The identity \((xy)^n = x^ny^n\) and commutativity of rings

Yuji Kobayashi*
THE IDENTITY \((xy)^n = x^ny^n\) AND COMMUTATIVITY OF RINGS

YUJI KOBAYASHI

We shall give a commutativity theorem for rings with identity element. It contains some known results which have been obtained by several authors. Throughout this paper \(R\) represents a ring with 1, and \(N\) denotes the set of all positive integers.

1. Statement of Theorem. Let \(S\) be a semigroup or a ring. The subset \(E(S)\) of \(N\) defined by

\[
E(S) = \{ n \in N \mid (xy)^n = x^ny^n \text{ for all } x, y \in S \}
\]

forms a multiplicative subsemigroup of \(N\) and is called the exponent semigroup of \(S\) (Tamura [9]). The purpose of this paper is to prove the following

Theorem. Let \(R\) be a ring with 1. If \(E(R)\) contains integers \(n_1, \ldots, n_r \geq 2\) such that \((n_1(n_1-1), \ldots, n_r(n_r-1)) = 2\) and some of \(n_i\) is even, then \(R\) is commutative.

The theorem contains the following well-known result: If \(E(R)\) contains three consecutive positive integers, \(R\) is commutative. This was proved by Luh [7] under the additional condition that \(R\) is a primary ring. Ligh and Richoux [6] removed the condition and gave a complete and elementary proof. Our theorem contains also the following more general result: If \(E(R)\) contains \(m, m+1, n\) and \(n+1\) such that \((m, n)\) is either 1 or 2, then \(R\) is commutative. In case \((m, n) = 1\), this result was proved by Bell [1, Theorem 2]. In case \((m, n) = 2\), this was first proved by Yen [10, Theorem 2] under the condition that \(R\) is primary, and Mogami [8] removed the condition (even in a localized version).

As the simplest case of the theorem we have the following: If \(2 \in E(R)\), \(R\) is commutative. This was given by Johnsen, Outcalt and Yaqub [3]. Let us consider the case \(3 \in E(R)\). Then, \(R\) is commutative, if \(E(R)\) contains some \(n\) such that \(n \equiv 2 \pmod{6}\). Note that the commutativity of \(R\) need not follow only from the condition \(3 \in E(R)\).
exponent semigroups (Kobayashi [4, Theorem 3]). However, for the convenience of the reader, we shall give a direct proof of it in the last section.

Lemma 1. Let S be a cancellative semigroup. If $E(S)$ contains integers $n_1, \ldots, n_r \geq 2$ such that $(n_1(n_1-1), \ldots, (n_r(n_r-1)) = 2$, then S is commutative.

Lemma 2. Let $x, y \in R$. Then under the assumption in Theorem, $xy = 0$ implies $yx = 0$.

Proof. Let $n \in E(R)$ and $n \geq 2$. Assume that $xy = 0$. Then we have

$$y^n + y^nx = (y + yx)^n = y^n(1 + x)^n.$$

It follows that

$$(n-1) y^nx = -y^n x \sum_{i=2}^{n} \binom{n}{i} x^{i-1}.$$

Using this equality $n-1$ times, we get

$$(n-1)^{n-1} y^nx = (-1)^{n-1} y^n x \sum_{i=2}^{n} \binom{n}{i} x^{i-1}.$$

Since $y^nx = (yx)^n = 0$, we obtain $(n-1)^{n-1} y^nx = 0$. By the assumption there are integers $n_1, \ldots, n_r \geq 2$ in $E(R)$ such that $(n_1-1, \ldots, n_r-1) = 1$. Thus we get the equalities

$$(n_i-1)^{n_i-1} y^{m_i} x = 0 \quad (i = 1, \ldots, r),$$

where $m_i = \max \{n_1, \ldots, n_r\}$. It follows that $y^{m_i} x = 0$. A similar argument starting with the equation $(x + yx)^n = (1 + y)^n x^n$ yields $yx^{m_i} = 0$.

