Mathematical Journal of Okayama University

Volume 23, Issue 2 1981 Article 14

DECEMBER 1981

On generalized n-like rings and related rings

Hisao Tominaga* Adil Yaqub†

*Okayama University
†University of California

ON GENERALIZED \(n \)-LIKE RINGS AND RELATED RINGS

HISAO TOMINAGA and ADIL YAQUB

Throughout, \(R \) will represent a ring with (Jacobson) radical \(J \), and \(N \) the set of all nilpotent elements in \(R \). A ring \(R \) is called an \(s \)-unital ring if for each \(x \in R \) there holds \(x \in Rx \cap xR \). If \(R \) is an \(s \)-unital ring then for any finite subset \(F \) of \(R \) there exists an element \(e \) in \(R \) such that \(ex = xe = x \) for all \(x \in F \) (see, [4, Lemma 1 (a)]). Such an element \(e \) will be called a pseudo-identity of \(F \). A ring \(R \) is called a generalized \(n \)-like ring if \(R \) satisfies the polynomial identity \((xy)^n - xy^n - x^n y + xy = 0\) for an integer \(n > 1 \). Recently, H. G. Moore [3] showed that if \(n \) is even or 3 then every generalized \(n \)-like ring with identity is commutative.

The present objective is to prove a theorem which generalizes Theorem 4 of [3] and deduces Theorems 2 and 3 of [3]. We begin with the following lemmas.

Lemma 1. Suppose that for each pair of elements \(x, y \) in \(R \) there exists an integer \(n = n(x, y) > 1 \) such that

\[(xy)^n - xy^n - x^n y + xy = 0.\]

Then there holds the following:

1. \((x^{n(x,x)} - x)^2 = x^{2n(x,x)} - 2x^{n(x,x)+1} + x^2 = 0.\)
2. \(x^{k(n(x,x)+1) + 2} = k(x^{n(x,x)+1} - x^2) + x^2\) for all positive integers \(k \).
3. If \(R \) is semi-primitive then \(R \) is commutative.
4. \(N^2 = 0 \) and \(N = J \) contains the commutator ideal of \(R \).

Proof. (1) Setting \(y = x \) in (*), we get (1).
(2) Let \(m = n(x,x) \). Suppose \(x^{k(m-1)+2} = kx^{m+1} - (k-1)x^2 \). Then, by (1),
\[x^{(k+1)(m-1)+2} = x^{m-1} x^{k(m-1)+2} = kx^{2m} - (k-1)x^{m+1}\]
\[= k(2x^{m+1} - x^2) - (k-1)x^{m+1} = (k+1)x^{m+1} - kx^2,\]
which completes the induction.

(3) Note that our hypothesis is inherited by all subrings and homo-
morphic images of \(R \). Note also that no complete matrix ring \((S)_t\) over a division ring \(S \) (\(t > 1 \)) satisfies the hypothesis, as a consideration of \(x = E_{11} + E_{12} \) and \(y = E_{22} \) shows. Because of these facts and the structure
theory of primitive rings, we may assume that \(R \) is a division ring. Then, since \(x^{n(x,x)} - x = 0 \) by (1), a well-known theorem of Jacobson shows that \(R \) is commutative.

(4) Since \(x^2 = x^2(2x^{n(x,x)} - 1 - x^{2(n(x,x)-1)}) \) by (1), we see that \(J \) is a nil ideal and every nilpotent element of \(R \) squares to 0. By (3), \(R/J \) is commutative. Hence \(J \) coincides with \(N \) and contains the commutator ideal of \(R \). Finally, if \(u, v \) are in \(J \) then \(uv = uv^{n(u,v)} + u^{n(u,v)}v - (uv)^{n(u,v)} = 0 \).

Lemma 2. Let \(R \) be an \(s \)-unital ring satisfying the hypothesis in Lemma 1. Then there holds the following:

1. For each \(x \in R \) there exists a positive integer \(a \) such that \(x^{a(n(x,x)-1)} \) is an idempotent.
2. Every idempotent of \(R \) is central.

Proof. (1) Let \(e \) be a pseudo-identity of \(x \), and set \(a = (2^n e, 2e - 2)^2 \). Then, by Lemma 1 (1), we get \(0 = ((2^n e, 2e - 2e)^2) = ax \). Thus, Lemma 1 (2) shows that \(x^{a(n(x,x)-1)+2} = x^2 \), whence (1) follows.

(2) Let \(a, b \) be idempotents in \(R \), and \(e \) a pseudo-identity of \(\{a, b\} \). According to (1), we may assume that \(e \) itself is an idempotent. We set \(l = n((e-a)b,a) \) and \(m = n(e-a,b) \). Then, by (*),

\[
((e-a)b)^l a = ((e-a)ba)^l - (e-a)ba^l + (e-a)ba = 0.
\]

But, again by (*),

\[
((e-a)b)^m = (e-a)b^m + (e-a)^m b - (e-a)b = (e-a)b,
\]

and therefore \(((e-a)b)^m a = (e-a)ba \). Reiterating in the last and using \(((e-a)b)^l a = 0 \) above, we get \((e-a)ba = 0 \), and hence \(ba = aba \). Replacing \(a \) by the idempotent \(e-a \) in the above argument, we also have \(b(e-a) = (e-a)b(e-a) \), and hence \(ab = aba \). Combining these, we conclude that \(ab = ba \), and thus all idempotents of \(R \) are central.

