemma 1 implies that
\[
\mu \left(|Mg| > r \right) \leq \frac{A(A+1)}{r} \int_{\{g > r\}} |g| \ d\mu \quad (r > 0),
\]

it follows that

\[
I \leq \frac{A}{a} \int_{\{g > a\}} (A+1) |g| \ d\mu \times \int_{1}^{a} \left([\log r]^{n} + n [\log r]^{n-1} \right) \ dr
\]

\[
\leq I(A) \int_{\{g > a\}} (A+1) |g| \left([\log (A+1) |g|] \right)^{n+1} \ d\mu,
\]

where

\[
I(A) = \frac{A}{a} [\log a]^{-1} \int_{1}^{a} \left([\log r]^{n} + n [\log r]^{n-1} \right) \ dr.
\]

Further, since \(a > 1 \) and \(n \geq 0 \), it follows that

\[
II \leq \int_{a}^{\infty} \left(\frac{A(A+1)}{r} \int_{\{g > r\}} |g| \ d\mu \left([\log r]^{n} + n [\log r]^{n-1} \right) \right) \ dr
\]

\[
= \int_{a}^{\infty} d\mu(\omega) \left[A(A+1) |g(\omega)| \int_{a}^{\infty} \frac{1}{r} \left([\log r]^{n} + n [\log r]^{n-1} \right) \ dr \right]
\]

\[
\leq \int_{a}^{\infty} d\mu(\omega) \left[A(A+1) |g(\omega)| \left([\log (A+1) |g(\omega)|]^{n+1} \right.
ight.
\]

\[
+ [\log (A+1) |g(\omega)|]^{n+1} \left. \right) \right]
\]

\[
\leq A(1 + [\log a]^{-1}) \int_{a}^{\infty} (A+1) |g(\omega)| \left([\log (A+1) |g(\omega)|]^{n+1} \right. \ d\mu(\omega).
\]

Thus, letting \(B_{n} = \left[I(A) + A(1 + [\log a]^{-1}) + 1 \right] (A+1) \), we get

\[
\int_{\{|Mg| > a\}} \frac{|Mg|}{t} \left([\log |Mg|]^{n} \right) \ d\mu \leq \int_{\{|B_{n}| > a\}} \frac{B_{n}|f|}{t} \left([\log B_{n}|f|]^{n+1} \right) \ d\mu,
\]

which completes the proof.

Theorem 2. Let \(\Gamma = \{ T(t_{1}, \cdots, t_{d}) ; \ t_{1}, \cdots, t_{d} > 0 \} \) be a \(d \)-parameter semigroup of Dunford-Schwartz operators on \(L_{1}(\Omega) + L_{\infty}(\Omega) \) which is assumed to be strongly continuous with respect to the norm topology of \(L_{1}(\Omega) \). For \(f \in L_{1}(\Omega) + L_{\infty}(\Omega) \), define

\[
f^{*}(\omega) = \sup_{\alpha_{1}, \cdots, \alpha_{d} > 0} \frac{1}{\alpha_{1} \cdots \alpha_{d}} \left| \int_{0}^{t_{d}} \cdots \int_{0}^{t_{1}} T(t_{1}, \cdots, t_{d}) f(\alpha_{1} \cdots \alpha_{d}) dt_{1} \cdots dt_{d} \right|.
\]

Then for each \(k \geq d - 1 \) there corresponds a constant \(C_{k}(d) > 0 \) so that
(i) if \(k \geq d \) then for every \(f \in R_k(\Omega) \) and all \(t > 0 \)
\[
\int_{\{f^* > t\}} \frac{f^*}{t} \left[\log \frac{f^*}{t} \right]^{k-d} \, d\mu \\
\leq \int_{\{C_k(d)f^* > t\}} \frac{C_k(d)}{t} \left[\log \frac{C_k(d)}{t} \right]^{k} \, d\mu \quad (\leq \infty),
\]

(ii) if \(k = d-1 \) then for every \(f \in R_{d-1}(\Omega) \) and all \(t > 0 \)
\[
\mu \{f^* > t\} \leq \int_{\{C_{d-1}(d)f^* > t\}} \frac{C_{d-1}(d)}{t} \left[\log \frac{C_{d-1}(d)}{t} \right]^{d-1} \, d\mu \quad (\leq \infty).
\]

Consequently \(f \in R_k(\Omega) \) with \(k \geq d \) implies \(f^* \in R_{k-d}(\Omega) \).

