On unit groups of finite local rings

Takao Sumiyama*

* Aichi Institute of Technology

ON UNIT GROUPS OF FINITE LOCAL RINGS

TAKAO SUMIYAMA

Throughout the present paper, \(R \) will represent a (not necessarily commutative) finite local ring with radical \(M \). Let \(K \) be the residue field \(R/M \), and \(R^* \) the unit group of \(R \). Let \(|K| = p^r (p \text{ a prime}), |R| = p^{nr}, |M| = p^{(n-1)r} \), and \(p^k (k \leq n) \) the characteristic of \(R \). Let \(Z_{p^k} = Z/p^kZ \) be the prime subring of \(R \). The \(r \)-dimensional Galois extension \(GR(p^{kr}, p^k) \) of \(Z_{p^k} \) is called a Galois ring (see [3]). By [5, Theorem 8 (i)], \(R \) contains a subring isomorphic to \(GR(p^{kr}, p^k) \), which will be called a maximal Galois subring of \(R \).

In the proof of [6, Theorem], the author showed that \(R^* \) contains an element \(u \) such that (i) its multiplicative order is \(p^r - 1 \) (and hence \(\bar{u} \) is a generator of \(K^* \)) and (ii) \(Z_{p^r}[u] \) is a maximal Galois subring of \(R \). Then \(R^* \) is a semidirect product of \(\langle u \rangle \) with \(1+M \). Given \(v \in \langle u \rangle \), we define \(\phi_v \in \text{Aut}(1+M) \) by \(\phi_v(x) = v^{-1}xv \ (x \in 1+M) \). A map \(f : \langle u \rangle \to 1+M \) is called a crossed homomorphism if \(f(ab) = \phi_a(f(b))f(a) \) for any \(a, b \in \langle u \rangle \). The set of all crossed homomorphisms of \(\langle u \rangle \) to \(1+M \) will be denoted by \(Z^1 = Z^1(\langle u \rangle, 1+M) \) (cf. [2, pp. 104—106]). For each \(x \in 1+M \), the map \(f_x : \langle u \rangle \to 1+M \) defined by \(f_x(a) = \phi_a(x)x^{-1} \) is a crossed homomorphism. Such a crossed homomorphism is called principal, and the set of all principal crossed homomorphisms is denoted by \(B^1 = B^1(\langle u \rangle, 1+M) \). In case \(M \) is commutative, \(Z^1 \) and \(B^1 \) are Abelian groups and \(H^1 = Z^1/B^1 \) is the first cohomology group of \(\langle u \rangle \) over \(1+M \). Given \(v \in \langle u \rangle \), we define \(N_v : 1+M \to 1+M \) by

\[
N_v(x) = (vx)^{p^r-1} = v^{-1}(p^r-1)(vx)^{p^r-1} = \phi_{p^r-1}(x) \cdots \phi_v(x) \phi_v(x)x.
\]

Note that if \(M \) is commutative then \(N_v \) is a group homomorphism. We set \(D = \{ x \in 1+M \mid N_v(x) = 1 \} \).

The purpose of this paper is to prove the following theorems.

Theorem 1.

1. \(|Z^1| = |D| \).
2. \(|B^1| \) coincides with the number of maximal Galois subrings of \(R \).
3. If \(M \) is commutative then \(H^1 = 0 \).

Theorem 2.

1. The number of solutions of \(X^{p^r-1} = 1 \) in \(R \) is...
Mathematical Journal of Okayama University, Vol. 23 [1981], Iss. 2, Art. 13

T. SUMIYAMA

$(p^r-1)s$ with a positive integer s.

(2) The following are equivalent:
 1) The number of solutions of $X^{p^r-1} = 1$ in R is p^r-1, namely the set of solutions of $X^{p-1} = 1$ in R coincides with $<u>$.
 2) $R^* = <u> \times (1+M)$.
 3) R^* is a nilpotent group.
 4) R has a unique maximal Galois subring.
 5) $|B_\downarrow| = 1$.
 6) $[a.x] \in M^2$ for all $a \in R^*$ and $x \in M$.