On the other hand, we have

$$(1 + x)^n + (1 + y)^n - 1 = (1 + x)^n(1 + y)^n = (1 + x + y)^n = (1 + x)^n + (1 + y)^n - 1 + \sum_{i+j=n} \binom{n}{i+j} y^i x^j.$$

It follows that

$$\binom{n}{2} yx = -\sum_{n \neq i+j \geq 3} \binom{n}{i+j} y^i x^j.$$

Using this equality repeatedly, we obtain

$$\binom{n}{2} yx = \sum_{i+j \geq 1} a_{i,j} y^i x^j,$$

where $m_0 = \min \{n \mid n \in E(R), n \geq 2\}$ and $a_{i,j}$ are integers. Since $y^{m_0} x^{m_0} = yx^{m_1} = y^{m_1} x = 0$, it follows that $\binom{n}{2} yx = 0$. By the
assumption that there are integers \(n_1, \ldots, n_r \geq 2 \) in \(E(R) \) such that \(\left(\begin{array}{c} n_1 \\ 2 \end{array} \right), \ldots, \left(\begin{array}{c} n_r \\ 2 \end{array} \right) = 1 \), we conclude that \(yx = 0 \).

Proof of Theorem. Let us assume the condition in Theorem is satisfied. By Lemma 2 there is no distinction between left and right zero-divisors in \(R \), and for any subset \(S \) of \(R \), the left and the right annihilator of \(S \) coincide and form a two-sided ideal of \(R \), which we denote by \(\text{Ann}(S) \). Let \(D \) be the set of all zero divisors of \(R \) (together with 0). To prove the theorem we may assume that \(R \) is subdirectly irreducible. Let \(H \) be the unique nonzero minimal ideal of \(R \). We claim that \(D = \text{Ann}(H) \). Clearly \(D \supset \text{Ann}(H) \). Conversely, let \(d \) be any element in \(D \). Since \(\text{Ann}(d) \) is a nonzero ideal of \(R \), it contains \(H \). This means \(d \in \text{Ann}(H) \), proving the claim. In particular we see that \(D \) is an ideal of \(R \). It follows that \(R \setminus D \) generates \(R \). Since \(R \setminus D \) is a cancellative semigroup by multiplication, it is commutative by Lemma 1. Therefore \(R \) is also commutative.

3. **Remarks.** In Theorem the existence of 1 in \(R \) is essential, because there is a non-commutative ring without 1 whose exponent semigroup contains all positive integers ([3, Example 1]).

The condition that \((n_1(n_1 - 1), \ldots, n_r(n_r - 1)) = 2 \) is also indispensable as the following example shows.

Example (c.f. Kobayashi [5, Example 4]). Let \(q \geq 2 \) be an integer and \(\mathbb{Z}_q \) the residue class ring of integers modulo \(q \). Let \(N \) be a non-commutative algebra over \(\mathbb{Z}_q \) such that \(N^3 = 0 \). We consider the ring \(R \) whose additive group is the direct sum \(\mathbb{Z}_q \oplus N \) with multiplication given by \((a + x) \cdot (b + y) = ab + (ay + bx + xy) \) for \(a, b \in \mathbb{Z}_q \) and \(x, y \in N \). Then, \(R \) is a ring with 1 and satisfies the identity \((xy)^n = x^n y^n\) for any positive integer \(n \) such that \(n(n - 1)/2 \equiv 0 \pmod{q} \). But, \(R \) is not commutative.

The second condition that some of \(n_i \) is even can be removed when \(R \) is a primary ring. In fact, let \(R \) be a primary ring, that is, the Jacobson radical \(J \) of \(R \) is maximal, and assume that there are integers \(n_1, \ldots, n_r \geq 2 \) in \(E(R) \) such that \((n_1(n_1 - 1), \ldots, n_r(n_r - 1)) = 2 \). Then, \(R/J \) is commutative by Herstein [2, Theorem 1], so it is a field. It follows that \(R \) is generated by its units. Hence, \(R \) is commutative by Lemma 1.

We do not know if Theorem remains true in general after removing the second condition.
4. Proof of Lemma 1. Let S be a cancellative semigroup satisfying the condition in Lemma 1. Let ι denote the equality relation on S. For $n \in \mathbb{N}$ we define the relation π_n on S as follows: For $x, y \in S$, $x \pi_n y$ if $x^n = y^n$ for some $e \in \mathbb{N}$. S is called n-power cancellative if $\pi_n = \iota$. If $n \in E(S)$, it is readily seen that π_n is a congruence on S and the quotient semigroup S/π_n is an n-power cancellative, cancellative semigroup. We set $P(S) = \{n \in E(S) \mid \pi_n = \iota\}$.