Proof. We proceed by induction on \(d \).

First suppose that \(d = 1 \). It is then known by [7] that there exists a one-parameter semigroup \(\{\tau_t(t_1) : t_1 > 0\} \) of positive Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega) \), strongly continuous with respect to the norm topology of \(L_1(\Omega) \), such that for every \(f \in L_1(\Omega) + L_\infty(\Omega) \) and all \(t_1 > 0 \)
\[
|T(t_1)f| \leq \tau_1(t_1)|f| \quad \text{a.e. on } \Omega.
\]

Thus, for \(f \in L_1(\Omega) + L_\infty(\Omega) \), if we set
\[
M^- f(\omega) = \sup_{\alpha > 0} \frac{1}{\alpha} \int_{\alpha}^{\infty} \tau_1(t_1)|f|(\omega) \, dt_1,
\]
then we have
\[
f^* \leq M^- f \quad \text{a.e. on } \Omega.
\]

Since \(M^- \) is a maximal operator on \(L_1(\Omega) + L_\infty(\Omega) \) with \(A = 1 \) (cf. [4] or [5]), we observe by Lemma 1 and Theorem 1 that the theorem holds for \(d = 1 \).

Next let us assume that the theorem holds for \(d = i - 1 \). To show that the theorem holds for \(d = i \), we define for each \(n \geq 1 \) an \(i \)-parameter semigroup \(F_n = \{T_n(t_1, \cdots, t_i) : t_1, \cdots, t_i \geq 0\} \) of Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega) \) by the relation
\[
T_n(t_1, \cdots, t_i) = \begin{cases}
I & \text{if } t_1 = t_2 = \cdots = t_i = 0 \\
T(t_1 + u_i/n, \cdots, t_i + u_i/n) & \text{otherwise}
\end{cases}
\]

where \(u_i = (t_1 + \cdots + t_i) - t_k \) for \(1 \leq k \leq i \). Put, for \(f \in L_1(\Omega) + L_\infty(\Omega) \),
\[
M_n f(\omega) = \sup_{\alpha_1, \cdots, \alpha_i > 0} \frac{1}{\alpha_1 \cdots \alpha_i} | \int_0^{\alpha_1} \cdots \int_0^{\alpha_i} T_n(t_1, \cdots, t_i) f(\omega) \, dt_1 \cdots dt_i |.
\]

Then clearly we have
\[f^*(\omega) \leq \lim \inf_n M_n f(\omega) \text{ a.e. on } \Omega, \]

and hence by Fatou's lemma it is sufficient to observe that the inequalities of the theorem hold, replacing \(f^* \) by \(M_n f \).

For this purpose we next define, for each \(n \geq 1 \), an \((i-1)\)-parameter semigroup \(J_n = \{ S_n(t_2, \cdots, t_i) ; t_2, \cdots, t_i > 0 \} \) of Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega) \) by the following relation

\[S_n(t_2, \cdots, t_i) = T_n(0, t_2, \cdots, t_i). \]

Let us denote by \(\{ \tau_n(t_1) ; t_1 \geq 0 \} \) a one-parameter semigroup of positive Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega) \), strongly continuous with respect to the norm topology of \(L_1(\Omega) \), such that for every \(f \in L_1(\Omega) + L_\infty(\Omega) \) and all \(t_1 > 0 \)

\[|T_n(t_1)f| \leq \tau_n(t_1)|f| \quad \text{a.e. on } \Omega, \]

where we let \(T_n(t_1) = T_n(t_1, 0, \cdots, 0) \) for \(t_1 > 0 \). Then for \(f \in L_1(\Omega) + L_\infty(\Omega) \) and \(\alpha_1, \cdots, \alpha_i > 0 \) we have