(3) The number of solutions of $X^{p-1} = 1$ in R is $p-1$, namely the set of solutions of $X^{p^r-1} = 1$ in R coincides with the subgroup of $<u>$ generated by the $\left(\frac{p^r-1}{p-1}\right)$-th power of u contained in Z_{p^r}.

Theorem 3. Let m be the number of solutions of $X^{p^r-1} = 1$ in R. If $r \geq 2$, then

$$|Z_\downarrow| + p^r - 2 \leq m \leq |Z_\downarrow| + p - 1 + p^{(n-1)r} (p^r - p - 1).$$

Theorem 4. Let $(p^r-1)s$ be the number of solutions of $X^{p^r-1} = 1$ in R. Let $T = \{v \in <u>| N_v(x) = 1 \text{ implies } x = 1\}$, and $t = |T|$.

(1) If M is commutative, then $s + t$ is a multiple of p.

(2) If $M^2 = 0$ and $k = 1$, then $s + t$ is a multiple of p^r.

Proof of Theorem 1. (1) Let $f : <u> \rightarrow 1 + M$ be a crossed homomorphism. Since f is completely determined by $f(u)$ and $1 = f(1) = f(u^{p^r-1}) = N_u(f(u))$, the number of all crossed homomorphisms coincides with $|D|$.

(2) Let $f_x, f_y \in B_\downarrow$. If $f_x = f_y$, then $f_x(u) = f_y(u)$, which implies that $y^{-1}xu = uy^{-1}x$. So, each principal crossed homomorphism corresponds to a left coset of $1 + N$ in $1 + M$, where $N = \{z \in M | zu = uz\}$. Thus $|B_\downarrow| = |1 + M|/|1 + N| = |M : N|$. As was noted in [6], $|M : N|$ is the number of maximal Galois subrings of R.

(3) Consider $\Phi : D \rightarrow B_\downarrow$ defined by $\Phi(x) = f_x$. We shall show that Φ is injective. If $f_x = f_y$ ($x, y \in D$), then $z = x^{-1}y \in 1 + N$, and hence $1 = N_y(y) = N_y(x)z^{p^r-1} = x^{p^r-1}$. This means that $z = 1$, namely $x = y$. Thus, this together with (1) implies $Z_\downarrow = B_\downarrow$.

Proof of Theorem 2. (1) This is immediate by a theorem of Frobenius [1, Theorem 9.1.2].

(2) Obviously, 3) \iff 2) \implies 1).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol23/iss2/13
ON UNIT GROUPS OF FINITE LOCAL RINGS

1) \implies 2). By [1, Theorem 9.4.1], $\langle u \rangle$ is a normal subgroup of R^*, and therefore $R^* = \langle u \rangle \times (1 + M)$.

3) \iff 4). See [6, Remark].

4) \iff 5). By Theorem 1 (2).

6) \implies 3). By [4, Lemma 1].

2) \implies 6). Let $a = v(1 + y)$ ($v \in \langle u \rangle, y \in M$). Then $[a, x] = [v(1 + y), 1 + x] = v[y, x] \in M^2$.

3) By [5, Theorem 6], $X^{p-1} = 1$ has $p-1$ solutions in Z_{p^a}. So, we show that there are at most $p-1$ solutions in R. Let $a = vx$ ($v \in \langle u \rangle, x \in 1 + M$) be an element of R^* such that $a^{p-1} = 1$. Then, the canonical image of v in K is contained in the prime field of K, and so $v = iy$ with some multiple i of 1 and $y \in 1 + M$. Since

$$v^{-(p-1)} = v^{-(p-1)}(vx)^{p-1} = \phi_{v^{p-1}}(x) \cdots \phi_{v^{(p-1)/2}}(x)x$$

is in $\langle u \rangle \cap (1 + M) = 1$, we obtain

$$y^{p-1} = y^{p-1} \phi_{v^{p-1}}(x) \cdots \phi_{v^{(p-1)/2}}(x)x = (yx)^{p-1},$$

whence it follows that $y = yx$. Hence $x = 1$ and $a = v$. This completes the proof.

Corollary. If $r = 1$, then $R^* = \langle u \rangle \times (1 + M)$.