We claim that if m_1, \ldots, m_s are positive integers such that $(m_1, \ldots, m_s) = 1$, then $\pi_{m_1} \cap \cdots \cap \pi_{m_s} = \iota$. Let $x, y \in S$ and suppose that $x \pi_{m_i} y$ for $i = 1, \ldots, s$, that is, $x^{k_i} = y^{k_i}$ for some power k_i of m_i $(i = 1, \ldots, s)$. Since $(k_1, \ldots, k_s) = 1$, by renumbering k_i if necessary, we can find non-negative integers l_1, \ldots, l_s such that $l_1k_1 + \cdots + l_sk_s = l_{t+1}k_{t+1} + \cdots + l_sk_s + 1$ $(1 \leq t < s)$. Then we have

$$x^{l_1k_1} = \prod_{i=1}^{s} x^{l_1k_1} = \prod_{i=1}^{s} y^{l_1k_1} = (\prod_{i=1}^{s} y^{l_1k_1}) y = (\prod_{i=1}^{s} x^{l_1k_1}) y.$$

By the cancellation law we then get $x = y$, proving the claim.

Now, we set $R(S) = \{n \in \mathbb{N} \mid (xy)^n = y^n x^n \text{ for all } x, y \in S\}$. If $n \geq 2$ is in $E(S)$, then $n-1 \in R(S)$ by cancellation. So, if $2 \in E(S)$, then $1 \in R(S)$ and S is commutative. Let $n \geq 3$ and $n \in E(S)$. Then $(n-1)^2 \geq 4$ and $(n-1)^2 \in E(S)$. Since $(n, (n-1)^2) = 1$, we get $\pi_n \cap \pi_{n-1} = \iota$ by the claim above. Thus S is isomorphic to a subdirect product of S/π_n and S/π_{n-1}. To show the commutativity of S, it suffices to show it for S/π_n and S/π_{n-1}, which are n-power cancellative and $(n-1)^2$-power cancellative respectively. So we may assume from the first that $P(S) \setminus \{1\} \neq \emptyset$.

We claim that if $m \geq 2$ is in $P(S)$, then $m-1 \in E(S)$ and x^{m-1} is in the center of S for every $x \in S$. If $m \in P(S)$, then $(m-1)^2 \in E(S)$ as above. Hence $m(m-2) = (m-1)^2 - 1 \in R(S)$. Since $m \in P(S)$, it follows that $m-2 \in R(S)$. Thus we find $m-1 \in E(S)$. So we have $x^n y^m = (xy)^n = x y x^{m-1} y^{m-1}$ for any $x, y \in S$. By cancellation we obtain $x^{m-1} y = y x^{m-1}$, proving the claim.

Let m be the smallest integer in $P(S) \setminus \{1\}$. We proceed by induction on m. If $m = 2$, S is commutative. Let assume that $m \geq 3$ and the assertion of the lemma holds for any cancellative semigroup S' for which $P(S')$ contains an integer m' such that $m > m' \geq 2$. Let n_1, \ldots, n_r be in $E(S)$ and $(n_1(n_1-1), \ldots, n_r(n_r-1)) = 2$. If $m-1$ divides n_i or $n_i - 1$ for every $i = 1, \ldots, r$, then $m-1$ is either 1 or 2. In either case $2 \in E(S)$ and consequently S is commutative. Henceforth, assume that there is $n \in E(S)$ such that $n \equiv 0, 1 \pmod{m-1}$. Let $n = l(m-1) + k$, $2 \leq k \leq
m - 2. Since \(m - 1 \in E(S) \) and \(x^{m-1} \) and \(y^{m-1} \) are in the center for any \(x, y \in S \), we have

\[
x^n y^n = (xy)^{l(m-1)+k} = (x^{m-1} y^{m-1})^{l} (xy)^{k} = x^{l(m-1)} (xy)^{k} y^{l(m-1)}.
\]

The cancellation law gives \(x^k y^k = (xy)^k \), showing \(k \in E(S) \). Since \(m - 2, k - 1 \in R(S) \), we see that \((m-2)(k-1) = (k-2)(m-1) + (m-k) \in E(S) \).

In the same way as above we find that \(m - k \in E(S) \). Note that \(m > m - 1, k, m - k \geq 2 \) and \((m-1, k, m-k) = 1 \). Thus by the first claim we see that \(\pi_{m-1} \cap \pi_k \cap \pi_{m-k} = \emptyset \), that is, \(S \) is isomorphic to a subdirect product of \(S/\pi_{m-1}, S/\pi_k \) and \(S/\pi_{m-k} \), which are \((m-1), k \)- and \((m-k) \)-power cancellative respectively. By the induction hypothesis they are all commutative. Consequently \(S \) is also commutative, this completes the proof.

REFERENCES

FACULTY OF EDUCATION

TOKUSHIMA UNIVERSITY

TOKUSHIMA, JAPAN

(Received April 28, 1981)