Lemma 3. (1) \(R \) is a generalized \(n \)-like ring if and only if \(R \) satisfies the polynomial identities \((xy)^n = x^ny^n \) and \((x^n-x)(y^n-y) = 0 \).

(2) If \(R \) is an \(s \)-unital generalized \(n \)-like ring then \((n-1)[u,x] = 0 \) for all \(u \in N \) and \(x \in R \).

Proof. (1) If \(R \) is a generalized \(n \)-like ring, then \(R \) satisfies the polynomial identity \(x^ny^n - xy^n - x^ny + xy = (x^n-x)(y^n-y) = 0 \) (Lemma 1 (1) and (4)). Combining this with \((xy)^n - xy^n - x^ny + xy = 0 \), we readily obtain \((xy)^n = x^ny^n \). The converse is trivial.
(2) According to Lemma 1 (4), we have
\[0 = [(xu)^n - xu^n - x^n u + xu] - [(ux)^n - ux^n - u^n x + ux] = [u, x^n] = [u, x]. \]

Now, let \(e \) be a pseudo-identity of \(x, u \). Then, by (1) and Lemma 1 (4),
\[[u, x] = [u, x^n] = (ux + x)^n - (xu + x)^n = (u + e)x^n - x(u + e) = [u + e, x^n] = n[u, x^n] = n[u, x], \]
which implies (2).

We are now in a position to state our main theorem.

Theorem 1. Let \(R \) be an \(s \)-unital (directly) indecomposable ring. Suppose that for each pair of elements \(x, y \) in \(R \) there exists an integer \(n = n(x, y) > 1 \) such that \((xy)^n - xy^n - x^n y + xy = 0 \). Then \(R \) is a local ring whose characteristic is \(p \) or \(p^2 \), \(p \) a prime.

Proof. Since \(R \) is indecomposable, Lemma 1 (4) and Lemma 2 show that \(R \) contains 1 and is a local ring. Moreover, noting that \((2n^2-2)^2 = 0 \) by Lemma 1 (1), we see that the characteristic of \(R \) is a power of a prime \(p \). Since \(p \) is in \(N \), we get \(p^2 = 0 \) (Lemma 1 (4)).

Corollary 1. Let \(R \) be an \(s \)-unital ring. Suppose that for each pair of elements \(x, y \) in \(R \) there exists an integer \(n = n(x, y) > 1 \) such that \((xy)^n - xy^n - x^n y + xy = 0 \). Then \(R \) is a subdirect sum of local rings. If furthermore \([xy, yx] = 0 \) for all \(x \in N \) and \(y \in N \), then \(R \) is commutative.

Proof. In view of Theorem 1, it remains only to prove the latter part. Note that if \(R^* \) is a homomorphic image of \(R \) then \([x^*, y^*, x^*] = 0 \) for all non-nilpotent elements \(x^*, y^* \) in \(R^* \). Because of this fact, we may assume that \(R \) is subdirectly irreducible, and thus \(R \) is a local ring (Theorem 1). Then, noting that \(N \) is commutative (Lemma 1 (4)), we can easily see that \([xy, yx] = 0 \) for all \(x, y \in R \). Hence,
\[[x, [x, y]] = [x(y + 1), [x, y + 1]] - [xy, [x, y]] = 0. \]

Now, by [2, Theorem], we see that \(R \) is commutative.

Corollary 2. Let \(R \) be an \(s \)-unital generalized n-like ring. If \(R \) is indecomposable then \(R \) is a local ring whose characteristic is \(p \) or \(p^2 \), \(p \) a prime; if \(p \) does not divide \(n - 1 \) then \(R \) is commutative.

Proof. In view of Theorem 1, it remains only to prove that if \((p, n - 1) = 1 \) then \(R \) is commutative. By Lemma 3 (2), \((n - 1)[u, x] = 0 \) for all
$u \in N$ and $x \in R$. Combining this with $p^2[u,x] = 0$, we obtain $[u,x] = 0$, and thus N is contained in the center of R. Then, using Lemma 1 (1) and [1. Theorem], we see that R is commutative.

The next includes Theorems 2 and 3 of [3].

Corollary 3. Let R be an s-unital generalized n-like ring. If n is even or 3, then R is commutative.

Proof. Without loss of generality, we may assume that R is subdirectly irreducible, and therefore R is a local ring by Theorem 1. If n is even, then $4 = ((-1)^n - (-1))^2 = 0$ (Lemma 1 (1)). Hence R is commutative by Corollary 2. Next, we consider the case that $n = 3$. Since R is a local ring, it is enough to show that if x, y are units in R then $xy = yx$. By Lemma 3 (1),

$$x^2y^2 - x^2 - y^2 + 1 = x^{-1}(x^3 - x)(y^3 - y)y^{-1} = 0$$

and $y^2x^2 - y^2 - x^2 + 1 = 0$. Hence $x^2y^2 = y^2x^2$. Using this and Lemma 3 (1), we get

$$(xy)^3 = x^3y^2 = x^2y^2y = xy^2x^2y = (xy)(yx)(xy),$$

whence it follows that $xy = yx$.

Remark. H. G. Moore required a theorem of Herstein [1] in the proof of [3. Theorem 3]. However, we can prove the same without making use of Herstein theorem (see the proof of Corollary 3).

REFERENCES

OKAYAMA UNIVERSITY, OKAYAMA, JAPAN

UNIVERSITY OF CALIFORNIA, SANTA BARBARA, U.S.A.

(Received April 27, 1981)