Proof of Theorem 3. If $a = vx$ ($v \in \langle u \rangle, x \in 1 + M$) is an element of R^* such that $a^{p-1} = 1$, then $1 = (vx)^{p-1} = N_v(x)$. Hence, by Theorem 1 (1) we obtain

$$m = \sum_{v \in \langle u \rangle} |\{x \in 1 + M \mid N_v(x) = 1\}| \geq |D| + p^{r-2} = |Z_d| + p^{r-2}.$$

Now, let w be the $\left(\frac{p^r-1}{p-1}\right)$-th power of u, and $v \in \langle w \rangle$. Then $N_v(x) = x^{p^r-1}$ by Theorem 2 (3). Hence,

$$m = |D| + \sum_{v \in \langle u \rangle} |\{x \in 1 + M \mid N_v(x) = 1\}| + \sum_{v \in \langle u \rangle \cup \langle w \rangle} |\{x \in 1 + M \mid N_v(x) = 1\}|$$

$$\leq |Z_d| + (p-1) + p^{(n-1)r} (p^r - 1 - (p-1))$$

$$= |Z_d| + p - 1 + p^{n-1} (p^r - p - 1).$$

Proof of Theorem 4. (1) For any $v \in \langle u \rangle$, the map N_v is a group homomorphism, and $|\ker N_v|$ is a power of p, provided $v \in T$. Since

$$(p^r-1)s = \sum_{v \in \langle u \rangle} |\ker N_v| = t + \sum_{v \in T} |\ker N_v| = t + pl$$

with some non-negative integer l, we see that $s+t$ is a multiple of p.

(2) Given $k_1, k_2, \ldots, k_n \in K$, we denote by $r_1\{k_1, k_2, \ldots, k_n\}$ the $n \times n$
matrix
\[
\begin{bmatrix}
k_1 & k_2 & \cdots & k_n \\
0 & 0 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix}
\]

According to [5, Theorem 3], \(R \) may be regarded as the ring of all matrices of the form
\[
\text{diag}(c, \sigma_2(c), \cdots, \sigma_n(c)) + r_1\{0, d_2, \cdots, d_n\},
\]
where \(c, d_2, \cdots, d_n \) range over \(K \) and \(\sigma_2, \cdots, \sigma_n \) are fixed automorphisms of \(K \). Obviously, \(1 + M \) consists of all matrices of the form
\[
1 + r_1\{0, d_2, \cdots, d_n\}.
\]

If \(b \) is a generating element of \(K^* \) then \(u = \text{diag}\{b, \sigma_2(b), \cdots, \sigma_n(b)\} \) is of order \(p^r - 1 \) and \(Z_p[u] \) is a maximal Galois subring of \(R \). Now, let \(v = \text{diag}(c, \sigma_2(c), \cdots, \sigma_n(c)) \) and \(x = 1 + r_1\{0, d_2, \cdots, d_n\} \). Then
\[
(vx)^{p^r-1} = 1 + r_1\{0, g_2, \cdots, g_n\},
\]
where
\[
g_i = c(\sum_{j=0}^{p^r-2} c^i \sigma_i(c)^{p^r-2-j})d_i = \begin{cases}
0 & \text{if } c \neq \sigma_i(c) \\
-c^{p^r-1}d_i & \text{if } c = \sigma_i(c)
\end{cases}.
\]

Since \(v \) is in \(T \) if and only if \(c = \sigma_i(c) \) for all \(i \), we see that \(|\text{Ker } N_v| \) is a multiple of \(p^r \) for any \(v \in T \). Thus, \((p^r - 1)s = t + p^r m' \) with some non-negative integer \(m' \), and therefore \(s + t \) is a multiple of \(p^r \).

Example. Let \(R = \left\{ \begin{pmatrix} c & d \\ 0 & c^d \end{pmatrix} \mid c, d \in GF(p^2) \right\} \). Then \(t = p - 1 \), and therefore the number of solutions of \(X^{p^r-1} = 1 \) in \(R \) is \(p - 1 + (p^2 - 1 - (p - 1))p^2 = p^4 - p^3 + p - 1 \).

REFERENCES

AICHI INSTITUTE OF TECHNOLOGY

(Received July 31, 1980)