\[\frac{1}{\alpha_1 \cdots \alpha_i} \left| \int_0^{\alpha_1} \int_0^{\alpha_2} \cdots \int_0^{\alpha_i} T_n(t_1, \cdots, t_i) f dt_1 \cdots dt_i \right| \]

\[= \frac{1}{\alpha_1} \int_0^{\alpha_1} T_n(t_1) \left[\int_0^{\alpha_2} \cdots \int_0^{\alpha_i} S_n(t_2, \cdots, t_i) f dt_2 \cdots dt_i \right] dt_1 \]

\[\leq \frac{1}{\alpha_1} \int_0^{\alpha_1} \tau_n(t_1) \left[\int_0^{\alpha_2} \cdots \int_0^{\alpha_i} S_n(t_2, \cdots, t_i) f dt_2 \cdots dt_i \right] dt_1 \]

Therefore if \(f \in R_n(\Omega) \) and \(k \geq i-1 \) then the function \(g_n \) defined by

\[g_n(\omega) = \sup_{\alpha_1, \cdots, \alpha_i > 0} \frac{1}{\alpha_1 \cdots \alpha_i} \left| \int_0^{\alpha_1} \int_0^{\alpha_2} \cdots \int_0^{\alpha_i} S_n(t_2, \cdots, t_i) f(\omega) dt_2 \cdots dt_i \right| \]

is, by induction hypothesis, in \(R_{i-1}(\Omega) \), and for every \(t > 0 \)

\[\int_{|f| > t} \frac{g_n}{t} \left[\log \frac{g_n}{t} \right]^{k-1} d\mu \]

\[\leq \int_{|f| > t} \frac{C_k(i-1)|f|}{t} \left[\log \frac{C_k(i-1)|f|}{t} \right]^{k} d\mu < \infty, \]

and thus if we set

\[M_n^- g_n(\omega) = \sup_{\alpha > 0} \frac{1}{\alpha} \int_0^{\alpha} \tau_n(t_1) g_n(\omega) dt_1, \]

then \(M_n f \leq M_n^- g_n \) a.e. on \(\Omega \), and furthermore we have:

1. if \(k \geq i \) and \(f \in R_n(\omega) \) then for every \(t > 0 \)
ERGODIC THEOREMS

\[\int_{\{G_n > t\}} \frac{M_n}{t} \left[\log \frac{M_n}{t} \right]^{k-1} d\mu \leq \int_{\{G_n > t\}} \frac{C_{k-t+1}(1)g_n}{t} \left[\log \frac{C_{k-t+1}(1)g_n}{t} \right]^{k-1} d\mu, \]

(ii) if \(k = i - 1 \) and \(f \in R_{i-1}(\Omega) \) then for every \(t > 0 \)

\[\mu \{ M_n > t \} \leq \int_{\{G_n > t\}} \frac{C_{0}(1)g_n}{t} d\mu. \]

Therefore, replacing \(f^* \) by \(M_n f \), the inequalities of the theorem hold with \(C_k(i) = C_k(i-1)C_{k-t+1}(1) \), and so the theorem holds for \(d = i \).

The proof is completed.

Remark. It may be readily seen from the above-given argument that if \(1 < p < \infty \) and \(f \in L_p(\Omega) \) then the function \(f^* \) of Theorem 2 is in \(L_p(\Omega) \) and also satisfies

\[\int \left| f^* \right|^p d\mu \leq \left[\frac{p2^p}{p-1} \right]^d \int |f|^p d\mu. \]

4. Ergodic theorems.

Theorem 3. Let \(T = \{ T(t_1, \cdots, t_d) ; t_1, \cdots, t_d > 0 \} \) be a \(d \)-parameter semigroup of Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega) \) which is assumed to be strongly continuous with respect to the norm topology of \(L_1(\Omega) \). If \(1 \leq p < \infty \) and \(f \in L_p(\Omega) \), then \(T(t_1, \cdots, t_d)f \) converges in the norm topology of \(L_p(\Omega) \) as \(t_1 \to 0, \cdots, t_d \to 0 \) independently.

