Note on Azumaya algebras and H-separable extensions

Shûichi Ikehata*
NOTE ON AZUMAYA ALGEBRAS AND
H-SEPARABLE EXTENSIONS

SHUCHI IKEHATA

Let \(A/B \) be a ring extension with common identity 1, and \(C \) be the center of \(A \). If \(A \otimes_B A \) is \(A \)-\(A \)-isomorphic to an \(A \)-\(A \)-direct summand of a finite direct sum \(A^n \) then \(A/B \) is called to be \(H \)-separable. As is well known, \(A/C \) is \(H \)-separable if and only if \(A \) is an Azumaya \(C \)-algebra. The purpose of this note is to prove the following theorem, which has an application (Th. 2).

Theorem 1. Let \(A \) be an Azumaya \(C \)-algebra, and \(A \supset B \supset C \). If \(A_B \) is projective then \(A/B \) is \(H \)-separable.

Proof. Since \(A/C \) is separable, there exists an element \(\sum_i r_i \otimes s_i \) in \(A \otimes_C A \) such that \(\sum_i r_i s_i = 1 \) and \(\sum_i ar_i \otimes s_i = \sum_i r_i \otimes s_i a \) for all \(a \in A \). Further, since \(A_B \) is f. g. projective, there exists a finite number of elements \(t_j \in A \) and \(f_j \in \text{Hom}(A_B, B_B) \) such that \(\sum_j t_j f_j(a) = a \) for all \(a \in A \). Then, the mapping \(\theta: u \otimes v \to \sum_j u t_j \otimes f_j(v) \) of \(A \otimes_C A \) into itself is an endomorphism, and

\[
\sum_{i,j} r_i t_j \otimes f_j(s,ax)y = \theta(\sum_i r_i \otimes s_i ax)y = \theta(\sum_i ar_i \otimes s_i x)y
\]

where \(a, x, y \in A \). This implies that the map \(\phi: A \otimes_B A \to A \otimes_C A \) defined by \(x \otimes y \to \sum_{i,j} r_i t_j \otimes f_j(s,xy) \) is an \(A \)-\(A \)-homomorphism. Obviously, the canonical map \(\psi: A \otimes_C A \to A \otimes_B A \) is an \(A \)-\(A \)-homomorphism and \(\psi \phi \) is the identity map of \(A \otimes_B A \). Hence \(A \otimes_B A \otimes_A \) is \(A \)-\(A \)-homomorphism and \(A/C \) is separable map. Hence \(A/B \) is \(H \)-separable, it follows that \(A/B \) is \(H \)-separable.

Next, we need the following

Lemma. Let \(A/B \) be \(H \)-separable, and \(_AM \) a unital \(A \)-module. If \(_BM \) is a generator then so is \(_AM \).

Proof. Since \(_BM \) is a generator, \(_B\oplus^n_M^n \) for some integer \(n \geq 0 \). Further, since \(A/B \) is \(H \)-separable, \(_A\otimes_B A \otimes_A \) for some integer \(m \geq 0 \). Then, we obtain \(_A\otimes_B A \otimes_A \otimes_M^n \equiv _A\otimes_B A \otimes_M^n \).

Now, let \(B \) be a commutative ring, \(G \) a finite group of automorphisms of...
of B, and $R = B^G$ (the fixed ring of G in B). Moreover, $\mathcal{J}(B; G)$ denotes the trivial crossed product $\bigoplus_{\sigma \in G} B u_{\sigma}$ with $u_{\sigma} u_{\tau} = u_{\sigma \tau}$ and $u_{\sigma} b = \sigma(b) u_{\sigma} (\sigma, \tau \in G, b \in B)$. Obviously, the map $j : \mathcal{J}(B; G) \rightarrow \text{Hom}(B_n, B_n)$ defined by $j(b u_{\sigma})(x) = b_{\sigma}(x)$ ($b, x \in B, \sigma \in G$) is a ring homomorphism. If j is an isomorphism and B_n is f. g. projective then B/R is called to be G-Galois (cf. [1], [2]). Under this situation, we shall prove the following theorem which contain some characterizations of Galois extensions of commutative rings.

Theorem 2. Let B be a commutative ring, G a finite group of automorphisms of B, $R = B^G$, and $\mathcal{J} = \mathcal{J}(B; G)$. Then the following conditions are equivalent.

1. B/R is G-Galois.
2. \mathcal{J} is an Azumaya R-algebra.
3. \mathcal{J}/B is H-separable.

When this is the case, B is a maximal commutative R-subalgebra of \mathcal{J} with $\mathcal{J} \otimes_R B = M_m(B)$ and $B \otimes_R \mathcal{J} = M_m(B)$, where m is the order of G.

Proof. (1) \Rightarrow (2). It is well known ([2, Prop. 3.1.2 and Prop. 2.4.1]). (2) \Rightarrow (3). Since $u_{\mathcal{J}}$ is free, it follows from Th. 1. (3) \Rightarrow (1). By Lemma, $u_{\mathcal{J}}$ is a generator. Hence B/R is G-Galois by [1, Prop. A.1]. Finally, if B/R is G-Galois then B coincides with the centralizer of B in \mathcal{J}, and hence the last assertion follows immediatly from [3, Lemma 1 (3)].

REFERENCES

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received June 17, 1980)