Proof. Put, for \(t > 0 \),

\[S(t) = T(t, \cdots, t). \]

Since \(J = \{ S(t) ; t > 0 \} \) is a one-parameter semigroup of Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega) \) which is strongly continuous with respect to the norm topology of \(L_1(\Omega) \), it follows from [6] together with an approximation argument that if \(1 \leq p < \infty \) and \(f \in L_p(\Omega) \) then \(S(t)f \) converges in the norm topology of \(L_p(\Omega) \) as \(t \to 0 \). Write

\[f_0 = \lim_{t \to 0} S(t)f \ (\in L_p(\Omega)), \]

then we have \(S(t)f_0 = S(t)f \) for all \(t > 0 \), and thus if \(t_1, \cdots, t_d > t > 0 \) then we have
\[T(t_1, \ldots, t_d)f = T(t_1 - t, \ldots, t_d - t)S(t)f \]
\[= T(t_1 - t, \ldots, t_d - t)S(t)f_0 = T(t_1, \ldots, t_d)f_0. \]

Therefore for each fixed \(a > 0 \), it follows that
\[
\|T(t_1, \ldots, t_d)f - f_0\|_p = \|T(t_1, \ldots, t_d)f_0 - f_0\|_p \\
\leq \|T(t_1, \ldots, t_d)S(a)f_0 - S(a)f_0\|_p + \|S(a)f_0 - f_0\|_p \\
+ \|T(t_1, \ldots, t_d)[f_0 - S(a)f_0]\|_p.
\]

Since \(\|S(a)f_0 - f_0\|_p \rightarrow 0 \) as \(a \rightarrow 0 \), given an \(\varepsilon > 0 \) there exists an \(a > 0 \) so that \(\|S(a)f_0 - f_0\|_p < \varepsilon \). Then we get
\[
\|T(t_1, \ldots, t_d)f - f_0\|_p < \|T(t_1, \ldots, t_d)S(a)f_0 - S(a)f_0\|_p + 2\varepsilon.
\]

On the other hand, since \(\Gamma = \{T(t_1, \ldots, t_d); t_1, \ldots, t_d > 0\} \) is strongly continuous with respect to the norm topology of \(L_p(\Omega) \) for \(1 \leq p < \infty \), it follows that
\[
\|T(t_1, \ldots, t_d)S(a)f_0 - S(a)f_0\|_p \rightarrow 0
\]
as \(t_1 \rightarrow 0, \ldots, t_d \rightarrow 0 \) independently. Therefore \(T(t_1, \ldots, t_d)f \) converges to \(f_0 \) in the norm topology of \(L_p(\Omega) \) as \(t_1 \rightarrow 0, \ldots, t_d \rightarrow 0 \) independently.

The proof is complete.

Theorem 4. Let \(\Gamma = \{T(t_1, \ldots, t_d); t_1, \ldots, t_d > 0\} \) be a \(d \)-parameter semigroup of Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega) \) which is assumed to be strongly continuous with respect to the norm topology of \(L_1(\Omega) \). If \(f \in R_{d-1}(\Omega) \) then the averages
\[
A(\alpha_1, \ldots, \alpha_d)f(\omega) = \frac{1}{\alpha_1 \cdots \alpha_d} \int_{t_1}^{t_1 + \alpha_1} \cdots \int_{t_d}^{t_d + \alpha_d} T(t_1, \ldots, t_d)f(\omega) \, dt_1 \cdots dt_d
\]
converge almost everywhere on \(\Omega \) as \(\alpha_1 \rightarrow 0, \ldots, \alpha_d \rightarrow 0 \) independently.

Proof. Theorem 3 ensures us to define an operator \(T_0 \) on \(L_1(\Omega) \) by the relation
\[
T_0 f = \lim_{t_1, \ldots, t_d \rightarrow 0} T(t_1, \ldots, t_d)f \quad (f \in L_1(\Omega))
\]
where the limit is in the norm topology of \(L_1(\Omega) \) and where \(t_1, \ldots, t_d \) tend to zero independently. Then we have \(\|T_0\|_1 \leq 1 \) and furthermore \(\|T_0f\|_\infty \leq \|f\|_\infty \) for every \(f \in L_1(\Omega) \cap L_\infty(\Omega) \). Thus, as in Section 2, we may and will assume that \(T_0 \) is a Dunford-Schwartz operator on \(L_1(\Omega) \cap L_\infty(\Omega) \).

It will be proved that if \(f \in R_{d-1}(\Omega) \) then
\[
A(\alpha_1, \ldots, \alpha_d)f(\omega) \rightarrow T_0f(\omega) \quad \text{a.e. on } \Omega
\]
as \(\alpha_1 \rightarrow 0, \ldots, \alpha_d \rightarrow 0 \) independently.
To do this, first suppose that $1 < p < \infty$ and $f \in L_p(\Omega)$. Let, for each $n \geq 1$,

$$f_n = (n^n)^{1/n} \cdots \left(\int_0^{1/n} T(t_1, \cdots, t_d) f \, dt_1 \cdots dt_d \right) \in L_p(\Omega).$$

Then we see that

$$\lim_n \|f_n - T_0 f\|_p = 0.$$

Furthermore it may be readily seen that for almost all $(t_1, \cdots, t_d, \omega) \in \mathbb{R}_+^d \times \Omega$ with respect to the product of the Lebesgue measure and μ we have

$$T(t_1, \cdots, t_d) f_n(\omega) = (n^n)^{1/n} \cdots \left(\int_0^{1/n} T(t_1 + s_1, \cdots, t_d + s_d) f(\omega) \, ds_1 \cdots ds_d \right)$$

where of course $T(t_1, \cdots, t_d) f_n(\omega)$ denotes a scalar representation of $T(t_1, \cdots, t_d) f_n$, $(t_1, \cdots, t_d) \in \mathbb{R}_+^d$. Thus for almost all $\omega \in \Omega$, $T(t_1, \cdots, t_d) f_n(\omega)$ as a function of $(t_1, \cdots, t_d) \in \mathbb{R}_+^d$ is continuous, and clearly

$$A(\alpha_1, \cdots, \alpha_d) f_n(\omega) \longrightarrow f_0(\omega) \quad \text{a.e. on } \Omega$$

as $\alpha_1 \longrightarrow 0, \cdots, \alpha_d \longrightarrow 0$ independently. Since $T_0 f_n = f_n$, it then follows that

$$\limsup_{\alpha_1, \cdots, \alpha_d \to 0} \left| A(\alpha_1, \cdots, \alpha_d) f(\omega) - T_0 f(\omega) \right|$$

$$\leq \limsup_{\alpha_1, \cdots, \alpha_d \to 0} \left| A(\alpha_1, \cdots, \alpha_d)(f - f_n)(\omega) - T_0(f - f_n)(\omega) \right|$$

$$\leq \sup_{t_1, \cdots, t_d > 0} \left| A(\alpha_1, \cdots, \alpha_d)(f - f_n)(\omega) \right| + \left| T_0(f - f_n)(\omega) \right|$$

$$\leq (f - f_n)^*(\omega) + \left| T_0(f - f_n)(\omega) \right| \quad \text{a.e. on } \Omega.$$

Since $\lim_n \|(f - f_n)^*\|_p = 0$ by the remark in the preceding section and $\lim_n \|T_0(f - f_n)\|_p = \lim_n \|f - f\|_p = 0$, this implies that for $f \in L_p(\Omega)$ with $1 < p < \infty$, $A(\alpha_1, \cdots, \alpha_d) f(\omega)$ converges to $T_0 f(\omega)$ a.e. on Ω as $\alpha_1 \longrightarrow 0, \cdots, \alpha_d \longrightarrow 0$ independently.

Next suppose that $f \in L_d(\Omega)$, and then take $f_n \in L_d(\Omega)$, where $1 < p < \infty$, so that $|f - f_n| \leq |f|$ and $\lim_n f_n = f$ a.e. on Ω. Then

$$\limsup_{\alpha_1, \cdots, \alpha_d \to 0} \left| A(\alpha_1, \cdots, \alpha_d) f(\omega) - T_0 f(\omega) \right|$$

$$\leq \limsup_{\alpha_1, \cdots, \alpha_d \to 0} \left| A(\alpha_1, \cdots, \alpha_d)(f - f_n)(\omega) - T_0(f - f_n)(\omega) \right|$$

$$\leq (f - f_n)^*(\omega) + \left| T_0(f - f_n)(\omega) \right| \quad \text{a.e. on } \Omega,$$

and by Theorem 2, for every $t > 0$
\[
\mu \left\{ (f-f_n)^* > t \right\} \leq \int_{\{C_d = 1(d) \left| \frac{f-f_n}{t} \right| \left[\log \frac{C_d = 1(d) \left| \frac{f-f_n}{t} \right|}{\left| f-f_n \right|} \right] \right\} \leq \int_{\{C_d = 1(d) \left| \frac{f-f_n}{t} \right| \left[\log \frac{C_d = 1(d) \left| \frac{f-f_n}{t} \right|}{\left| f-f_n \right|} \right] \right\}} d\mu,
\]

where the right-hand side of the last inequality tends to zero as \(n \to \infty \), by virtue of Lebesgue's dominated convergence theorem. On the other hand, as in Lemma 1, we have for every \(t > 0 \)
\[
\mu \left\{ \left| T_0(f-f_n) \right| > t \right\} \leq \frac{2}{t} \int_{\{C_d = 1(d) \left| \frac{f-f_n}{t} \right| \left[\log \frac{C_d = 1(d) \left| \frac{f-f_n}{t} \right|}{\left| f-f_n \right|} \right] \}} d\mu,
\]
and the right-hand side of this inequality tends to zero as \(n \to \infty \), by Lebesgue's convergence theorem, too. Therefore we observe that the theorem holds for \(f \in R_{d-1}(\Omega) \), and the proof is completed.

Remark. It is known (cf. [9]) that if \(d = 1 \) then Theorem 4 holds for every \(f \in L_1(\Omega) + L_\infty(\Omega) \). But, as is well-known (cf. [4] or [10]), if \(d \geq 2 \) then the theorem may fail to hold for some \(f \in L_1(\Omega) \).

Lemma 2. Let \(\Gamma = \{T(t_1, \ldots, t_d) ; t_1, \ldots, t_d > 0 \} \) be a \(d \)-parameter semigroup of Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega) \) which is assumed to be strongly continuous with respect to the norm topology of \(L_1(\Omega) \). If \(1 < p < \infty \) and \(f \in L_p(\Omega) \), then the averages \(A(\alpha_1, \ldots, \alpha_d) f \) converge in the norm topology of \(L_p(\Omega) \) as \(\alpha_1 \to \infty, \ldots, \alpha_d \to \infty \) independently.

Proof. \(\{A(\alpha_1, \ldots, \alpha_d) ; \alpha_1, \ldots, \alpha_d > 0 \} \) may and will be regarded as a net of bounded linear operators on \(L_p(\Omega) \). Then it follows that this net is \(\Gamma \)-ergodic in the sense of [8], and since \(L_p(\Omega) \) with \(1 < p < \infty \) is a reflexive Banach space, it follows from [8] that \(A(\alpha_1, \ldots, \alpha_d) f \) converges in the strong operator topology as \(\alpha_1 \to \infty, \ldots, \alpha_d \to \infty \) independently. This completes the proof.

Theorem 5. Let \(\Gamma = \{T(t_1, \ldots, t_d) ; t_1, \ldots, t_d > 0 \} \) be a \(d \)-parameter semigroup of Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega) \) which is assumed to be strongly continuous with respect to the norm topology of \(L_1(\Omega) \). If \(f \in R_{d-1}(\Omega) \) then the averages \(A(\alpha_1, \ldots, \alpha_d) f(\omega) \) converge almost everywhere on \(\Omega \) as \(\alpha_1 \to \infty, \ldots, \alpha_d \to \infty \) independently.

Proof. Let \(1 < p < \infty \). Lemma 2 enables us to define an operator \(T_\infty(\cdot, \ldots, \cdot) \) on \(L_p(\Omega) \) by the relation
\[
T_\infty f = \lim_{\alpha_1, \ldots, \alpha_d \to \infty} A(\alpha_1, \ldots, \alpha_d) f \quad (f \in L_p(\Omega))
\]
where the limit is in the norm topology of \(L_p(\Omega) \) and where \(\alpha_1, \ldots, \alpha_d \) tend
to infinity independently. Then we have \(\|T_n\|_p \leq 1 \), and for \(f \in L_1(\Omega) \cap L_p(\Omega) \) there exists a sequence \((f_n) \) in the set \(\{A(\alpha_1, \cdots, \alpha_d) f : \alpha_1, \cdots, \alpha_d > 0\} \) such that

\[
T_n f = \lim_{n} f_n \quad \text{a.e. on } \Omega.
\]

Since \(\|f_n\|_1 \leq \|f\|_1 \) for each \(n \geq 1 \), it follows from Fatou's lemma that

\[
\|T_n f\|_1 \leq \liminf_{n} \|f_n\|_1 \leq \|f\|_1.
\]

Hence \(T_n \) can be uniquely extended to a linear contraction on \(L_1(\Omega) \), which satisfies \(\|T_n f\|_\infty \leq \|f\|_\infty \) for every \(f \in L_1(\Omega) \cap L_\infty(\Omega) \). Therefore, as in Section 2, we may and will assume that \(T_n \) is a Dunford-Schwartz operator on \(L_1(\Omega) + L_\infty(\Omega) \).

It will be proved that if \(f \in R_{\pi}(\Omega) \) then

\[
A(\alpha_1, \cdots, \alpha_d) f(\omega) \longrightarrow T_n f(\omega) \quad \text{a.e. on } \Omega
\]

as \(\alpha_1 \longrightarrow \infty, \cdots, \alpha_d \longrightarrow \infty \) independently.

To do this, however, in view of the proof of Theorem 4, it is enough to check that the theorem holds for every \(f \in L_p(\Omega) \). And to check this it is also enough to notice that the theorem holds for every \(f \) in a dense linear manifold of \(L_p(\Omega) \).

For this purpose, let \(M \) denote the linear manifold generated by the functions \(f \) of the form \(f = h + [g - T(s_1, \cdots, s_d) g] \), where \(h, g \in L_\infty(\Omega), T(t_1, \cdots, t_d) h = h \) for all \(t_1, \cdots, t_d > 0 \), and \(g \in L_\infty(\Omega) \). Lemma 2 implies that \(M \) is dense in \(L_p(\Omega) \) with respect to the norm topology of \(L_p(\Omega) \), and for such a function \(f \) it follows easily that \(T_n f = h \) and that

\[
A(\alpha_1, \cdots, \alpha_d) f(\omega) \longrightarrow h(\omega) \quad \text{a.e. on } \Omega
\]

as \(\alpha_1 \longrightarrow \infty, \cdots, \alpha_d \longrightarrow \infty \) independently. This completes the proof.

Let \(\Gamma_j = \{T_j(t) ; t > 0\}, 1 \leq j \leq d \), be one-parameter semigroups of Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega) \) which are assumed to be strongly continuous with respect to the norm topology of \(L_1(\Omega) \). (Here we do not assume that these one-parameter semigroups commute.) Then, since for each \(f \in L_p(\Omega) \), with \(1 \leq p < \infty \), the function \(T_1(t_1) \cdots T_d(t_d) f \) of \((t_1, \cdots, t_d) \in R_+^d \) is continuous with respect to the norm topology of \(L_p(\Omega) \), it follows, as in Section 2, that for every \(f \in L_1(\Omega) + L_\infty(\Omega) \) there exists a scalar function \(T_1(t_1) \cdots T_d(t_d) f(\omega) \), defined on \(R_+^d \times \Omega \) and measurable with respect to the product of the Lebesgue measurable subsets of \(R_+^d \), \(\mathcal{F} \), such that for each fixed \((t_1, \cdots, t_d) \in R_+^d \), \(T_1(t_1) \cdots T_d(t_d) f(\omega) \) as a function of \(\omega \in \Omega \) belongs to the equivalence class of \(T_1(t_1) \cdots T_d(t_d) f \). Then we may define, for almost all \(\omega \in \Omega \),
A(\alpha_1, \ldots, \alpha_d) f(\omega) = \frac{1}{\alpha_1 \cdots \alpha_d} \int_0^{\alpha_1} \cdots \int_0^{\alpha_d} T_1(t_1) \cdots T_d(t_d) f(\omega) \, dt_1 \cdots dt_d

Then we have the following theorem which is similar to the above Theorem 5 and a generalization of Theorem 5 in Fava [4].

Theorem 6. Let \(\Gamma_j = \{ T_j(t) ; t > 0 \} \), \(1 \leq j \leq d \), be one-parameter semigroups of Dunford-Schwartz operators on \(L_1(\Omega) + L_\infty(\Omega) \) which are assumed to be strongly continuous with respect to the norm topology of \(L_1(\Omega) \). If \(f \in R_{d-1}(\Omega) \) then the averages \(A(\alpha_1, \ldots, \alpha_d) f(\omega) \) converge almost everywhere on \(\Omega \) as \(\alpha_1 \to \infty, \ldots, \alpha_d \to \infty \) independently.

Proof. It is known (cf. [3], p. 694) that if \(1 < p < \infty \) and \(f \in L_p(\Omega) \) then the averages \(A(\alpha_1, \ldots, \alpha_d) f(\omega) \) converge almost everywhere on \(\Omega \) and as well in the norm topology of \(L_p(\Omega) \) as \(\alpha_1 \to \infty, \ldots, \alpha_d \to \infty \) independently. Thus, by using Theorem 1 repeatedly, we may see, as in Theorem 5, that the desired result holds for \(f \in R_{d-1}(\Omega) \). We omit the details.

In conclusion we should like to remark that Yoshimoto [11] has obtained, using a maximal ergodic theorem due to Hasegawa-Sato-Tsurumi [5], vector valued ergodic theorems in the same direction for a one-parameter semigroup \(\{ T(t) ; t > 0 \} \) of linear operators on \(L_1(\Omega, X) + L_\infty(\Omega, X) \) which satisfies some norm and integrability conditions, \(X \) being a reflexive Banach space. Since the scalar field is a reflexive Banach space, Yoshimoto's results generalize ours when restricted to one-parameter semigroups. But we could not extend his results to \(d \)-parameter semigroups with \(d \geq 2 \), because the existence of a positive one-parameter semigroup is not known which dominates a given \(L_1(\Omega, X) \) contraction operator one-parameter semigroup.

Added in proof. Professor S.A. McGrath kindly informed me that he proved, in his recent paper [Local ergodic theorems for noncommuting semigroups, Proc. Amer. Math. Soc. 79 (1980), 212-216], the following local ergodic theorem:

Let \(\Gamma_j = \{ T_j(t) ; t > 0 \} \), \(1 \leq j \leq d \), be as in Theorem 6. Assume, in addition, that \(\lim_{t \to 0} \| T_j(t) - I \|_1 = 0 \) for each \(j \). Then for any \(f \in R_{d-1}(\Omega) \), the averages \(A(\alpha_1, \ldots, \alpha_d) f(\omega) \) converge almost everywhere on \(\Omega \) as \(\alpha_1 \to 0, \ldots, \alpha_d \to 0 \) independently.

Modifying his argument and using the local ergodic theorem in [6], it is easily seen that McGrath's theorem holds, without the additional hypothesis that \(\lim_{t \to 0} \| T_j(t) - I \|_1 = 0 \) for each \(j \).
ERGODIC THEOREMS

REFERENCES

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received February 9, 1980)